1
|
Faydalı N, Arpacı ÖT. Benzimidazole and Benzoxazole Derivatives Against Alzheimer's Disease. Chem Biodivers 2024; 21:e202400123. [PMID: 38494443 DOI: 10.1002/cbdv.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Benzimidazole and benzoxazole derivatives are included in the category of medical drugs in a wide range of areas such as anticancer, anticoagulant, antihypertensive, anti- inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, immunomodulators, proton pump inhibitors, hormone modulators, etc. Many researchers have focused on synthesizing more effective benzimidazole and benzoxazole derivatives for screening various biological activities. In addition, there are benzimidazole and benzoxazole rings as bioisosteres of aromatic rings found in drugs used in the treatment of Alzheimer's disease. Because of the diverse activity of the benzimidazole and benzoxazole rings and bioisosteres marketed as drugs for Alzheimer Diseases, designed compounds containing these rings are likely to be effective against Alzheimer's disease. In this study, the effectiveness of compounds containing benzimidazole and benzoxazole rings against Alzheimer's disease will be examined.
Collapse
Affiliation(s)
- Nagihan Faydalı
- Department of Pharmaceutical Chemistry, Selcuk University, 42250, Konya, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Özlem Temiz Arpacı
- Department of Pharmaceutical Chemistry, Ankara University, 06560, Ankara, Turkey
| |
Collapse
|
2
|
Reid GA, Darvesh S. Interaction of exogenous acetylcholinesterase and butyrylcholinesterase with amyloid-β plaques in human brain tissue. Chem Biol Interact 2024; 395:111012. [PMID: 38648920 DOI: 10.1016/j.cbi.2024.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are associated with amyloid-β (Aβ) plaques and exhibit altered biochemical properties in human Alzheimer's disease (AD), as well as in the transgenic 5XFAD mouse model of AD amyloidosis. In the brains of the 5XFAD mouse model devoid of BChE enzyme (5XFAD/BChE-KO), incubation of tissue sections with exogenous BChE purified from human plasma (pl-BChE) leads to its association with Aβ plaques and its biochemical properties are comparable to those reported for endogenous BChE associated with plaques in both human AD and in 5XFAD mouse brain tissue. We sought to determine whether these observations in 5XFAD/BChE-KO mice also apply to human brain tissues. To do so, endogenous ChE activity in human AD brain tissue sections was quenched with 50 % aqueous acetonitrile (MeCNaq) leaving the tissue suitable for further studies. Quenched sections were then incubated with recombinant AChE (r-AChE) or pl-BChE and stained for each enzymes' activity. Exogenous r-AChE or pl-BChE became associated with Aβ plaques, and when bound, had properties that were comparable to the endogenous ChE enzymes associated with plaques in AD brain tissues without acetonitrile treatment. These findings in human AD brain tissue extend previous observations in the 5XFAD/BChE-KO mouse model and demonstrate that exogenously applied r-AChE and pl-BChE have high affinity for Aβ plaques in human brain tissues. This association alters the biochemical properties of these enzymes, most likely due a conformational change. If incorporation of AChE and BChE in Aβ plaques facilitates AD pathogenesis, blocking this association could lead to disease-modifying approaches to AD. This work provides a method to study the mechanism of AChE and BChE interaction with Aβ plaque pathology in post-mortem human brain tissue.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine and Neurology), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
3
|
Dehghani H, Rashedinia M, Mohebbi G, Vazirizadeh A. Studies on Secondary Metabolites and In vitro and In silico Anticholinesterases
Activities of the Sea Urchin Echinometra mathaei Crude Venoms
from the Persian Gulf-Bushehr. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315514666230622144244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 12/08/2023]
Abstract
Background:
Echinoderms are a unique source of amazing secondary metabolites with a wide
spectrum of biological activities. Several species of sea urchins contain various toxins and biologically
active metabolites. One of the most attractive approaches to treat Alzheimer's disease is searching for
effective marine natural products with cholinesterase inhibitory activities.
