1
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
2
|
Alghamdi A, Bijlsma MJ, de Vos S, Schuiling-Veninga CC, Bos JHJ, Hak E. Association between Incidence of Prescriptions for Alzheimer's Disease and Beta-Adrenoceptor Antagonists: A Prescription Sequence Symmetry Analysis. Pharmaceuticals (Basel) 2023; 16:1694. [PMID: 38139820 PMCID: PMC10748070 DOI: 10.3390/ph16121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia, with a growing number of patients worldwide. The association between AD and treatment with drugs targeting the beta-adrenergic receptor is controversial. The aim of this study is to assess the association between the initiation of AD medication and beta-adrenoceptor antagonists (beta-blockers) in adults. MATERIALS AND METHODS We conducted a prescription sequence symmetry analysis using the University of Groningen IADB.nl prescription database. We determined the order of the first prescription for treating AD and the first prescription for beta-blockers, with the dispensing date of the first prescription for AD defined as the index date. Participants were adults over 45 years old starting any AD medication and beta-blockers within two years. We calculated adjusted sequence ratios with corresponding 95% confidence intervals. RESULTS We identified 510 users of both AD and beta-blockers, and 145 participants were eligible. The results were compatible with either a significant decrease in the incidence of AD after using beta-blockers (adjusted sequence ratio (aSR) = 0.52; 95% CI: 0.35-0.72) or, conversely, an increase in beta-blockers after AD medication (aSR = 1.96; 95% CI: 1.61-2.30). CONCLUSIONS There is a relationship between the use of beta-blockers and AD medications. Further research is needed with larger populations to determine whether drug therapy for AD increases the risk of hypertension or whether beta-blockers have potential protective properties against AD development.
Collapse
Affiliation(s)
- Ali Alghamdi
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Maarten J. Bijlsma
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
- Laboratory of Population Health, Max Planck Institute for Demographic Research, 18057 Rostock, Germany
| | - Stijn de Vos
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Catharina C.M. Schuiling-Veninga
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Jens H. J. Bos
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
| | - Eelko Hak
- Groningen Research Institute of Pharmacy, Pharmaco Therapy, Epidemiology & Economics, University of Groningen, 9713 AV Groningen, The Netherlands (S.d.V.); (C.C.M.S.-V.); (E.H.)
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Kujovic M, Lipka T, Zalman M, Baumann L, Jänner M, Baumann B. Treatment of hypertension and obstructive sleep apnea counteracts cognitive decline in common neurocognitive disorders in diagnosis-related patterns. Sci Rep 2023; 13:7556. [PMID: 37160982 PMCID: PMC10169815 DOI: 10.1038/s41598-023-33701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
The aim of this study was to investigate the effect of arterial hypertension (AH) and of obstructive sleep apnea (OSA) on cognitive course in the neurocognitive disorder (NCD) cohort RIFADE which enrolled patients with NCD due to Alzheimer's disease (AD), vascular NCD (vNCD), and mixed NCD (AD + vNCD = mNCD). Multiple risk factors (RF), including AH and OSA, that contribute to the development of various kinds of dementia have been identified in previous studies. Studies that observed AH lacked investigation of long-term effects and did not isolate it from other RF. Studies involving OSA as a risk factor did not include participants with all stages of NCD. 126 subjects were screened for AH and OSA. Repeated cognitive measurements were performed with the DemTect as primary outcome and the clock drawing test as secondary outcome measure. 90 patients had AH (71.4%) and 40 patients had OSA (31.7%). RF-status had a significant effect on cognitive outcome in models with RF as single factors (AH p = 0.027, OSA p < 0.001), a 2-factor analysis with AH × OSA (AH as main factor p = 0.027) as well as a model including the 3 factors AH × OSA × diagnosis (p = 0.038). Similarly, a 3-factor model was significant for the clock-drawing test, whereas single factor-models remained insignificant. AH and OSA appear to be risk factors in common NCD and cognitive decline can be mitigated by treatment of these RF.
