1
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
2
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
3
|
Tumati S, Herrmann N, Marotta G, Li A, Lanctôt KL. Blood-based biomarkers of agitation in Alzheimer's disease: Advances and future prospects. Neurochem Int 2021; 152:105250. [PMID: 34864088 DOI: 10.1016/j.neuint.2021.105250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022]
Abstract
Agitation is a common neuropsychiatric symptom that becomes more prevalent as Alzheimer's disease (AD) increases in severity. The treatment of agitation is an urgent and unmet need due to the poor outcomes associated with it, its disruptive impact on patients and caregivers, and the lack of efficacious and safe treatments. Recent research on agitation in AD with blood-based biomarkers has advanced the search for its biomarkers beyond the brain and provides new insights to understand its mechanisms and improve treatments. Here, we reviewed studies of blood-based biomarkers of agitation in AD, which show that inflammatory biomarkers are increased in patients with agitation, may predict the development of agitation, and are associated with symptom severity. In addition, they may also track symptom severity and response to treatment. Other biomarkers associated with agitation include markers of oxidative stress, brain cholesterol metabolism, motor activity, and clusterin, a chaperone protein. These results are promising and need to be replicated. Preliminary evidence suggests a role for these biomarkers in interventional studies for agitation to predict and monitor treatment response, which may eventually help enrich study samples and deliver therapy likely to benefit individual patients. Advances in blood-based biomarkers of AD including those identified in "-omic" studies and high sensitivity assays provide opportunities to identify new biomarkers of agitation. Future studies of agitation and its treatment should investigate blood-based biomarkers to yield novel insights into the neurobiological mechanisms of agitation, monitoring symptoms and response to treatment, and to identify patients likely to respond to treatments.
Collapse
Affiliation(s)
- Shankar Tumati
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Giovanni Marotta
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Geriatric Medicine, University of Toronto, Toronto, Canada
| | - Abby Li
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Sato H, Yano A, Shimoyama Y, Sato T, Sugiyama Y, Kishi M. Associations of streptococci and fungi amounts in the oral cavity with nutritional and oral health status in institutionalized elders: a cross sectional study. BMC Oral Health 2021; 21:590. [PMID: 34798863 PMCID: PMC8603531 DOI: 10.1186/s12903-021-01926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Disruption of the indigenous microbiota is likely related to frailty caused by undernutrition. However, the relationship between undernutrition and the oral microbiota, especially normal bacteria, is not obvious. The aim of this study was to elucidate the associations of nutritional and oral health conditions with prevalence of bacteria and fungi in the oral cavity of older individuals. METHODS Forty-one institutionalized older individuals with an average age ± standard deviation of 84.6 ± 8.3 years were enrolled as participants. Body mass index (BMI) and oral health assessment tool (OHAT) scores were used to represent nutritional and oral health status. Amounts of total bacteria, streptococci, and fungi in oral specimens collected from the tongue dorsum were determined by quantitative polymerase chain reaction (PCR) assay results. This study followed the STROBE statement for reports of observational studies. RESULTS There was a significant correlation between BMI and streptococcal amount (ρ = 0.526, p < 0.001). The undernutrition group (BMI < 20) showed a significantly lower average number of oral streptococci (p = 0.003). In logistic regression models, streptococcal amount was a significant variable accounting for "not undernutrition" [odds ratio 5.68, 95% confidential interval (CI) 1.64-19.7 (p = 0.06)]. On the other hand, participants with a poor oral health condition (OHAT ≥ 5) harbored significantly higher levels of fungi (p = 0.028). CONCLUSION Oral streptococci were found to be associated with systemic nutritional condition and oral fungi with oral health condition. Thus, in order to understand the relationship of frailty with the oral microbiota in older individuals, it is necessary to examine oral indigenous bacteria as well as etiological microorganisms.