Objective:
The current study is designed to investigate the in vitro and in silico acetylcholinesterase and
butyrylcholinesterase inhibitory activities of the Persian Gulf echinoderm sea urchin Echinometra
mathaei venom and related chemical compounds.
Methods:
The experiments for LD50, total protein, protein bands, in vitro cholinesterase inhibitory activities,
the identity of secondary metabolites, and the in silico evaluations, respectively, were performed by
Spearman-Karber, Lowry, SDS-PAGE, Ellman's spectroscopic, GC-MS, and docking methods.
Results:
The LD50 (IV rat) of the spine, gonad, and coelomic fluid from sea urchin samples were 2.231 ±
0.09, 1.03 ± 0.05, and 1.12 ± 0.13 mg/ml, respectively. The SDS-PAGE and total protein studies showed
that at least a portion of the venom is protein in nature. GC-MS analysis of the identified samples revealed
12, 23, and 21 compounds with different chemical types, including alkaloids, terpenes, and steroids,
respectively. According to the results, all samples act as significant inhibitors of both enzymes. In
silico data for the identified compounds also confirmed the experimental results.
Conclusion:
The alkaloid compound 6H-Indolo[3,2,1-de] [1,5] naphthyridine-6-one,1,2,3a,4,5-
hexahydro-8-hydroxy-3-methyl (C7) had the highest affinity for both enzymes. Further research is needed
to determine whether C7 could be a therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Hamideh Dehghani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz,
Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research
Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian
Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| |
Collapse
|
4
|
Wu J, Tan Z, Pistolozzi M, Tan W. Rivastigmine-Bambuterol Hybrids as Selective Butyrylcholinesterase Inhibitors. Molecules 2023; 29:72. [PMID: 38202655 PMCID: PMC10780165 DOI: 10.3390/molecules29010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Selective butyrylcholinesterase inhibitors are considered promising drug candidates for the treatment of Alzheimer's disease. In this work, one rivastigmine-bambuterol hybrid (MTR-1) and fourteen of its analogues were synthesized, purified, and characterized. In vitro cholinesterase assays showed that all the compounds were more potent inhibitors of BChE when compared to AChE. Further investigations indicated that MTR-3 (IC50(AChE) > 100,000 nM, IC50(BChE) = 78 nM) was the best compound in the series, showing high butyrylcholinesterase selectivity and inhibition potency, the potential to permeate the blood-brain barrier, and longer-lasting BChE inhibition than bambuterol. These compounds could be used to discover novel specific BChE inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jie Wu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Zekai Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Marco Pistolozzi
- International School, Jinan University, Guangzhou 510632, China;
| | - Wen Tan
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health-Tech Inc., Hengqin District, Zhuhai 519000, China
- Kesi (Shandong) Innovation Service Inc., Heze Modern Medical Port, Mudan District, Heze 274009, China
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
5
|
Ladagu AD, Olopade FE, Chazot P, Oyagbemi AA, Ohiomokhare S, Folarin OR, Gilbert TT, Fuller M, Luong T, Adejare A, Olopade JO. Attenuation of Vanadium-Induced Neurotoxicity in Rat Hippocampal Slices (In Vitro) and Mice (In Vivo) by ZA-II-05, a Novel NMDA-Receptor Antagonist. Int J Mol Sci 2023; 24:16710. [PMID: 38069032 PMCID: PMC10706475 DOI: 10.3390/ijms242316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | | | - Paul Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Ademola A. Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Oluwabusayo Racheal Folarin
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Taidinda Tashara Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| |
Collapse
|
6