Collapse
Affiliation(s)
- Milenko Kujovic
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Neuropsychiatry, Centre for Neurology and Neuropsychiatry, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Tim Lipka
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark Zalman
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Leonie Baumann
- Department of Mental Health, University Hospital of Münster, Munster, Germany
| | - Michaela Jänner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bruno Baumann
- Department of Mental Health, University Hospital of Münster, Munster, Germany
| |
Collapse
|
4
|
Law CSW, Yeong KY. Repurposing Antihypertensive Drugs for the Management of Alzheimer's Disease. Curr Med Chem 2021; 28:1716-1730. [PMID: 32164502 DOI: 10.2174/0929867327666200312114223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that has affected millions of people worldwide. However, currently, there is no treatment to cure the disease. The AD drugs available in the market only manage the disease symptomatically and the effects are usually short-term. Thus, there is a need to look at alternatives AD therapies. This literature review aims to shed some light on the potential of repurposing antihypertensives to treat AD. Mid-life hypertension has not only been recognised as a risk factor for AD, but its relation with AD has also been well established. Hence, antihypertensives were postulated to be beneficial in managing AD. Four classes of antihypertensives, as well as their potential limitations and prospects in being utilised as AD therapeutics, were discussed in this review.
Collapse
Affiliation(s)
- Christine Shing Wei Law
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
5
|
Abstract
Substantial evidence, composed of drug mechanisms of action, in vivo testing, and epidemiological data, exists to support clinical testing of FDA-approved drugs for repurposing to the treatment of Alzheimer's disease (AD). Licensed compound investigation can often proceed at a faster and more cost-effective manner than un-approved compounds moving through the drug pipeline. As the prevalence of AD increases with life expectancy, the current rise in life expectancy amalgamated with the lack of an effective drug for the treatment of AD unnecessarily burdens our medical system and is an urgent public health concern. The unfounded reluctance to examine repurposing existing drugs for possible AD therapy further impedes the possibility of improving the quality of patient lives with a terminal disease. This review summarizes some evidence which exists to suggest certain already-approved drugs may be considered for the treatment of AD and will perhaps encourage physicians to off-label prescribe these safe therapeutics.
Collapse
|
6
|
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB J 2019; 33:6697-6712. [PMID: 30848934 DOI: 10.1096/fj.201801751r] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that Ca2+ is a vital factor in modulating the pathogenesis of Alzheimer's disease (AD). In healthy neurons, Ca2+ concentration is balanced to maintain a lower level in the cytosol than in the extracellular space or certain intracellular compartments such as endoplasmic reticulum (ER) and the lysosome, whereas this homeostasis is broken in AD. On the plasma membrane, the AD hallmarks amyloid-β (Aβ) and tau interact with ligand-gated or voltage-gated Ca2+-influx channels and inhibit the Ca2+-efflux ATPase or exchangers, leading to an elevated intracellular Ca2+ level and disrupted Ca2+ signal. In the ER, the disabled presenilin "Ca2+ leak" function and the direct implications of Aβ and presenilin mutants contribute to Ca2+-signal disorder. The enhanced ryanodine receptor (RyR)-mediated and inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the ER aggravates cytosolic Ca2+ disorder and triggers apoptosis; the down-regulated ER Ca2+ sensor, stromal interaction molecule (STIM), alleviates store-operated Ca2+ entry in plasma membrane, leading to spine loss. The increased transfer of Ca2+ from ER to mitochondria through mitochondria-associated ER membrane (MAM) causes Ca2+ overload in the mitochondrial matrix and consequently opens the cellular damage-related channel, mitochondrial permeability transition pore (mPTP). In this review, we discuss the effects of Aβ, tau and presenilin on neuronal Ca2+ signal, focusing on the receptors and regulators in plasma membrane and ER; we briefly introduce the involvement of MAM-mediated Ca2+ transfer and mPTP opening in AD pathogenesis.-Wang, X., Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles.
