1
|
De Francesco PN, Castrogiovanni D, Uriarte M, Frassa V, Agosti F, Raingo J, Perello M. A simple strategy for culturing morphologically-conserved rat hypothalamic tanycytes. Cell Tissue Res 2017; 369:369-380. [PMID: 28413862 DOI: 10.1007/s00441-017-2608-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
Hypothalamic tanycytes are specialized bipolar ependymal cells that line the floor of the third ventricle. Given their strategic location, tanycytes are believed to play several key functions including being a selective barrier and controlling the amount of hypothalamic-derived factors reaching the anterior pituitary. The in vitro culture of these cells has proved to be difficult. Here, we report an improved method for the generation of primary cultures of rat hypothalamic tanycytes. Ependymal cultures were derived from tissue dissected out of the median eminence region of 10-day-old rats and cultured in a chemically defined medium containing DMEM:F12, serum albumin, insulin, transferrin and the antibiotic gentamycin. After 7 days in vitro, ∼30% of the cultured cells exhibited morphological features of tanycytes as observed by phase contrast or scanning electron microscopy. Tanycyte-like cells were strongly immuno-reactive for vimentin and dopamine-cAMP-regulated phospho-protein (DARPP-32) and weakly immune-reactive for glial fibrillary acidic protein. Tanycyte-like cells displayed a stable negative resting plasma membrane potential and failed to show spiking properties in response to current injections. When exposed to fluorescent beads in the culture medium, tanycyte-like cells exhibited a robust endocytosis. Thus, the present method effectively yields cultures containing tanycyte-like cells that resemble in vivo tanycytes in terms of morphologic features and molecular markers as well as electrical and endocytic activity. To our knowledge, this is the first protocol that allows the culturing of tanycyte-like cells that can be individually identified and that conserve the morphology of tanycytes in their natural physiological environment.
Collapse
Affiliation(s)
- Pablo Nicolás De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Victoria Frassa
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Francina Agosti
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Direct effects of ethanol on neuronal differentiation: An in vitro analysis of viability and morphology. Brain Res Bull 2016; 127:177-186. [PMID: 27679397 DOI: 10.1016/j.brainresbull.2016.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
The deleterious effects of ethanol (EtOH) on the brain have been widely described, but its effects on the neuronal cytoskeleton during differentiation have not yet been firmly established. In this context, our aim was to investigate the direct effect of EtOH on cortical neurons during the period of differentiation. Primary cultures of cortical neurons obtained from 1-day-old rats were exposed to EtOH after 7days of culture, and viability and morphology were analyzed at structural and ultrastructural levels after 24-h EtOH exposure. EtOH caused a significant reduction of 73±7% in the viability of cultured cortical neurons, by preferentially inducing apoptotic cellular death. This effect was accompanied by an increase in caspase 3 and 9 expression. Furthermore, EtOH induced a reduction in total dendrite length and in the number of dendrites per cell. Ultrastructural studies showed that EtOH increased the number of lipidic vacuoles, lysosomes and multilamellar vesicles and induced a dilated endoplasmatic reticulum lumen and a disorganized Golgi apparatus with a ring-shape appearance. Microtubules showed a disorganized distribution. Apposition between pre- and postsynaptic membranes without a defined synaptic cleft and a delay in presynaptic vesicle organization were also observed. Synaptophysin and PSD95 expression, proteins pre- and postsynaptically located, were reduced in EtOH-exposed cultures. Overall, our study shows that EtOH induces neuronal apoptosis and changes in the cytoskeleton and membrane proteins related with the establishment of mature synapses. These direct effects of EtOH on neurons may partially explain its effects on brain development.