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
7
|
Chen T, Sang S, Wei Y, Ge Y, Jin J, Bian Y, Pei Y, Li N, Sun H, Chen Y. The structural modification and biological evaluation of tetrahydrothienopyridine derivatives as selective BChE inhibitors. Bioorg Med Chem Lett 2023; 93:129436. [PMID: 37549853 DOI: 10.1016/j.bmcl.2023.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
A series of tetrahydrothienopyridine derivatives have been designed, synthesized, and evaluated as selective BChE inhibitors. Compounds were analyzed via HRMS, 1H NMR, and 13C NMR. The inhibitory effects were evaluated according to the method of Ellman et al. 6n was the most potent and selective inhibitor against BChE (eeAChE IC50 = 686.4 ± 478.6 μM, eqBChE IC50 = 10.5 ± 5.0 nM, SI = 6.5*104, hBChE IC50 = 32.5 ± 6.5 nM). Cell-based assays have confirmed the low neurotoxicity of 6a and 6n and their moderate neuroprotective effects. Compounds 6a and 6n provide novel chemical entities for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jisheng Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nianguang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
8
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
9
|
Spatz P, Steinmüller SAM, Tutov A, Poeta E, Morilleau A, Carles A, Deventer MH, Hofmann J, Stove CP, Monti B, Maurice T, Decker M. Dual-Acting Small Molecules: Subtype-Selective Cannabinoid Receptor 2 Agonist/Butyrylcholinesterase Inhibitor Hybrids Show Neuroprotection in an Alzheimer's Disease Mouse Model. J Med Chem 2023; 66:6414-6435. [PMID: 37127287 PMCID: PMC10184129 DOI: 10.1021/acs.jmedchem.3c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a β-arrestin 2 (βarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aβ25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anna Tutov
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Axelle Morilleau
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
10
|
Lazarova MI, Tancheva LP, Tasheva KN, Denev PN, Uzunova DN, Stefanova MO, Tsvetanova ER, Georgieva AP, Kalfin RE. Effects of Sideritis scardica Extract on Scopolamine-Induced Learning and Memory Impairment in Mice. J Alzheimers Dis 2023; 92:1289-1302. [PMID: 36872784 DOI: 10.3233/jad-230017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND The neurodegenerative process in Alzheimer's disease, one of the most common types of dementia worldwide, mostly affects the cholinergic neurotransmitter system and, to a lesser extent, the monoaminergic one. The antioxidant acetylcholinesterase (AChE) and triple monoamine reuptake inhibitory activity of Sideritis scardica (S. scardica) and other Sideritis species has already been reported. OBJECTIVE To investigate the effects of S. scardica water extracts on the learning and memory processes, anxiety-like behavior, and locomotor activities in scopolamine (Sco)-induced dementia in mice. METHODS Male Albino IRC mice were used. The plant extract was administered for 11 consecutive days in the presence or absence of Sco (1 mg/kg, i.p). The behavioural performance of the animals was evaluated by passive avoidance, T-maze, and hole-board tests. The effects of extract on AChE activity, brain noradrenalin (NA), and serotonin (Sero) content, and antioxidant status were also monitored. RESULTS Our experimental data revealed that the S. scardica water extract caused a reduction in degree of memory impairment and anxiety-like behaviour in mice with scopolamine-induced dementia. The extract did not affect changed by the Sco AChE activity but impact reduced brain NA and Sero levels and demonstrated moderate antioxidant activity. In healthy mice we did not confirm the presence of anxiolytic-like and AChE inhibitory effects of the S. scardica water extract. The extract did not change the control Sero brain levels and reduce those of NA. CONCLUSION S. scardica water extract demonstrated memory preserving effect in mice with scopolamine-induced dementia and deserve further attention.