Collapse
Affiliation(s)
- Xingjian Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Kasza Á, Hunya Á, Frank Z, Fülöp F, Török Z, Balogh G, Sántha M, Bálind Á, Bernáth S, Blundell KLIM, Prodromou C, Horváth I, Zeiler HJ, Hooper PL, Vigh L, Penke B. Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:557-71. [PMID: 27163800 PMCID: PMC4969717 DOI: 10.3233/jad-150860] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer’s disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis. Our research goal is to identify potent Hsp co-inducers that enhance protein homeostasis for the treatment of AD, especially 1,4-dihydropyridine derivatives optimized for their ability to modulate cellular stress responses. Based on favorable toxicological data and Hsp co-inducing activity, LA1011 was selected for the in vivo analysis of its neuroprotective effect in the APPxPS1 mouse model of AD. Here, we report that 6 months of LA1011 administration effectively improved the spatial learning and memory functions in wild type mice and eliminated neurodegeneration in double mutant mice. Furthermore, Hsp co-inducer therapy preserves the number of neurons, increases dendritic spine density, and reduces tau pathology and amyloid plaque formation in transgenic AD mice. In conclusion, the Hsp co-inducer LA1011 is neuroprotective and therefore is a potential pharmaceutical candidate for the therapy of neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ákos Hunya
- LipidArt Research and Development Ltd., Szeged, Hungary
| | - Zsuzsa Frank
- Department of Medical Chemistry, University of Szeged, Hungary
| | - Ferenc Fülöp
- Department of Pharmaceutical Chemistry, University of Szeged, Hungary
| | - Zsolt Török
- LipidArt Research and Development Ltd., Szeged, Hungary.,Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Gábor Balogh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Miklós Sántha
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Árpád Bálind
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | | | | | - Ibolya Horváth
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | | | - Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO, USA
| | - László Vigh
- Biological Research Center of HAS, Institute of Biochemistry, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Hungary
| |
Collapse
|
8
|
Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer's disease? An overview of research evidence in the elderly patient population. J Postgrad Med 2017; 62:242-248. [PMID: 27763482 PMCID: PMC5105210 DOI: 10.4103/0022-3859.188553] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which an accumulation of toxic amyloid beta in the brain precedes the emergence of clinical symptoms. AD spectrum consists of presymptomatic, early symptomatic, and symptomatic phase of dementia. At present, no pharmacotherapy exists to modify or reverse a course of AD, and only symptomatic treatments are available. Many elderly patients, diagnosed with multiple medical conditions (such as cardiovascular diseases, Type 2 diabetes mellitus, and cerebrovascular diseases) are at increased risk of the development of mild cognitive impairment (MCI), AD, and vascular dementia. Studies have revealed reduced rates of cognitive decline, in elderly patients, who were treated with centrally active angiotensin-converting enzyme inhibitors (ACE-Is) (that have an ability to cross the blood–brain barrier). This article reviews recently published literature, focused on possible protective influence of the centrally active ACE-Is, in the elderly population, at risk for cognitive decline.
Collapse
Affiliation(s)
- K Rygiel
- Department of Family Practice, Medical University of Silesia (SUM), Katowice-Zabrze, 3 Maja St. 13/15, 41-800 Zabrze, Poland
| |
Collapse
|
9
|
Meulenbroek O, O'Dwyer S, de Jong D, van Spijker G, Kennelly S, Cregg F, Olde Rikkert M, Abdullah L, Wallin A, Walsh C, Coen R, Kenny RA, Daly L, Segurado R, Borjesson-Hanson A, Crawford F, Mullan M, Lucca U, Banzi R, Pasquier F, Breuilh L, Riepe M, Kalman J, Molloy W, Tsolaki M, Howard R, Adams J, Gaynor S, Lawlor B. European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer's disease-the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow. BMJ Open 2016; 6:e011584. [PMID: 27436668 PMCID: PMC4964180 DOI: 10.1136/bmjopen-2016-011584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION In conjunction with the NILVAD trial, a European Multicentre Double-Blind Placebo Controlled trial of Nilvadipine in Mild-to-Moderate Alzheimer's disease (AD), there are four NILVAD substudies in which eligible NILVAD patients are also invited to participate. The main NILVAD protocol was previously published in BMJ Open (2014). The objectives of the NILVAD substudies are to determine whether frailty, cerebrospinal fluid (CSF), blood biomarker profile and Apolipoprotein E (APOE) status predict response to Nilvadipine, and to investigate the effect of Nilvadipine on cerebral blood flow and blood biomarkers. METHODS AND ANALYSIS All participants who fulfil criteria for the main NILVAD study are eligible for participation in the NILVAD substudies. Participation is subject to informed consent and whether the substudy is available at a particular NILVAD study site. Each substudy entails extra measurements during the course of the main NILVAD study. For example, in the blood and genetic biomarkers substudy, extra blood (30 mL) will be collected at week 0, week 13, week 52 and week 78, while in the cerebral blood flow substudy, participants will receive an MRI and transcranial Doppler measurements at week 0, week 26 and week 78. In the CSF substudy, 10 mL CSF is collected at week 0 and week 78. ETHICS AND DISSEMINATION All NILVAD substudies and all subsequent amendments have received ethical approval within each participating country, according to national regulations. Each participant provides written consent to participate. All participants remain anonymised throughout and the results of each substudy will be published in an international peer reviewed journal. TRIAL REGISTRATION NUMBER EUDRACT 2012-002764-27; Pre-results.
