1
|
Yang P, Freeman ZT, Dysko RC, Hoenerhoff MJ. Degenerative Myelopathy and Neuropathy in NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) Mice Caused by Lactate Dehydrogenase-Elevating Virus (LDV). Toxicol Pathol 2022; 50:390-396. [PMID: 35450478 DOI: 10.1177/01926233221091747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following implantation of patient-derived xenograft (PDX) breast carcinomas from three separate individuals, 33/51 female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice presented with progressive, unilateral to bilateral, ascending hindlimb paresis to paralysis. Mice were mildly dehydrated, in thin to poor body condition, with reduced to absent hindlimb withdrawal reflex and deep pain sensation. Microscopically, there was variable axonal swelling, vacuolation, and dilation of myelin sheaths within the ventral spinal cord and spinal nerve roots of the thoracolumbar and sacral spinal cord, as well as within corresponding sciatic nerves. Results of PCR screening of PDX samples obtained at necropsy and pooled environmental swabs from the racks housing affected animals were positive for lactate dehydrogenase-elevating virus (LDV). LDV is transmitted through animal-animal contact or commonly as a contaminant of biologic materials of mouse origin. Infection is associated with progressive degenerative myelopathy and neuropathy in strains of mice harboring endogenous retrovirus (AKR, C58), or in immunosuppressed strains (NOD-SCID, Foxn1nu), and can interfere with normal immune responses and alter engraftment and growth of xenograft tumors in immunosuppressed mice. This is the first reported series of LDV-induced poliomyelitis in NSG mice and should be recognized as a potentially significant confounder to biomedical studies utilizing immunodeficient xenograft models.
Collapse
Affiliation(s)
- P Yang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Z T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - R C Dysko
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - M J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Qing E, Hantak M, Perlman S, Gallagher T. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. mBio 2020; 11:e02764-19. [PMID: 32047128 PMCID: PMC7018658 DOI: 10.1128/mbio.02764-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.IMPORTANCE CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Michael Hantak
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Ercolini AM, Miller SD. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:3293-8. [PMID: 16517694 DOI: 10.4049/jimmunol.176.6.3293] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many disorders of the CNS, such as multiple sclerosis (MS), are characterized by the loss of the myelin sheath surrounding nerve axons. MS is associated with infiltration of inflammatory cells into the brain and spinal cord, which may be the primary cause of demyelination or which may be induced secondary to axonal damage. Both the innate and adaptive arms of the immune system have been reported to play important roles in myelin destruction. Numerous murine demyelinating models, both virus-induced and/or autoimmune, are available, which reflect the clinical and pathological variability seen in human disease. This review will discuss the immunopathologic mechanisms involved in these demyelinating disease models.
Collapse
Affiliation(s)
- Anne M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
4
|
Rempel JD, Murray SJ, Meisner J, Buchmeier MJ. Differential regulation of innate and adaptive immune responses in viral encephalitis. Virology 2004; 318:381-92. [PMID: 14972563 PMCID: PMC7126141 DOI: 10.1016/j.virol.2003.09.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 08/22/2003] [Accepted: 09/09/2003] [Indexed: 11/16/2022]
Abstract
Viral encephalitis is a global health concern. The ability of a virus to modulate the immune response can have a pivotal effect on the course of disease and the fate of the infected host. In this study, we sought to understand the immunological basis for the fatal encephalitis following infection with the murine coronavirus, mouse hepatitis virus (MHV)-JHM, in contrast with the more attenuated MHV-A59. Distinct glial cell cytokine and chemokine response patterns were observed within 3 days after infection, became progressively more polarized during the course of infection and with the infiltration of leukocytes. In the brain, MHV-JHM infection induced strong accumulation of IFNbeta mRNA relative to IFNgamma mRNA. This trend was reversed in MHV-A59 infection and was accompanied by increased CD8 T cell infiltration into brain compared to MHV-JHM infection. Increased apoptosis appeared to contribute to the diminished presence of CD8 T cells in MHV-JHM-infected brain with the consequence of a lower potential for IFNgamma production and antiviral activity. MHV-JHM infection also induced sustained mRNA accumulation of the innate immune response products interleukin (IL)-6 and IL-1. Furthermore, high levels of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2 mRNA were observed at the onset of MHV-JHM infection and correlated with a marked elevation in the number of macrophages in the brain on day 7 compared to MHV-A59 infection. These observations indicate that differences in the severity of viral encephalitis may reflect the differential ability of viruses to stimulate innate immune responses within the CNS and subsequently the character of infiltrating leukocyte populations.