Collapse
Affiliation(s)
- Maria I Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Lyubka P Tancheva
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria.,Weston Professor of Weizmann Institute of Science, Israel
| | - Krasimira N Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petko N Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances - Plovdiv, Bulgaria
| | - Diamara N Uzunova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | | | - Elina R Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Almira P Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Reni E Kalfin
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria.,Department of Healthcare, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| |
Collapse
|
11
|
Ganeshpurkar A, Singh R, Tripathi P, Alam Q, Krishnamurthy S, Kumar A, Singh SK. Effect of sulfonamide derivatives of phenylglycine on scopolamine-induced amnesia in rats. IBRAIN 2023; 9:13-31. [PMID: 37786521 PMCID: PMC10529173 DOI: 10.1002/ibra.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease responsible for dementia and other neuropsychiatric symptoms. In the present study, compounds 30 and 33, developed earlier in our laboratory as selective butyrylcholinesterase inhibitors, were tested against scopolamine-induced amnesia to evaluate their pharmacodynamic effect. The efficacy of the compounds was determined by behavioral experiments using the Y-maze and the Barnes maze and neurochemical testing. Both compounds reduced the effect of scopolamine treatment in the behavioral tasks at a dose of 20 mg/kg. The results of the neurochemical experiment indicated a reduction in cholinesterase activity in the prefrontal cortex and the hippocampus. The levels of antioxidant enzymes superoxide dismutase and catalase were restored compared to the scopolamine-treated groups. The docking study on rat butyrylcholinesterase (BChE) indicated tight binding, with free energies of -9.66 and -10.23 kcal/mol for compounds 30 and 33, respectively. The two aromatic amide derivatives of 2-phenyl-2-(phenylsulfonamido) acetic acid produced stable complexes with rat BChE in the molecular dynamics investigation.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pratigya Tripathi
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Qadir Alam
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sushil K. Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
12
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
13
|
Biological Evaluation of Valeriana Extracts from Argentina with Potent Cholinesterase Inhibition for the Treatment of Neurodegenerative Disorders and Their Comorbidities-The Case of Valeriana carnosa Sm. (Caprifoliaceae) Studied in Mice. Pharmaceuticals (Basel) 2023; 16:ph16010129. [PMID: 36678626 PMCID: PMC9861714 DOI: 10.3390/ph16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder whose pathophysiology includes the abnormal accumulation of proteins (e.g., β-amyloid), oxidative stress, and alterations in neurotransmitter levels, mainly acetylcholine. Here we present a comparative study of the effect of extracts obtained from endemic Argentinian species of valerians, namely V. carnosa Sm., V. clarionifolia Phil. and V. macrorhiza Poepp. ex DC from Patagonia and V. ferax (Griseb.) Höck and V. effusa Griseb., on different AD-related biological targets. Of these anxiolytic, sedative and sleep-inducing valerians, V. carnosa proved the most promising and was assayed in vivo. All valerians inhibited acetylcholinesterase (IC50 between 1.08-12.69 mg/mL) and butyrylcholinesterase (IC50 between 0.0019-1.46 mg/mL). They also inhibited the aggregation of β-amyloid peptide, were able to chelate Fe2+ ions, and exhibited a direct relationship between antioxidant capacity and phenolic content. Moreover, V. carnosa was able to inhibit human monoamine oxidase A (IC50: 0.286 mg/mL (0.213-0.384)). A daily intake of aqueous V. carnosa extract by male Swiss mice (50 and 150 mg/kg/day) resulted in anxiolytic and antidepressant-like behavior and improved spatial memory. In addition, decreased AChE activity and oxidative stress markers were observed in treated mouse brains. Our studies contribute to the development of indigenous herbal medicines as therapeutic agents for AD.
Collapse
|
14
|