Collapse
Affiliation(s)
- Olga Meulenbroek
- Radboud Alzheimer Centre; Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sarah O'Dwyer
- Mercer's Institute for Research on Ageing, St James's Hospital, Dublin, Ireland
| | - Daan de Jong
- Radboud Alzheimer Centre; Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerrita van Spijker
- Radboud Alzheimer Centre; Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Fiona Cregg
- Trinity College Dublin (TCD), Dublin, Ireland
| | - Marcel Olde Rikkert
- Radboud Alzheimer Centre; Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Cathal Walsh
- University College Dublin (UCD), Dublin, Ireland
| | - Robert Coen
- Mercer's Institute for Research on Ageing, St James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- Mercer's Institute for Research on Ageing, St James's Hospital, Dublin, Ireland
| | - Leslie Daly
- University College Dublin (UCD), Dublin, Ireland
| | | | | | | | | | - Ugo Lucca
- Department of Laboratory of Geriatric Neuropsychiatry, IRCCS—Istituto di Ricerche Farmacologiche “Mario Negri” (IRFMN), Milan, Italy
| | - Rita Banzi
- Department of Laboratory of Geriatric Neuropsychiatry, IRCCS—Istituto di Ricerche Farmacologiche “Mario Negri” (IRFMN), Milan, Italy
| | - Florence Pasquier
- Centre Hospitalier Regional et Universitaire de Lille (CHRU- LILLE), Lille, France
| | - Laetitia Breuilh
- Centre Hospitalier Regional et Universitaire de Lille (CHRU- LILLE), Lille, France
| | | | - Janos Kalman
- Szegedi Tudomanyegyetem (SZEGED), Szeged, Hungary
| | - William Molloy
- Centre for Gerontology and Rehabilitation, University College Cork (UCC), Cork, Ireland
| | - Magda Tsolaki
- Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | | | | | | | - Brian Lawlor
- Mercer's Institute for Research on Ageing, St James's Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Kim TW. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer's disease. Neurotherapeutics 2015; 12:132-42. [PMID: 25549849 PMCID: PMC4322062 DOI: 10.1007/s13311-014-0325-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents one of the highest unmet needs in medicine today. Drug development efforts for AD have been encumbered by largely unsuccessful clinical trials in the last decade. Drug repositioning, a process of discovering a new therapeutic use for existing drugs or drug candidates, is an attractive and timely drug development strategy especially for AD. Compared with traditional de novo drug development, time and cost are reduced as the safety and pharmacokinetic properties of most repositioning candidates have already been determined. A majority of drug repositioning efforts for AD have been based on positive clinical or epidemiological observations or in vivo efficacy found in mouse models of AD. More systematic, multidisciplinary approaches will further facilitate drug repositioning for AD. Some experimental approaches include unbiased phenotypic screening using the library of available drug collections in physiologically relevant model systems (e.g. stem cell-derived neurons or glial cells), computational prediction and selection approaches that leverage the accumulating data resulting from RNA expression profiles, and genome-wide association studies. This review will summarize several notable strategies and representative examples of drug repositioning for AD.
Collapse
Affiliation(s)
- Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute of Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
11
|
Bachmeier C, Shackleton B, Ojo J, Paris D, Mullan M, Crawford F. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. Neuromolecular Med 2014; 16:686-96. [PMID: 25015123 PMCID: PMC4280344 DOI: 10.1007/s12017-014-8318-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023]
Abstract
Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain.