Collapse
|
3
|
Li H, Guo Y, Teng J, Ding M, Yu ACH, Chen J. 14-3-3γ affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP. J Cell Sci 2006; 119:4452-61. [PMID: 17032734 DOI: 10.1242/jcs.03219] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent findings indicated a protective role of GFAP in ischemic brain, injured spinal cord, and in neurodegenerative disease. We previously demonstrated that 14-3-3γ, once thought to be neuronal specific, was up-regulated by ischemia in astrocytes and may play a specific protective role in astrocytes. Here we report that 14-3-3γ associates with both soluble and filamentous GFAP in a phosphorylation- and cell-cycle-dependent manner in primary cultured astrocytes. The amount of association increases during G2/M phase due to more phosphorylated GFAP. Moreover, this interaction is independent of vimentin, another type III intermediate filament protein in astrocytes which forms glial filaments with GFAP. A series of domain deletion mutants and substitution mutations at phosphorylation sites (from serine to alanine) on GFAP demonstrated that serine 8 in the head domain is essential for the direct association of GFAP to 14-3-3γ. Overexpression of 14-3-3γ destroyed the integrity and affected the movement of GFAP intermediate filaments. This data demonstrates that 14-3-3γ contributes to the regulation of dynamics of GFAP filaments, which may contribute to the stability of the cytoskeleton and the mechanisms of central nervous system neurodegenerative disease.
Collapse
Affiliation(s)
- Huihui Li
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education and The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
4
|
Yabe JT, Chan WKH, Wang FS, Pimenta A, Ortiz DD, Shea TB. Regulation of the transition from vimentin to neurofilaments during neuronal differentiation. ACTA ACUST UNITED AC 2003; 56:193-205. [PMID: 14569598 DOI: 10.1002/cm.10137] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vimentin (Vm) is initially expressed by nearly all neuronal precursors in vivo, and is replaced by neurofilaments (NFs) shortly after the immature neurons become post-mitotic. Both Vm and NFs can be transiently detected within the same neurite, and Vm is essential for neuritogenesis at least in culture. How neurons effect the orderly transition from expression of Vm as their predominant intermediate filament to NFs remains unclear. We examined this phenomenon within growing axonal neurites of NB2a/d1 cells. Transfection of cells with a construct expressing Vm conjugated to green fluorescent protein confirmed that axonal transport machinery for Vm persisted following the developmental decrease in Vm, but that the amount undergoing transport decreased in parallel to the observed developmental increase in NF transport. Immunoprecipitation from pulse-chase radiolabeled cells demonstrated transient co-precipitation of newly synthesized NF-H with Vm, followed by increasing co-precipitation with NF-L. Immunofluorescent and immuno-electron microscopic analyses demonstrated that some NF and Vm subunits were incorporated into the same filamentous profiles, but that Vm was excluded from the longitudinally-oriented "bundle" of closely-apposed NFs that accumulates within developing axons and is known to undergo slower turnover than individual NFs. These data collectively suggest that developing neurons are able to replace their Vm-rich cytoskeleton with one rich in NFs simply by down-regulation of Vm expression and upregulation of NFs, coupled with turnover of existing Vm filaments and Vm-NF heteropolymers.
Collapse
Affiliation(s)
- Jason T Yabe
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, MA 01854, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shu T, Puche AC, Richards LJ. Development of midline glial populations at the corticoseptal boundary. JOURNAL OF NEUROBIOLOGY 2003; 57:81-94. [PMID: 12973830 DOI: 10.1002/neu.10252] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three midline glial populations are found at the corticoseptal boundary: the glial wedge (GW), glia within the indusium griseum (IGG), and the midline zipper glia (MG). Two of these glial populations are involved in axonal guidance at the cortical midline, specifically development of the corpus callosum. Here we investigate the phenotypic and molecular characteristics of each population and determine whether they are generated at the same developmental stage. We find that the GW is derived from the radial glial scaffold of the cortex. GW cells initially have long radial processes that extend from the ventricular surface to the pial surface, but by E15 loose their pial attachment and extend only part of the way to the pial surface. Later in development the radial morphology of cells within the GW is replaced by multipolar astrocytes, providing supportive evidence that radial glia can transform into astrocytes. IGG and MG do not have a radial morphology and do not label with the radial glial markers, Nestin and RC2. We conclude that the GW and IGG have different morphological and molecular characteristics and are born at different stages of development. IGG and MG have many phenotypic and molecular characteristics in common, indicating that they may represent a common population of glia that becomes spatially distinct by the formation of the corpus callosum.