Nejabati HR, Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer's disease. J Food Biochem 2022; 46:e14375. [PMID: 35929364 DOI: 10.1111/jfbc.14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is largely associated with cognitive disability, amnesia, and abnormal behavior, which accounts for about two third of people with dementia worldwide. A growing body of research demonstrates that AD is connected to several factors, such as aberrant accumulation of amyloid-beta (Aβ), increase in the hyperphosphorylation of Tau protein, and the formation of neurofibrillary tangles, mitochondrial dysfunction, and inordinate production of reactive oxygen species (ROS). Despite remarkable efforts to realize the etiology and pathophysiology of AD, until now, scientists have not developed and introduced medications that can permanently cease the progression of AD. Thus, nowadays, research on the role of natural products in the treatment and prevention of AD has attracted great attention. Kaempferol (KMP), one of the prominent members of flavonols, exerts its ameliorative actions via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. Therefore, in this review article, we outlined the possible effects of KMP in the prevention and treatment of AD. PRACTICAL APPLICATIONS: Kaempferol (KMP) exerts its ameliorative actions against AD via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. The beneficial effects of KMP were addressed in both in vitro and in vivo studies; however, conducting further research can warrant its long-term effects as a safe agent. Therefore, after confirming its favorable functions in the prevention and treatment of AD, it could be used as a safe and effective agent.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Sun F, Zhao J, Zhang H, Shi Q, Liu Y, Robert A, Liu Q, Meunier B. Proteomics Evidence of the Role of TDMQ20 in the Cholinergic System and Synaptic Transmission in a Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3093-3107. [PMID: 36221993 DOI: 10.1021/acschemneuro.2c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The interaction between copper ions and amyloid peptide Aβ has been reported to be involved in Alzheimer's disease (AD) pathology. Based on copper coordination biochemistry, we designed specific copper chelators [tetradentate monoquinolines (TDMQs)] in order to regulate copper homeostasis in the AD brain and inhibit the deleterious oxidative stress catalyzed by copper-Aβ complexes. We previously reported that TDMQ20, a highly selective copper chelator selected as a drug candidate, was able to extract copper from the Cu-Aβ1-16 complex and restore cognitive and behavioral deficits in AD mouse models. For a better understanding of the mechanism of action of TDMQ20, we decided to investigate the change of profile of proteins expressed in 5xFAD mice after an oral treatment of TDMQ20 (dose = 10 mg/kg, once every two days for 3 months, in total 45 times). Clioquinol (CQ), a non-specific chelator, has been used as a comparator. Here, we report the proteomic alterations in the cortex of 5xFAD mice using iTRAQ (isobaric tags for relative and absolute quantification) proteomics technology. The results indicated that 178 differentially expressed proteins (DEPs) have been identified in the AD mouse group with respect to wild type (WT) animals (AD/WT). After treatment by TDMQ20, 35 DEPs were found common in AD/WT and TDMQ20/AD groups in an opposite change manner (up- or down-regulated, respectively). In addition, among the 35 DEPs mentioned above, 10 common target proteins have been identified in AD/WT, TDMQ20/AD, and CQ/AD groups, among which 3 target proteins were successfully validated by western blot analysis. In particular, the expression levels of ChAT and CHRM4 are significantly increased upon TDMQ20 treatment with respect to 5xFAD mice, while CQ did not significantly change the expression of these proteins. Our study suggests the involvement of the copper chelator TDMQ20 on the cholinergic system, a feature that may explain the improved cognitive and behavioral performance in AD mice upon oral treatment of TDMQ20.
Collapse
Affiliation(s)
- Fanfan Sun
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Qihui Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518033, China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| |
Collapse
|
16
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Yousof Ali M, Zaib S, Jannat S, Khan I. Discovery of potent and selective dual cholinesterases and β-secretase inhibitors in pomegranate as a treatment for Alzheimer's disease. Bioorg Chem 2022; 129:106137. [PMID: 36108590 DOI: 10.1016/j.bioorg.2022.106137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022]
Abstract
Pomegranate (Punica granatum L.) extract has been reported to inhibit cholinesterase and the β-site amyloid precursor protein cleaving enzyme 1 (BACE1); however, most of its constituents' potential inhibition of these enzymes remains unknown. Thus, we investigated the anti-Alzheimer's disease (anti-AD) potential of 16 ellagitannin and gallotannin, and nine anthocyanin derivatives' inhibition of BACE1, AChE, and BChE, and gallagic acid inhibited both the best. Further, a kinetic study identified different modes of inhibition, and a molecular docking simulation revealed that active compounds inhibited these three enzymes with low binding energy through hydrophilic and hydrophobic interactions in the active site cavities. Gallagic acid and castalagin decreased Aβ peptides secretion from neuroblastoma cells that overexpressed human β-amyloid precursor protein significantly by 10 μM. Further, treatment with gallagic acid and castalagin reduced BACE1 and APPsβ expression levels significantly without affecting amyloid precursor protein (APP) levels in the amyloidogenic pathway. Co-incubation of Aβ42 with gallagic acid reduced Aβ42-induced intracellular reactive oxygen species (ROS) production significantly. Our results suggest that pomegranate constituents, specifically gallagic acid, may be useful in developing therapeutic treatment modalities for AD.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, T2N 1N4 Alberta, Canada