Collapse
Affiliation(s)
- Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Ben Shackleton
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| |
Collapse
|
12
|
Paris D, Ait-Ghezala G, Bachmeier C, Laco G, Beaulieu-Abdelahad D, Lin Y, Jin C, Crawford F, Mullan M. The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-β production and Tau hyperphosphorylation. J Biol Chem 2014; 289:33927-44. [PMID: 25331948 DOI: 10.1074/jbc.m114.608091] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-β (Aβ) accumulation by affecting both Aβ production and Aβ clearance across the blood-brain barrier (BBB). Nilvadipine consists of a mixture of two enantiomers, (+)-nilvadipine and (-)-nilvadipine, in equal proportion. (+)-Nilvadipine is the active enantiomer responsible for the inhibition of LCC, whereas (-)-nilvadipine is considered inactive. Both nilvadipine enantiomers inhibit Aβ production and improve the clearance of Aβ across the BBB showing that these effects are not related to LCC inhibition. In addition, treatment of P301S mutant human Tau transgenic mice (transgenic Tau P301S) with (-)-nilvadipine reduces Tau hyperphosphorylation at several Alzheimer disease (AD) pertinent epitopes. A search for the mechanism of action of (-)-nilvadipine revealed that this compound inhibits the spleen tyrosine kinase (Syk). We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. We show that Syk inhibition induces an increased phosphorylation of the inhibitory Ser-9 residue of glycogen synthase kinase-3β, a primary Tau kinase involved in Tau phosphorylation, by activating protein kinase A, providing a mechanism explaining the reduction of Tau phosphorylation at GSK3β-dependent epitopes following Syk inhibition. Altogether our data highlight Syk as a promising target for preventing both Aβ accumulation and Tau hyperphosphorylation in AD.
Collapse
Affiliation(s)
- Daniel Paris
- From the Roskamp Institute, Sarasota, Florida 34243
| | | | | | - Gary Laco
- From the Roskamp Institute, Sarasota, Florida 34243
| | | | - Yong Lin
- From the Roskamp Institute, Sarasota, Florida 34243
| | - Chao Jin
- From the Roskamp Institute, Sarasota, Florida 34243
| | | | | |
Collapse
|
13
|
Lawlor B, Kennelly S, O'Dwyer S, Cregg F, Walsh C, Coen R, Kenny RA, Howard R, Murphy C, Adams J, Daly L, Segurado R, Gaynor S, Crawford F, Mullan M, Lucca U, Banzi R, Pasquier F, Breuilh L, Riepe M, Kalman J, Wallin A, Borjesson A, Molloy W, Tsolaki M, Olde Rikkert M. NILVAD protocol: a European multicentre double-blind placebo-controlled trial of nilvadipine in mild-to-moderate Alzheimer's disease. BMJ Open 2014; 4:e006364. [PMID: 25300460 PMCID: PMC4194801 DOI: 10.1136/bmjopen-2014-006364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION This study is a European multicentre, randomised, double-blind, placebo-controlled trial investigating the efficacy and safety of nilvadipine as a disease course modifying treatment for mild-to-moderate Alzheimer's disease (AD) in a phase III study that will run for a period of 82 weeks with a treatment period of 78 weeks. METHODS AND ANALYSIS Adult patients, males and females over 50 years with mild-to-moderate AD as defined by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's disease and Related Disorders Association (NINCDS-ADRDA) criteria, will be included in the study. It aims to recruit a total of 500 patients with AD; 250 in the nilvadipine group and 250 in the placebo group. Participants will be randomised to receive nilvadipine, an 8 mg overencapsulated, sustained release capsule, or a matching overencapsulated placebo (sugar pill) for a period of 78 weeks of treatment. The primary efficacy outcome measure in this study is the change in cognitive function as assessed by the Alzheimer's disease Assessment Scale (ADAS-Cog 12) from baseline to the end of treatment duration (78 weeks). There are two key secondary outcome measures, the Clinical Dementia Rating Scale Sum of Boxes (CDR-sb) and the Disability Assessment for Dementia (DAD). If a statistically significant effect is seen in the primary outcome, CDR-sb will be considered to be a coprimary end point and only the DAD will contribute to the secondary outcome analysis. ETHICS AND DISSEMINATION The study and all subsequent amendments have received ethical approval within each participating country according to national regulations. Each participant will provide written consent to participate in the study. All participants will remain anonymised throughout and the results of the study will be published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER EUDRACT Reference Number: 2012-002764-27.