Collapse
Affiliation(s)
- Hanako Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Akira Yano
- Iwate Biotechnology Research Center, 174-4 Narita 22 Jiwari, Kitakami, Iwate 024-0003 Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1 Idai Dori 1 chome, Yahaba, Iwate 028-3694 Japan
| | - Toshiro Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Yukiko Sugiyama
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Mitsuo Kishi
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| |
Collapse
|
5
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
6
|
Li Y, Wang Y. Obstructive Sleep Apnea-hypopnea Syndrome as a Novel Potential Risk for Aging. Aging Dis 2021; 12:586-596. [PMID: 33815884 PMCID: PMC7990365 DOI: 10.14336/ad.2020.0723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder, negatively influencing individuals' quality of life and socioeconomic burden. In recent years, OSAHS has been reported in not only constituting an aging-associated disease, but also in accelerating and/or potentiating aging mechanisms. However, the negative impacts of OSAHS on aging are underestimated because of low level of public awareness about this disease and high rates of undiagnosed cases, which are more critical in developing countries or economically disadvantaged regions. Hence, reviewing previously reported observations may assist scholars to better indicate that OSAHS is likely a novel potential risk for aging. Further understanding of the pathophysiological mechanism of OSAHS and its role in procession of aging may markedly highlight the importance of this common sleep disorder.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
7
|
Malashenkova IK, Krynskiy SA, Hailov NA, Ogurtsov DP, Chekulaeva EI, Ponomareva EV, Gavrilova SI, Didkovsky NA. [Immunological variants of amnestic mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:60-68. [PMID: 33244960 DOI: 10.17116/jnevro202012010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is considered as a possible earliest pre-dementia clinical stage of Alzheimer's disease (AD). Taking into account the prominent role of neuroinflammation in the pathogenesis of AD, it is quite important to study possible immunological markers of the risk of aMCI progression and the changes in immune parameters in patients. OBJECTIVE To study the immunological variants of aMCI and AD based on the parameters of humoral and cell immunity, levels of key cytokines and presence of systemic inflammation, and to explore the link between changes in the immune parameters and clinical prognosis. MATERIAL AND METHODS One hundred patients with a diagnosis of aMCI, 45 patients with AD at the stage of mild to moderate dementia and 40 people without cognitive impairment (the control group) were enrolled into the study. Immunological assessment included determination of the concentration of key cytokines, C-reactive protein, circulating immune complexes and immunoglobulins (Ig A, M, G) in blood serum by ELISA, determination of the main subpopulations of lymphocytes by flow cytometry. RESULTS AND CONCLUSION Four main immunological variants of aMCI syndrome associated with clinical prognosis were identified. The detected changes in immune parameters are important for further studies to assess an effect of viral and bacterial infections, intestinal microflora disorders on a clinical prognosis in patients with different immunological variants of aMCI syndrome.
Collapse
Affiliation(s)
- I K Malashenkova
- National Research Center «Kurchatov Institute», Moscow, Russia.,Federal and Clinical Center of PhysicalCchemical Medicine Russia, Moscow, Russia
| | - S A Krynskiy
- National Research Center «Kurchatov Institute», Moscow, Russia
| | - N A Hailov
- National Research Center «Kurchatov Institute», Moscow, Russia
| | - D P Ogurtsov
- National Research Center «Kurchatov Institute», Moscow, Russia.,Federal and Clinical Center of PhysicalCchemical Medicine Russia, Moscow, Russia
| | - E I Chekulaeva
- National Research Center «Kurchatov Institute», Moscow, Russia
| | | | | | - N A Didkovsky
- Federal and Clinical Center of PhysicalCchemical Medicine Russia, Moscow, Russia
| |
Collapse
|
8
|
Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer's disease. Neurol Sci 2020; 41:2081-2093. [PMID: 32281039 DOI: 10.1007/s10072-020-04369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease is a complex multifaceted neurodegenerative disorder. It is characterized by the deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles leading to progressive dementia and death in aged adult population. Recent emerging research has highlighted a potential pharmacological role of 5-lipoxyenase-cysteinyl leukotriene pathway in molecular pathogenesis of Alzheimer's disease. OBJECTIVE Although cysteinyl leukotrienes and their receptors have a major clinical role in chronic respiratory inflammation, their roles in chronic neuroinflammation in Alzheimer's disease need a detailed and careful exploration. RESULTS AND CONCLUSION This review article highlights a novel role of cysteinyl leukotrienes and their receptors in pathophysiology of Alzheimer's disease in order to understand the underlying molecular mechanism. In addition, it summarizes the recent advances in various pre-clinical and clinical strategies used to modulate this pathway for therapeutic targeting of Alzheimer's disease.