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
18
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
19
|
Spatz P, Zimmermann T, Steinmüller S, Hofmann J, Maurice T, Decker M. Novel benzimidazole-based pseudo-irreversible butyrylcholinesterase inhibitors with neuroprotective activity in an Alzheimer's disease mouse model. RSC Med Chem 2022; 13:944-954. [PMID: 36092149 PMCID: PMC9384809 DOI: 10.1039/d2md00087c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 09/17/2023] Open
Abstract
As levels of acetylcholinesterase (AChE) decrease while levels of butyrylcholinesterase (BChE) increase in later stages of Alzheimer's disease (AD), BChE stands out as a promising target for treatment of AD. Therefore, several benzimidazole-carbamates were designed based on docking studies to inhibit BChE selectively over AChE, while retaining a reasonable solubility. Synthesized molecules exhibit IC50 values from 2.4 μM down to 3.7 nM with an overall highly hBChE-selective profile of the designed compound class. After evaluation of potential neurotoxicity, the most promising compound was further investigated in vivo. Compound 11d attenuates Aβ25-35-induced learning impairments in both spontaneous alternation and passive avoidance responses at a very low dosage of 0.03 mg kg-1, proving selective BChE inhibition to lead to effective neuroprotectivity in AD.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Thomas Zimmermann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Sophie Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM F-34095 Montpellier France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| |
Collapse
|
20
|
Orciani C, Hall H, Pentz R, Foret MK, Do Carmo S, Cuello AC. Long-term nucleus basalis cholinergic depletion induces attentional deficits and impacts cortical neurons and BDNF levels without affecting the NGF synthesis. J Neurochem 2022; 163:149-167. [PMID: 35921478 DOI: 10.1111/jnc.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers is unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At six months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Post-mortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1) and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, US (Visiting Professor)
| |
Collapse
|
21
|
Identification of sulfonamide-based butyrylcholinesterase inhibitors using machine learning. Future Med Chem 2022; 14:1049-1070. [PMID: 35707942 DOI: 10.4155/fmc-2021-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.
Collapse
|
22
|
Eyjolfsdottir H, Koenig T, Karami A, Almqvist P, Lind G, Linderoth B, Wahlberg L, Seiger Å, Darreh-Shori T, Eriksdotter M, Jelic V. Fast Alpha Activity in EEG of Patients With Alzheimer’s Disease Is Paralleled by Changes in Cognition and Cholinergic Markers During Encapsulated Cell Biodelivery of Nerve Growth Factor. Front Aging Neurosci 2022; 14:756687. [PMID: 35557841 PMCID: PMC9085576 DOI: 10.3389/fnagi.2022.756687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Basal forebrain cholinergic neurons are dependent on nerve growth factor (NGF) for growth and survival and these cells are among the first to degenerate in Alzheimer’s disease (AD). Targeted delivery of NGF has been suggested as a potential therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved biomarkers for cognition by the end of the study. Here, we report on the effects of targeted delivery of NGF on human resting EEG. Materials and methods NGF-ECB implants were implanted bilaterally in the basal forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for correlation with changes in Mini-mental state examination (MMSE) and levels of the cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF). Results We found significant correlations between the topographic variance of EEG spectral power at the three study points (baseline, 3 and 12 months) and changes in MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window of alpha frequency 10–11.5 Hz, where a stabilization in MMSE score during treatment was related to an increase in EEG alpha power. A similar relation was observed between the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated with a decrease in CSF ChAT during the trial period. Conclusion In this exploratory study, there was a positive correlative pattern between physiological high-frequency alpha activity and stabilization in MMSE and increase in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic basal forebrain.