Collapse
Affiliation(s)
- Tianzhi Shu
- Department of Anatomy and Neurobiology, and the Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, 685 West Baltimore Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
6
|
Zhang L, Lidow MS. D1 dopamine receptor regulation of cell cycle in FGF- and EGF-supported primary cultures of embryonic cerebral cortical precursor cells. Int J Dev Neurosci 2002; 20:593-606. [PMID: 12526890 DOI: 10.1016/s0736-5748(02)00104-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the mammalian fetus, proliferation of the majority of cells destined for the cerebral cortex takes place within the transient proliferative zones of the cerebral wall. Recent investigations have demonstrated that cell of these zones express high levels of D1 dopamine receptors (D1Rs). However, the specific roles of these receptors have not been investigated. The present study tests the hypothesis that D1Rs are capable of regulating the cell cycle of cerebral cortical precursor cells. For this purpose, primary cultures of cells of the proliferative zones from the cerebral wall of 14-day-old mouse fetuses were generated and maintained in the presence of either fibroblast growth factor-2 (FGF2) or epidermal growth factor (EGF). These growth factors were chosen as supporting two distinct populations of precursor cells in the fetal cortical proliferative matrix. The involvement of D1Rs in the regulation of proliferative activity was examined by the addition of a range of concentrations of the D1R-specific agonist, SKF82958, to the culture media. Bromodeoxyuridine incorporation assays demonstrated that exposure to this agonist led to a dose-dependent reduction of DNA synthesis in both FGF2- and EGF-supported cultures. Flow cytometric cell cycle assays further revealed that this was due to prevention of the transition of cells from the G1 phase to the S phase of the cell cycle. The D1R specificity of the effects of SKF82958 was supported in that they were blocked by the addition of the D1R antagonists, SCH23390 or NNC010756. We also found that D1R stimulation induced stronger suppression of proliferative activity in EGF-supported than in FGF2-supported cultures. Our observations suggest that D1Rs are capable of regulating the cell cycle during corticogenesis. Furthermore, they raise a possibility that these receptors may display different efficacies in affecting proliferative activity in FGF2-supported versus EGF-supported cerebral cortical precursor cells.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Craniofacial Biological Sciences and Program of Neuroscience, University of Maryland, Room 5-A-12, HHH, 666 W Baltimore St, Baltimore, MD 21201, USA
| | | |
Collapse
|
7
|
Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 2001. [PMID: 11487638 DOI: 10.1523/jneurosci.21-16-06147.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermediate filaments (IFs) are a major component of the cytoskeleton in astrocytes. Their role is far from being completely understood. Immature astrocytes play a major role in neuronal migration and neuritogenesis, and their IFs are mainly composed of vimentin. In mature differentiated astrocytes, vimentin is replaced by the IF protein glial fibrillary acidic protein (GFAP). In response to injury of the CNS in the adult, astrocytes become reactive, upregulate the expression of GFAP, and reexpress vimentin. These modifications contribute to the formation of a glial scar that is obstructive to axonal regeneration. Nevertheless, astrocytes in vitro are considered to be the ideal substratum for the growth of embryonic CNS axons. In the present study, we have examined the potential role of these two major IF proteins in both neuronal survival and neurite growth. For this purpose, we cocultured wild-type neurons on astrocytes from three types of knock-out (KO) mice for GFAP or/and vimentin in a neuron-astrocyte coculture model. We show that the double KO astrocytes present many features of immaturity and greatly improve survival and neurite growth of cocultured neurons by increasing cell-cell contact and secreting diffusible factors. Moreover, our data suggest that the absence of vimentin is not a key element in the permissivity of the mutant astrocytes. Finally, we show that only the absence of GFAP is associated with an increased expression of some extracellular matrix and adhesion molecules. To conclude, our results suggest that GFAP expression is able to modulate key biochemical properties of astrocytes that are implicated in their permissivity.