Collapse
|
9
|
Fraga VG, Magalhães CA, Loures CDMG, de Souza LC, Guimarães HC, Zauli DAG, Carvalho MDG, Ferreira CN, Caramelli P, de Sousa LP, Gomes KB. Inflammatory and Pro-resolving Mediators in Frontotemporal Dementia and Alzheimer's Disease. Neuroscience 2019; 421:123-135. [PMID: 31654714 DOI: 10.1016/j.neuroscience.2019.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Chronic inflammation contributes to neuronal death in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Here we evaluated inflammatory and pro-resolving mediators in AD and behavioural variant of FTD (bvFTD) patients compared with controls, since neuroinflamamtion is a common feature in both diseases. Ninety-eight subjects were included in this study, divided into AD (n = 32), bvFTD (n = 30), and control (n = 36) groups. The levels of hsCRP, IL-1β, IL-6, TNF, and TGF-β1, as well as annexin A1 (AnxA1) and lipoxin A4 (LXA4) were measured in blood and cerebrospinal fluid (CSF). The expression profile of AnxA1 was evaluated in peripheral blood mononuclear cells (PBMCs) as well the distribution of ANXA1 rs2611228 polymorphism. We found reduced peripheral levels of hsCRP and TNF in AD compared with bvFTD patients and controls, and increased levels of TGF-β1 in AD compared to controls. Moreover, reduced plasma levels of AnxA1 were observed in bvFTD compared to AD and controls. There was a significant cleavage of AnxA1 in PBMCs in both dementia groups. The results suggest differential regulation of inflammatory and pro-resolving mediators in bvFTD and AD, while AnxA1 cleavage may impair pro-resolving mechanisms in both groups.
Collapse
Affiliation(s)
- Vanêssa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Antunes Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina de Mello Gomide Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Cruz de Souza
- Departamento de Clínca Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Cerqueira Guimarães
- Departamento de Clínca Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Caramelli
- Departamento de Clínca Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia Pires de Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Li HY, Tsai MS, Huang CG, Wang RYL, Chuang LP, Chen NH, Liu CH, Hsu CM, Cheng WN, Lee LA. Alterations in Alzheimer's Disease-Associated Gene Expression in Severe Obstructive Sleep Apnea Patients. J Clin Med 2019; 8:jcm8091361. [PMID: 31480626 PMCID: PMC6780075 DOI: 10.3390/jcm8091361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Obstructive sleep apnea (OSA) increases the risk of Alzheimer’s disease (AD), and inflammation may be involved in the early pathogenesis of AD in patients with OSA. However, the potential pathways between OSA and AD have yet to be established. In this study, we aimed to investigate differential expressions of AD-associated genes in OSA patients without evident AD or dementia. Methods: This prospective case-control study included five patients with severe OSA and five age and sex-matched patients with non-severe OSA without evident dementia who underwent uvulopalatopharyngoplasty between 1 January 2013 and 31 December 2015. The expressions of genes associated with AD were analyzed using whole-exome sequencing. Unsupervised two-dimensional hierarchical clustering was performed on these genes. Pearson’s correlation was used as the distance metric to simultaneously cluster subjects and genes. Results: The expressions of CCL2, IL6, CXCL8, HLA-A, and IL1RN in the patients with severe OSA were significantly different from those in the patients with non-severe OSA and contributed to changes in the immune response, cytokine–cytokine receptor interactions, and nucleotide-binding oligomerization domain-like receptor signaling pathways. Conclusions: Inflammation may contribute to the onset of AD and physicians need to be aware of the potential occurrence of AD in patients with severe OSA.