Collapse
Affiliation(s)
- Helga Eyjolfsdottir
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Azadeh Karami
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Stockholm, Sweden
- Department of Neurosurgery, Theme Neuro, Karolinska University, Stockholm, Sweden
| | | | - Åke Seiger
- Stiftelsen Stockholms Sjukhem, Stockholm, Sweden
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University, Stockholm, Sweden
- *Correspondence: Vesna Jelic,
| |
Collapse
|
23
|
Jana A, Bhattacharjee A, Das SS, Srivastava A, Choudhury A, Bhattacharjee R, De S, Perveen A, Iqbal D, Gupta PK, Jha SK, Ojha S, Singh SK, Ruokolainen J, Jha NK, Kesari KK, Ashraf GM. Molecular Insights into Therapeutic Potentials of Hybrid Compounds Targeting Alzheimer's Disease. Mol Neurobiol 2022; 59:3512-3528. [PMID: 35347587 PMCID: PMC9148293 DOI: 10.1007/s12035-022-02779-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the most complex progressive neurological disorders involving degeneration of neuronal connections in brain cells leading to cell death. AD is predominantly detected among elder people (> 65 years), mostly diagnosed with the symptoms of memory loss and cognitive dysfunctions. The multifarious pathogenesis of AD comprises the accumulation of pathogenic proteins, decreased neurotransmission, oxidative stress, and neuroinflammation. The conventional therapeutic approaches are limited to symptomatic benefits and are ineffective against disease progression. In recent years, researchers have shown immense interest in the designing and fabrication of various novel therapeutics comprised of naturally isolated hybrid molecules. Hybrid therapeutic compounds are developed from the combination of pharmacophores isolated from bioactive moieties which specifically target and block various AD-associated pathogenic pathways. The method of designing hybrid molecules has numerous advantages over conventional multitarget drug development methods. In comparison to in silico high throughput screening, hybrid molecules generate quicker results and are also less expensive than fragment-based drug development. Designing hybrid-multitargeted therapeutic compounds is thus a prospective approach in developing an effective treatment for AD. Nevertheless, several issues must be addressed, and additional researches should be conducted to develop hybrid therapeutic compounds for clinical usage while keeping other off-target adverse effects in mind. In this review, we have summarized the recent progress on synthesis of hybrid compounds, their molecular mechanism, and therapeutic potential in AD. Using synoptic tables, figures, and schemes, the review presents therapeutic promise and potential for the development of many disease-modifying hybrids into next-generation medicines for AD.
Collapse
Affiliation(s)
- Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed To Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Arkadyuti Bhattacharjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed To Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Avani Srivastava
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed To Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Akshpita Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed To Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Rahul Bhattacharjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed To Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, GolapbagBurdwan, West Bengal, 713104, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland.
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Kamalı A, Çakmak R, Boğa M. Anticholinesterase and antioxidant activities of novel heterocyclic Schiff base derivatives containing an aryl sulfonate moiety. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayfer Kamalı
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Reşit Çakmak
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services Batman University Batman Turkey
| | - Mehmet Boğa
- Department of Analytical Chemistry, Faculty of Pharmacy Dicle University Diyarbakır Turkey
- Dicle University Health Sciences Application and Research Center (DÜSAM) Diyarbakır Turkey
| |
Collapse
|
25
|
Ganeshpurkar A, Singh R, Kumar D, Gore P, Shivhare S, Sardana D, Rayala S, Kumar A, Singh SK. Identification of sulfonamide based butyrylcholinesterase inhibitors through scaffold hopping approach. Int J Biol Macromol 2022; 203:195-211. [PMID: 35090939 DOI: 10.1016/j.ijbiomac.2022.01.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Butyrylcholinesterase (BChE), a hydrolytic enzyme, is responsible for the termination of the action of acetylcholine besides acetylcholinesterase (AChE) in the synaptic cleft of the brain. The alteration in the enzyme level, in patients with the progression of Alzheimer's disease, makes it a therapeutic target. In the present study, we developed BChE inhibitors through scaffold hopping by exploring two previously reported compounds, i.e., 1,4-bis((4-chlorophenyl) sulfonyl)-3,6-diphenylpiperazine-2,5-dione and N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide, to afford scaffold and pharmacophore fragments, respectively. The N,2-diphenyl-2-(phenylsulfonamido)acetamide derivatives, thus designed, were synthesised and screened for the inhibition of AChE and BChE enzymes. Compounds 30 and 33 were found to be most active against BChE among the derivatives, with IC50 values of 7.331 ± 0.946 and 10.964 ± 0.936 μM, respectively. The compounds displayed a non-competitive mode of inhibition along with BBB permeability and good cell viability on SH-SY5Y cell line. The molecular docking analysis of the compounds with BChE showed interactions with Trp82, Trp231, Leu286, and His438. The molecular dynamics study revealed the stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pravin Gore
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Shivhare
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divya Sardana
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swetha Rayala
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
26
|
Ayoub I, George MY, Menze ET, Mahmoud M, Botros M, Essam M, Ashmawy I, Shendi P, Hany A, Galal M, Ayman M, Labib R. Insights on the neuroprotective effects of Salvia officinalis L. and Salvia microphylla Kunth in memory impairment rat model. Food Funct 2022; 13:2253-2268. [DOI: 10.1039/d1fo02988f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salvia species have a traditional longstanding culinary use mostly consumed in the Mediterranean diet as a common spice added to food. Salvia is commonly consumed as an herbal tea for...