Collapse
|
8
|
Abstract
Radial glia are critical for cell migration and lamination of the cortex. In most developing cortical structures, radial glia, as their name suggests, extend processes from the ventricle to the pia in regular parallel arrangements. However, immunohistochemical labeling from several laboratories suggests that radial glia have a more branched morphology in the olfactory bulb. To investigate the morphology of radial glia in the mouse olfactory bulb we (1) labeled radial glia and olfactory receptor neuron axons at 24-hour intervals by immunohistochemistry; and (2) developed a novel method of generating and applying "nanocrystals" of 1,1'-dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiI) to the ventricle surface such that the processes of single olfactory bulb radial glia are labeled in the embryonic olfactory bulb. We examined the structure and interactions of radial glia with ingrowing olfactory receptor neuron (ORN) axons in late embryonic olfactory bulb development. These results showed that olfactory bulb radial glia do not form straight parallel structures as do radial glia in the neocortex but rather have a convoluted trajectory from the ventricle to the bulb surface. Moreover, olfactory bulb radial glia consistently extend tangential branches at the level of the internal plexiform layer. Beginning at embryonic day 17.5, two types of radial glia can be distinguished: type I radial glia have a process that extends from the ventricle into the glomerular layer. These apical processes form highly restricted tufts, or "glial glomeruli" at the same time that ORN axons are forming "axonal glomeruli." In type II radial glia the apical process does not enter the glomerular layer but instead ramifies within the external plexiform layer. The tight spatiotemporal relationship between the glomerulization of radial glia processes and ORN axons during development suggest that radial glia processes could play a role in the formation and/or stabilization of mammalian glomeruli.
Collapse
Affiliation(s)
- A C Puche
- Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
9
|
Abstract
In the adult cerebellum, corticotropin releasing factor (CRF), that is localized in climbing fibers, mossy fibers, and a fine varicose plexus along the Purkinje cell layer, modulates the responsiveness of Purkinje cells to excitatory amino acids. During development, CRF has been detected in the primitive cerebellar anlage as early as embryonic day (E)10, and is continuously expressed throughout embryonic and postnatal cerebellar ontogeny. To investigate a possible trophic role for CRF during cerebellar development, cerebellar culture studies using E18 mouse embryos were carried out. In our culture paradigm, that used serum-free defined medium to suppress cell proliferation, CRF induced proliferation of cells in a dose-dependent manner in a range of concentrations between 0.1-10 microM. The proliferating cells were identified as astrocytes based on their expression of vimentin and GFAP. BrdU incorporation studies supported the proposed mitogenic effect of CRF on developing astrocytes. The mitogenic effects of CRF seemed to be primarily on immature astrocytes determined by their differential expression of vimentin and GFAP. Astrocytes at more advanced stages of development, as determined by the extent of process outgrowth and GFAP expression, incorporated less BrdU compared to immature astrocytes. CRF receptors were localized in astrocytes, and the proliferation of astrocytes induced by CRF was inhibited by astressin, a competitive CRF receptor antagonist. In conclusion, CRF induces proliferation of astrocytes derived from the developing cerebellum, that suggests a gliotrophic role for CRF during cerebellar development.
Collapse
Affiliation(s)
- B K Ha
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
10
|
Giménez Y Ribotta M, Langa F, Menet V, Privat A. Comparative anatomy of the cerebellar cortex in mice lacking vimentin, GFAP, and both vimentin and GFAP. Glia 2000; 31:69-83. [PMID: 10816608 DOI: 10.1002/(sici)1098-1136(200007)31:1<69::aid-glia70>3.0.co;2-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the cerebellum of adult mammals, glial fibrillary acidic protein (GFAP) and vimentin (VIM) are coexpressed in Golgi epithelial cells (GEC), also known as Bergmann glia. In this study we used three transgenic knockout mice (GFAP, VIM and double GFAP and VIM) to analyze the involvement of these proteins in the building of glial filaments and in neuron-glia interactions. The cerebella of VIM, GFAP, and GFAP/VIM mutant mice were processed by the rapid Golgi method and also for electron microscopy. In VIM mutant mice, Bergmann fibers are hypertrophic with thickened appendages. In the electron microscope they appear as large glial profiles devoid of glial filaments, with embedded dendritic thorns and parallel fiber boutons. In addition, signs of degeneration are observed in Purkinje cells. In GFAP mutant mice, GEC exhibit fine, delicate processes, as those seen in wild-type animals, however, a large accumulation of lamellae and granular appendages was observed along their surfaces, which came into contact with each other. The electron microscope exhibited fine and scarce astroglial profiles containing some glial filaments, a stunted glia limitans, and the presence of large extracellular spaces. In double mutant mice, the two phenotypes are expressed but appear attenuated, with a total absence of glial filaments and the general appearance of immaturity for GEC. In conclusion, it appears that the absence of each of the proteins yields a specific phenotype and that the defects are not necessarily additive.