Collapse
Affiliation(s)
- Brian Lawlor
- Mercer's Institute for Research on Ageing, St. James's Hospital, Dublin, Ireland
| | - Sean Kennelly
- Mercer's Institute for Research on Ageing, St. James's Hospital, Dublin, Ireland
| | - Sarah O'Dwyer
- Mercer's Institute for Research on Ageing, St. James's Hospital, Dublin, Ireland
| | - Fiona Cregg
- Trinity College Dublin (TCD), Dublin, Ireland
| | | | - Robert Coen
- Mercer's Institute for Research on Ageing, St. James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- Mercer's Institute for Research on Ageing, St. James's Hospital, Dublin, Ireland
| | | | | | | | - Leslie Daly
- University College Dublin (UCD), Dublin, Ireland
| | | | | | - Fiona Crawford
- Archer Pharmaceuticals Inc, 2040 Whitefield Avenue, Sarasota, Florida, USA
| | - Michael Mullan
- Archer Pharmaceuticals Inc, 2040 Whitefield Avenue, Sarasota, Florida, USA
| | - Ugo Lucca
- IRCCS—Istituto di Ricerche Farmacologiche “Mario Negri” (IRFMN), Milan, Italy
| | - Rita Banzi
- IRCCS—Istituto di Ricerche Farmacologiche “Mario Negri” (IRFMN), Milan, Italy
| | - Florence Pasquier
- Centre Hospitalier Regional et Universitaire de Lille (CHRU- LILLE), Lille, France
| | - Laetitia Breuilh
- Centre Hospitalier Regional et Universitaire de Lille (CHRU- LILLE), Lille, France
| | | | - Janos Kalman
- Szegedi Tudomanyegyetem (SZEGED), Szeged, Hungary
| | | | | | | | | | - Marcel Olde Rikkert
- Radboud Alzheimer Centre; Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
15
|
Corbett A, Williams G, Ballard C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer's disease. Pharmaceuticals (Basel) 2013; 6:1304-21. [PMID: 24275851 PMCID: PMC3817602 DOI: 10.3390/ph6101304] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.
Collapse
Affiliation(s)
- Anne Corbett
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London SE1 1UL, UK.
| | | | | |
Collapse
|
16
|
Gao Y, O'Caoimh R, Healy L, Kerins DM, Eustace J, Guyatt G, Sammon D, Molloy DW. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open 2013; 3:e002881. [PMID: 23887090 PMCID: PMC3703568 DOI: 10.1136/bmjopen-2013-002881] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES There is growing evidence that antihypertensive agents, particularly centrally acting ACE inhibitors (CACE-Is), which cross the blood-brain barrier, are associated with a reduced rate of cognitive decline. Given this, we compared the rates of cognitive decline in clinic patients with dementia receiving CACE-Is (CACE-I) with those not currently treated with CACE-Is (NoCACE-I), and with those who started CACE-Is, during their first 6 months of treatment (NewCACE-I). DESIGN Observational case-control study. SETTING 2 university hospital memory clinics. PARTICIPANTS 817 patients diagnosed with Alzheimer's disease, vascular or mixed dementia. Of these, 361 with valid cognitive scores were included for analysis, 85 CACE-I and 276 NoCACE-I. MEASUREMENTS Patients were included if the baseline and end-point (standardised at 6 months apart) Standardised Mini-Mental State Examination (SMMSE) or Quick Mild Cognitive Impairment (Qmci) scores were available. Patients with comorbid depression or other dementia subtypes were excluded. The average 6-month rates of change in scores were compared between CACE-I, NoCACE-I and NewCACE-I patients. RESULTS When the rate of decline was compared between groups, there was a significant difference in the median, 6-month rate of decline in Qmci scores between CACE-I (1.8 points) and NoCACE-I (2.1 points) patients (p=0.049), with similar, non-significant changes in SMMSE. Median SMMSE scores improved by 1.2 points in the first 6 months of CACE treatment (NewCACE-I), compared to a 0.8 point decline for the CACE-I (p=0.003) group and a 1 point decline for the NoCACE-I (p=0.001) group over the same period. Multivariate analysis, controlling for baseline characteristics, showed significant differences in the rates of decline, in SMMSE, between the three groups, p=0.002. CONCLUSIONS Cognitive scores may improve in the first 6 months after CACE-I treatment and use of CACE-Is is associated with a reduced rate of cognitive decline in patients with dementia.
Collapse
Affiliation(s)
- Yang Gao
- Centre for Gerontology and Rehabilitation, University College Cork, St Finbarrs' Hospital, Cork City, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|