Collapse
Affiliation(s)
- Hsueh-Yu Li
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Shao Tsai
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Health Information and Epidemiology Laboratory, Chiayi, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Robert Y L Wang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Pang Chuang
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pulmonary and Critical Care Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ning-Hung Chen
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pulmonary and Critical Care Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Hung Liu
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Nuan Cheng
- Department of Sports Sciences, University of Taipei, Taipei 111, Taiwan
| | - Li-Ang Lee
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
11
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Montgomery W, Ueda K, Jorgensen M, Stathis S, Cheng Y, Nakamura T. Epidemiology, associated burden, and current clinical practice for the diagnosis and management of Alzheimer's disease in Japan. CLINICOECONOMICS AND OUTCOMES RESEARCH 2017; 10:13-28. [PMID: 29343976 PMCID: PMC5749549 DOI: 10.2147/ceor.s146788] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The burden of dementia in Japan is large and growing. With the world’s fastest aging population, it is estimated that one in five elderly people will be living with dementia in Japan by 2025. The most common form of dementia is Alzheimer’s disease (AD), accounting for around two-thirds of dementia cases. A systematic review was conducted to examine the epidemiology and associated burden of AD in Japan and to identify how AD is diagnosed and managed in Japan. English and Japanese language databases were searched for articles published between January 2000 and November 2015. Relevant Japanese sources, clinical practice guideline registers, and reference lists were also searched. Systematic reviews and cohort and case–control studies were eligible for inclusion, with a total of 60 studies included. The most recent national survey conducted in six regions of Japan reported the mean prevalence of dementia in people aged ≥65 years to be 15.75% (95% CI: 12.4, 22.2%), which is much higher than the previous estimated rate of 10% in 2010. AD was confirmed as the predominant type of dementia, accounting for 65.8% of all cases. Advancing age and low education were the most consistently reported risk factors for AD dementia. Japanese guidelines for the management of dementia were released in 2010 providing specific guidance for AD about clinical signs, image findings, biochemical markers, and treatment approaches. Pharmacotherapies and non-pharmacotherapies to relieve cognitive symptoms were introduced, as were recommendations to achieve better patient care. No studies reporting treatment patterns were identified. Due to population aging and growing awareness of AD in Japan, health care expenditure and associated burden are expected to soar. This review highlights the importance of early detection, diagnosis, and treatment of AD as strategies to minimize the impact of AD on society in Japan.
Collapse
Affiliation(s)
- William Montgomery
- Global Patient Outcomes & Real World Evidence, Eli Lilly Australia, Sydney, NSW, Australia
| | - Kaname Ueda
- Medical Development Unit-Japan, Eli Lilly Japan KK, Kobe, Japan
| | | | - Shari Stathis
- Health Technology Analysts, Lilyfield, NSW, Australia
| | | | - Tomomi Nakamura
- Medical Development Unit-Japan, Eli Lilly Japan KK, Kobe, Japan
| |
Collapse
|
13
|
Couch Y, Trofimov A, Markova N, Nikolenko V, Steinbusch HW, Chekhonin V, Schroeter C, Lesch KP, Anthony DC, Strekalova T. Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice. J Neuroinflammation 2016; 13:108. [PMID: 27184538 PMCID: PMC4867526 DOI: 10.1186/s12974-016-0572-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0572-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, UK
| | - Alexander Trofimov
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.,Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.,Institute of Physiologically Active Compounds, Moscow Region, Russia
| | - Natalyia Markova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.,Institute of Physiologically Active Compounds, Moscow Region, Russia
| | | | - Harry W Steinbusch
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Careen Schroeter
- Department of Preventive Medicine, Maastricht Medical Centre Annadal, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.,Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, UK.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.