Collapse
|
11
|
Bailey MS, Puche AC, Shipley MT. Development of the olfactory bulb: Evidence for glia-neuron interactions in glomerular formation. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991227)415:4<423::aid-cne2>3.0.co;2-g] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Abstract
Glial cells in the CNS of vertebrates serve specialized functions in close interaction with surrounding neurons and blood vessels. In the avian eye, the neural tissue (retina) and the supporting vascular structure (pecten oculi) are spatially separated and comprise distinct glial cell types, i.e., the Müller glia and the pecteneal glia, respectively. In the present study we combined morphological and immunocytochemical investigations on the differentiation of the pecteneal glia in comparison to the retinal Müller glia, the retinal pigment epithelium, and the astrocytic cells of the optic nerve head in order to elucidate the nature, origin, and function of the pecteneal glia. Conventional transmission electron microscopy and freeze-fracture imaging revealed striking similarities between the pecteneal glia and retinal pigment epithelial cells at the transition zone to the optic nerve head. Immunofluorescence investigation identified specific labeling for vimentin and glutamine synthetase (GS) but not for glial fibrillary acidic protein (GFAP) in the mature pecteneal glia. Immunogold labeling confirmed the cellular specificity. GS labeling was weak during embryonic development but increasingly strong after hatching. Surprisingly, the intraneuroectodermal endothelial cells were highly immunopositive for GS throughout embryonic development and lost GS expression after hatching. GS expression in the pecteneal glia may participate in pH-regulation of the avian eye. Endothelial GS expression in the developing CNS may detoxify detrimental ammonium concentrations resulting from egg yolk degradation.
Collapse
Affiliation(s)
- H Gerhardt
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
13
|
Baldwin SA, Broderick R, Blades DA, Scheff SW. Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. J Neurotrauma 1998; 15:1015-26. [PMID: 9872458 DOI: 10.1089/neu.1998.15.1015] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Astrocytes become reactive as a result of various types of lesions and upregulate 2 intermediate filaments, glial fibrillary acidic protein (GFAP), and the developmentally regulated protein vimentin. Young female Sprague-Dawley rats were subjected to a spinal cord contusion at segment T10 using the New York University injury device. Animals were killed at 1, 2, 7, 14, and 30 days postinjury. Horizontal spinal cord sections spanning segments T7-T13 were assessed with antibodies to both intermediate filament proteins. The number of gray matter GFAP-positive astrocytes increased by 2 days postinjury, with segments adjacent (proximal) to the injury site showing greater responses than areas several segments away (distal). By 30 days following injury, astroglial cell numbers returned to normal levels. Vimentin-positive astrocytes also showed a graded proximal/distal response by 2 days following injury. Proximal regions remained significantly higher at 30 days following injury than control animals. Rostral/caudal changes were also evident, with regions caudal to the injury showing significantly higher numbers of vimentin positive astrocytes than those rostral, indicating that gray matter areas caudal to spinal cord injury may undergo more stress following spinal cord injury.