Collapse
Affiliation(s)
- Julia D Rempel
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
5
|
Sun N, Perlman S. Spread of a neurotropic coronavirus to spinal cord white matter via neurons and astrocytes. J Virol 1995; 69:633-41. [PMID: 7815526 PMCID: PMC188623 DOI: 10.1128/jvi.69.2.633-641.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mouse hepatitis virus strain JHM (MHV-JHM) causes a chronic encephalomyelitis in susceptible mice, with histological evidence of demyelination in the spinal cord. After intranasal inoculation, virus spreads retrogradely to several brain structures along neuroanatomic projections to the main olfactory bulb. In the absence of experimental intervention, mice become moribund before the spinal cord is infected. In this study, infusions of anti-MHV neutralizing monoclonal antibodies were administered to protect mice from the MHV-JHM-induced acute encephalitis and to allow survival until virus spread to the spinal cord. Under these conditions, virus was observed to enter specific layers (primarily laminae V to VII) in the gray matter of the upper spinal cord, consistent with transneuronal spread. While the brain structures which are the sources for virus spread to the spinal cord cannot be determined with certainty, the ventral reticular nucleus is likely to be important since it is consistently and extensively labeled in all mice and receives projections from subsequently infected areas of the spinal cord. After initial entry into the gray matter, virus rapidly spread to the white matter of the spinal cord. During the early stages of this process, extensive infection of astrocytes was noted, suggesting that cell-to-cell spread via these glial cells is an important part of this process. Reports from other laboratories using cultured cells strongly suggested that astrocytes serve as important regulators of oligodendrocyte function and, by extrapolation, have a major role in vivo in the processes of both demyelination and remyelination. Thus, our results not only outline the probable pathway used by MHV-JHM to infect the white matter of the spinal cord but also, with the assumption that infection of astrocytes leads to subsequent dysfunction, raise the possibility that infection of these cells contributes to the demyelinating process.
Collapse
Affiliation(s)
- N Sun
- Department of Pediatrics, University of Iowa, Iowa City 52242
| | | |
Collapse
|
6
|
Correale J, Li S, Weiner LP, Gilmore W. Effect of persistent mouse hepatitis virus infection on MHC class I expression in murine astrocytes. J Neurosci Res 1995; 40:10-21. [PMID: 7714917 PMCID: PMC7167169 DOI: 10.1002/jnr.490400103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotropic strains of mouse hepatitis virus (MHV) have been used extensively for the study of viral pathogenesis in the central nervous system (CNS), serving as models for human neurological diseases such as multiple sclerosis (MS). MHV strains A59 and JHMV both cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. In acute disease, CNS damage is most likely the result of lytic infection in neurons and oligodendrocytes, and death can be prevented by the adoptive transfer of Class I-restricted CD8+ T cells. However, in later stages of the disease induced by some MHV strains, virus tends to be restricted to astrocytes in a nonlytic infection, and the immune response appears to contribute to CNS damage. These data lead us to suggest that the astrocyte may play a central role in the neuropathogenesis of MHV infection. Consistent with this possibility, A59 has been reported to induce the expression of Class I molecules of the major histocompatibility complex (MHC) in glial cells following infection in vivo and in vitro. In this communication, we have examined the influence of persistent infection by both A59 and JHMV on MHC Class I expression in primary murine astrocytes. Persistence was characterized by the presence of intracellular viral antigen and mRNA in the absence of detectable infectious virus particles. Under these conditions, JHMV, but not A59, inhibited constitutive expression of the H-2 Kb molecule, with the magnitude of inhibition increasing with postinfection time. A59 was not able to induce Class I during persistence, presumably due to the lack of infectious virus particles. Class I expression was restored by the addition of gamma-interferon (IFN-gamma) to astrocytes persistently infected with either A59 or JHMV. Thus, Class I inhibition is not a permanent consequence of JHMV persistence, and persistence does not interfere with normal signalling pathways for Class I induction.
Collapse
Affiliation(s)
- J Correale
- Department of Neurology, USC School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
7
|
Pasick JM, Dales S. Infection by coronavirus JHM of rat neurons and oligodendrocyte-type-2 astrocyte lineage cells during distinct developmental stages. J Virol 1991; 65:5013-28. [PMID: 1651420 PMCID: PMC248965 DOI: 10.1128/jvi.65.9.5013-5028.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary telencephalic cultures derived from neonatal Wistar Furth rats were able to support the growth of coronavirus JHM if a viable neuronal population was maintained. This occurred under serum-free defined, but not serum-supplemented, growth conditions. The importance of neurons in establishing infections in mixed cultures was confirmed by immunocytochemical and electron microscopic studies. Glia, although more abundant than neurons in these cultures, were less frequently infected during the initial 48 h postinoculation. The two glial lineages present in mixed telencephalic cultures were separated into type-1 astrocytes and oligodendrocyte-type-2 astrocyte (O-2A) lineage cells and individually assessed for their ability to support virus growth. Infection could not be established in type-1 astrocytes regardless of the culture conditions employed, consistent with our previous study (S. Beushausen and S. Dales, Virology 141:89-101, 1985). In contrast, infections could be initiated in selected O-2A lineage cells grown in serum-free medium. Virus multiplication was however significantly reduced by preconditioning the medium with mixed telencephalic or enriched type-1 astrocyte cultures, suggesting that intercellular interactions mediated by soluble factor(s) can influence the infectious process in O-2A lineage cells. This presumption was supported by eliciting similar effects with basic fibroblast growth factor and platelet-derived growth factor, two central nervous system cytokines known to control O-2A differentiation. The presence of these cytokines, which synergistically block O-2A cells from differentiating into oligodendrocytes was correlated with specific and reversible resistance to JHM virus (JHMV) infection. These data, combined with our finding that accelerated terminal differentiation of the oligodendrocyte phenotype confers resistance to JHMV (Beushausen and Dales, Virology, 1985), suggest that the permissiveness of O-2A cells for JHMV is restricted to a discrete developmental stage.
Collapse
Affiliation(s)
- J M Pasick
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|