| |
Collapse
|
14
|
McIntyre JA, Ramsey CJ, Gitter BD, Saykin AJ, Wagenknecht DR, Hyslop PA. Antiphospholipid autoantibodies as blood biomarkers for detection of early stage Alzheimer's disease. Autoimmunity 2015; 48:344-51. [PMID: 25672931 PMCID: PMC4490126 DOI: 10.3109/08916934.2015.1008464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
A robust blood biomarker is urgently needed to facilitate early prognosis for those at risk for Alzheimer's disease (AD). Redox reactive autoantibodies (R-RAAs) represent a novel family of antibodies detectable only after exposure of cerebrospinal fluid (CSF), serum, plasma or immunoglobulin fractions to oxidizing agents. We have previously reported that R-RAA antiphospholipid antibodies (aPLs) are significantly decreased in the CSF and serum of AD patients compared to healthy controls (HCs). These studies were extended to measure R-RAA aPL in serum samples obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI). Serum samples from the ADNI-1 diagnostic groups from participants with mild cognitive impairment (MCI), AD and HCs were blinded for diagnosis and analyzed for R-RAA aPL by ELISA. Demographics, cognitive data at baseline and yearly follow-up were subsequently provided by ADNI after posting assay data. As observed in CSF, R-RAA aPL in sera from the AD diagnostic group were significantly reduced compared to HC. However, the sera from the MCI population contained significantly elevated R-RAA aPL activity relative to AD patient and/or HC sera. The data presented in this study indicate that R-RAA aPL show promise as a blood biomarker for detection of early AD, and warrant replication in a larger sample. Longitudinal testing of an individual for increases in R-RAA aPL over a previously established baseline may serve as a useful early sero-epidemiologic blood biomarker for individuals at risk for developing dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- John A. McIntyre
- HLA-Vascular Biology Laboratory, Franciscan St. Francis Health, Indianapolis, IN, USA
- Redox-Reactive Reagents, LLC, Indianapolis, IN, USA
| | | | - Bruce D. Gitter
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dawn R. Wagenknecht
- HLA-Vascular Biology Laboratory, Franciscan St. Francis Health, Indianapolis, IN, USA
- Redox-Reactive Reagents, LLC, Indianapolis, IN, USA
| | | |
Collapse
|
15
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
16
|
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 2014; 50:534-44. [PMID: 24567119 PMCID: PMC4182618 DOI: 10.1007/s12035-014-8657-1] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential.
Collapse
|
17
|
Hatta K, Kishi Y, Takeuchi T, Wada K, Odawara T, Usui C, Machida Y, Nakamura H. The predictive value of a change in natural killer cell activity for delirium. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:26-31. [PMID: 24063857 DOI: 10.1016/j.pnpbp.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE Few studies looking for an effective biomarker to predict delirium have been performed. This study was designed to investigate whether a change in inflammatory status, indicated by blood natural killer (NK) cell activity, predicts delirium. METHODS This prospective study, performed in 4 university and 1 general hospital from September, 2011 to October, 2012, included 29 patients. Eligible patients were 65-89years old, newly and emergently admitted. Patients were assessed daily, up to 7days, for occurrence of DSM-IV-defined delirium. The main outcome measure was change in blood NK cell activity between the first and second mornings after admission. RESULTS The mean change in blood NK cell activity on the second morning, compared to the first morning, in patients developing delirium (n=9) was significantly greater than that in patients without delirium (n=20) (6.0% [SD 8.4] vs. -1.4% [9.0], respectively, t=2.10, P=0.045). Significant difference between the groups was still found after adjusting for age, the history of previous delirium, and the Clinical Dementia Rating score (F=6.63, P=0.017). Of note is that 8 of 9 (89%) patients developing delirium had increased blood NK cell activity, as did only 8 of 20 (40%) patients without delirium, giving measurement of this parameter, for distinguishing the two groups, a sensitivity of 89%, specificity 60%, positive predictive value 50%, negative predictive value 92%, positive likelihood ratio 2.22, and negative likelihood ratio 0.19. When combining this predictor with another predictor, a Delirium Rating Scale-Revised-98 severity score of 5 or more at baseline, positive and negative likelihood ratios were 7.80 and 0.24, respectively. CONCLUSION Increase in blood NK cell activity may be associated with developing delirium. Further studies including larger numbers of patients are needed to justify the preventive use of drugs for patients meeting criteria for both predictors.
Collapse
Affiliation(s)
- Kotaro Hatta
- Department of Psychiatry, Juntendo University Nerima Hospital, 177-8521 Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fiolaki A, Tsamis KI, Milionis HJ, Kyritsis AP, Kosmidou M, Giannopoulos S. Atherosclerosis, biomarkers of atherosclerosis and Alzheimer's disease. Int J Neurosci 2013; 124:1-11. [DOI: 10.3109/00207454.2013.821988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|