Collapse
Affiliation(s)
- S A Baldwin
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
14
|
Cervós-Navarro J, Sharma HS, Westman J, Bongcam-Rudloff E. Glial reactions in the central nervous system following heat stress. PROGRESS IN BRAIN RESEARCH 1998; 115:241-74. [PMID: 9632939 DOI: 10.1016/s0079-6123(08)62039-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Cervós-Navarro
- Institute of Neuropathology, Free University Berlin, Klinikum Steglitz, Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Supèr H, Soriano E, Uylings HB. The functions of the preplate in development and evolution of the neocortex and hippocampus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:40-64. [PMID: 9639671 DOI: 10.1016/s0165-0173(98)00005-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that the early developmental organization of the archicortical hippocampus resembles that of the neocortex. In both cortices at embryonic stages, a preplate is present, which is split by the formation of the cortical plate into a marginal zone and a subplate layer. The pioneer neurons of the preplate are believed to form a phylogenetically ancient cortical structure. Neurons in these preplate layers are the first postmitotic neurons and have important roles in the development of the cerebral cortex. Cajal-Retzius cells in the marginal zone regulate the phenotype of radial glial cells and may direct neuronal migration establishing the inside-out gradient of corticogenesis. Furthermore, pioneer neurons form the initial axonal connections with other (sub)cortical structures. A significant difference between the hippocampus and neocortex, however, is that in the hippocampus, most afferents are guided by the pioneer neurons in the prominent marginal zone, while in the neocortex most ingrowing afferent axons enter via the subplate. At later developmental periods, most pioneer neurons disappear by cell death or transform into other neuronal shapes. Here, we review the early developmental organization of the mammalian cerebral cortex (both neocortex and hippocampus) and discuss the functions and fate of pioneer neurons in cortical development, in particular that of Cajal-Retzius cells. Evaluating the developmental properties of the hippocampus and neocortex, we present the hypothesis that the distribution of the main ingrowing afferent systems in the developing neocortex, which differs from the one in the hippocampal region, may have enabled the specific evolution of the neocortex.
Collapse
Affiliation(s)
- H Supèr
- Department of Animal and Plant Cell Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | |
Collapse
|
16
|
Miyaguchi K. Ultrastructure of intermediate filaments of nestin- and vimentin-immunoreactive astrocytes in organotypic slice cultures of hippocampus. J Struct Biol 1997; 120:61-8. [PMID: 9356292 DOI: 10.1006/jsbi.1997.3900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glial cells in rat hippocampal slices cultured for 4 weeks were examined with immunocytochemical and cryoelectron microscopical methods. Astrocytes possessing long processes were similarly stained with antibodies against nestin, vimentin, and glial fibrillary acidic protein as seen by confocal microscopy. The three antibodies also labeled intermediate filaments in these astrocytes. In order to examine the fine structure of these intermediate filaments, slices were rapid-frozen for freeze-substitution and freeze-etching. By freeze-substitution the processes of the astrocytes were packed with large hundles of intermediate filaments. In rapid-freeze deep-etched slices, these filaments were often interconnected with filamentous cross-bridges. These cross-bridges were rather uniform in size and shape (mean 2.9 nm thick and 14.8 nm long). These results suggest that the filament network with these cross-linkers is important for shaping the long processes of nestin- and vimentin-immunoreactive astrocytes in slice cultures.
Collapse
Affiliation(s)
- K Miyaguchi
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Galou M, Colucci-Guyon E, Ensergueix D, Ridet JL, Gimenez y Ribotta M, Privat A, Babinet C, Dupouey P. Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 1996; 133:853-63. [PMID: 8666670 PMCID: PMC2120844 DOI: 10.1083/jcb.133.4.853] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed predominantly in astrocytes. The study of its expression in the astrocyte lineage during development and in reactive astrocytes has revealed an intricate relationship with the expression of vimentin, another intermediate filament protein widely expressed in embryonic development. these findings suggested that vimentin could be implicated in the organization of the GFAP network. To address this question, we have examined GFAP expression and network formation in the recently generated vimentin knockout (Vim-) mice. We show that the GFAP network is disrupted in astrocytes that normally coexpress vimentin and GFAP, e.g., those of the corpus callosum or the Bergmann glia of cerebellum. Furthermore, Western blot analysis of GFAP protein content in the cerebellum suggests that posttranslational mechanisms are implicated in the disturbance of GFAP network formation. The role of vimentin in this process was further suggested by transfection of Vim-cultured astrocytes with a vimentin cDNA, which resulted in the normal assembly of the GFAP network. Finally, we examined GFAP expression after stab wound-induced astrogliosis. We demonstrate that in Vim- mice, reactive astrocytes that normally express both GFAP and vimentin do not exhibit GFAP immunoreactivity, whereas those that normally express GFAP only retain GFAP immunoreactivity. Taken together, these results show that in astrocytes, where vimentin is normally expressed with GFAP fails to assemble into a filamentous network in the absence of vimentin. In these cells, therefore, vimentin appears necessary to stabilize GFAP filaments and consequently the network formation.
Collapse
Affiliation(s)
- M Galou
- Unité de Biochimie des Antigènes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sancho-Tello M, Vallés S, Montoliu C, Renau-Piqueras J, Guerri C. Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 1995; 15:157-66. [PMID: 8567067 DOI: 10.1002/glia.440150208] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study we analyze the events which occur during the early stages of astrogliogenesis by examining the pattern of both GFAP and vimentin gene expression and their corresponding immunoreactive proteins during rat brain development. This study was carried out "in vivo" (whole brain) and "in vitro" (primary culture of radial glia) using immunofluorescence, immunoblotting, and Northern blot analysis. Our results demonstrate that although GFAP immunostaining appeared late in gestation and at day 5 in radial glia cultures, GFAP mRNA expression was first detected, at very low levels, on fetal (F) day 15 and increased to F21. During postnatal development a striking increase in GFAP and its encoding messenger occurs. In contrast, the levels of vimentin and its mRNA expression were very high during the fetal stage (F15 to F21). Thereafter vimentin expression declined during postnatal (P) development until P21 and then remained constant at adult levels. In contrast, an increase in vimentin expression was observed in glial cells throughout the entire culture period. The biological significance of the developmental patterns of GFAP and vimentin expression in astroglial cells. during brain development is discussed.
Collapse
Affiliation(s)
- M Sancho-Tello
- Instituto Investigaciones Citológicas, FIB, Valencia, Spain
| | | | | | | | | |
Collapse
|
19
|
Missler M, Eins S, Böttcher H, Wolff JR. Postnatal development of glial fibrillary acidic protein, vimentin and S100 protein in monkey visual cortex: evidence for a transient reduction of GFAP immunoreactivity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 82:103-17. [PMID: 7842498 DOI: 10.1016/0165-3806(94)90153-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the cerebral cortex of some species, the gradual appearance of glial fibrillary acidic protein (GFAP) is often interpreted as reflecting the parallel maturation of neuronal connectivity. We studied the postnatal maturation of astrocytes in the primary visual cortex of Callithrix jacchus using antibodies against GFAP, vimentin and S100 protein as immunohistochemical markers. In the cortical grey matter of this species, the overall GFAP-immunoreactivity (IR) as measured by image analysis is high at birth (130% of the adult value), decreases until about 3 months (80%) and increases again towards adult values (100%). Vimentin-IR was high at birth, and declined towards 3 months and later. In contrast, S100-IR augmented postnatally in neuropil, and showed a laminar shift of maximum IR from layer IV to supragranular layers during ontogenesis. The decrease of GFAP-IR is predominantly due to changes in density of GFAP-positive (+) astrocytes within cortical tissue (newborn: 18,600 GFAP+astrocytes/mm3; 1 month: 11,600/mm3; 3 months: 5,700/mm3; adult: 10,200/mm3), while the overall number of astrocytes remained relatively constant as shown by the number of S100-positive astrocytic cell bodies. At times of low GFAP-IR a reduced area density of intermediate filaments was found in astrocytes by electron microscopy. The period of reduced GFAP-expression coincides with the time of prominent synapse remodeling in the visual cortex of marmosets. These data suggest that GFAP-expression may depend on functional conditions rather than time-dependent maturation.
Collapse
Affiliation(s)
- M Missler
- Department of Anatomy, University of Göttingen, FRG
| | | | | | | |
Collapse
|
20
|
Bodega G, Suárez I, Rubio M, Fernández B. Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. HISTOCHEMISTRY 1994; 102:113-22. [PMID: 7822213 DOI: 10.1007/bf00269015] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.
Collapse
Affiliation(s)
- G Bodega
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N. Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 1994; 4:239-43. [PMID: 7952265 DOI: 10.1111/j.1750-3639.1994.tb00839.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein of astroglia, and belongs to the type III subclass of IF proteins. IF proteins are composed of an amino-terminal HEAD domain, a central ROD domain and a carboxyterminal TAIL domain. GFAP, with a molecular mass of approximately 50 KDa, has the smallest HEAD domain among type III IF proteins. Despite its insolubility, GFAP is in dynamic equilibrium between assembled filaments and unassembled subunits, as demonstrated using fluorescently labeled GFAP molecules. Like other IF proteins, assembly of GFAP is regulated by phosphorylation-dephosphorylation of the HEAD domain by altering its charge. This regulation of GFAP assembly contributes to extensive remodeling of glial frameworks in mitosis. Another type III IF protein, vimentin, colocalizes with GFAP in immature, reactive or radial glia, thereby indicating that vimentin has an important role in the build up of the glial architecture.
Collapse
Affiliation(s)
- M Inagaki
- Department of Neurophysiology, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
22
|
Fujii JT, Knapp PE. Characterization and development of glial and other non-neuronal cells in chick Edinger Westphal cultures. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 78:217-25. [PMID: 7517801 DOI: 10.1016/0165-3806(94)90029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cultures of dissociated Edinger Westphal nuclei, dissected from embryonic chick brainstems, were screened immunohistochemically for a variety of non-neuronal cell markers. In young cultures, small clusters of cells were stained by the oligodendrocyte-specific antibodies 04 and 01. In older cultures, larger groups of cells were 04 and 01 positive, sheets of myelin-like membrane were elaborated, and immunoreactivity for proteolipid protein appeared. This sequence resembles that observed in well-characterized rodent brain cultures and suggests that oligodendrocytes in chick Edinger Westphal cultures differentiate in a pattern similar to rodent oligodendrocytes in culture. Variable numbers of cells were immunoreactive for glial fibrillary acidic protein. Many vimentin positive cells were observed, some of which morphologically resembled flat astrocytes. Together with the widespread presence of vimentin, large patches of fibronectin-like immunoreactivity suggested the presence of fibroblasts and/or endothelial cells. An anti-thymocyte polyclonal antibody stained a subset of cobblestone-shaped cells, possibly endothelial cells, in both Edinger Westphal cultures and control cultures of skin fibroblasts. Staining for smooth muscle myosin was detected in several patches of cells, tentatively identifying them as pericytes or smooth muscle cells. In conclusion, Edinger Westphal cultures contain a diverse and varying population of non-neuronal cells loosely organized in large, overlapping islands of cell types and including oligodendrocytes, astrocytes, possibly fibroblasts, endothelial cells, pericytes and/or smooth muscle cells.
Collapse
Affiliation(s)
- J T Fujii
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
23
|
Bocchini V, Beccari T, Arcuri C, Bruyere L, Fages C, Tardy M. Glial fibrillary acidic protein and its encoding mRNA exhibit mosaic expression in a glioblastoma multiform cell line of clonal origin. Int J Dev Neurosci 1993; 11:485-92. [PMID: 8237465 DOI: 10.1016/0736-5748(93)90022-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of two astroglial differentiation markers, vimentin and glial fibrillary acidic protein, was investigated in a previously established human glioma cell line of clonal origin (GL15). Vimentin immunolabelling was homogeneously expressed in all cells. Glial fibrillary acidic protein and its encoding message, investigated by immunocytochemistry and in situ hybridization, showed a mosaic-like expression. Only 30% of the cell population expressed glial fibrillary acidic protein and its mRNA. Western and Northern blots performed for both markers confirmed the presence of both proteins and messages, and their level was correlated with the observed antigenic and molecular probe labelling. The overall antigenic pattern suggests that GL-15 cells do not belong to the O-2A progenitor cell lineage and may arise from a clonal expansion of astrocyte precursors.
Collapse
Affiliation(s)
- V Bocchini
- Department of Experimental Medicine, University of Perugia, Italy
| | | | | | | | | | | |
Collapse
|