Collapse
|
27
|
Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021; 201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid β (Aβ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 μM), 5a (IC50 = 0.084 ± 0.003 μM), 2c (IC50 = 0.095 ± 0.019 μM) and 2a (IC50 = 0.111 ± 0.006 μM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 μM to 15.17 ± 6.03 μM) and reduced the aggregation propensity of Aβ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 μM and 5.0 ± 1.1 μM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.
Collapse
Affiliation(s)
- Fabiola Kamecki
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Diego Carvalho
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Carolina Marcucci
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Marina Rademacher
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Alejandra Marcos
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Juan Andrés Abin-Carriquiry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Natalia Colettis
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Arshad M, Ahmed K, Bashir M, Kosar N, Kanwal M, Ahmed M, Khan HU, Khan S, Rauf A, Waseem A, Mahmood T. Synthesis, structural properties and potent bioactivities supported by molecular docking and DFT studies of new hydrazones derived from 5-chloroisatin and 2-thiophenecarboxaldehyde. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Yang Z, Zhou DD, Huang SY, Fang AP, Li HB, Zhu HL. Effects and mechanisms of natural products on Alzheimer's disease. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34613845 DOI: 10.1080/10408398.2021.1985428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly people with a high incidence rate and complicated pathogenesis, and causes progressive cognitive deficit and memory impairment. Some natural products and bioactive compounds from natural sources show great potential in the prevention and treatment of AD, such as apple, blueberries, grapes, chili pepper, Monsonia angustifolia, cruciferous vegetables, Herba epimedii, Angelica tenuissima, Embelia ribes, sea cucumber, Cucumaria frondosa, green tea, Puer tea, Amanita caesarea and Inonotus obliquus, via reducing amyloid beta (Aβ) deposition, decreasing Tau hyperphosphorylation, regulating cholinergic system, reducing oxidative stress, inhibiting apoptosis and ameliorating inflammation. This review mainly summarizes the effects of some natural products and their bioactive compounds on AD with the potential molecular mechanisms.
Collapse
Affiliation(s)
- Zhijun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Abstract
The feeling of memory failure is the most frequently expressed discomfort with age. The difficulty is to distinguish between a memory complaint and a memory pathology. Alzheimer's disease is diagnosed at the stage of dementia. Early detection and the prospect of treatments likely to act lead to an interest in its pre-dementia phase, which is known to precede the appearance of the dementia syndrome by several years.
Collapse
|
31
|
Anukanon S, Pongpamorn P, Tiyabhorn W, Chatwichien J, Niwetmarin W, Sessions RB, Ruchirawat S, Thasana N. In Silico-Guided Rational Drug Design and Semi-synthesis of C(2)-Functionalized Huperzine A Derivatives as Acetylcholinesterase Inhibitors. ACS OMEGA 2021; 6:19924-19939. [PMID: 34368579 PMCID: PMC8340427 DOI: 10.1021/acsomega.1c02875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Huperzine A (1, Hup A), a lycodine-type Lycopodium alkaloid isolated from Thai clubmosses Huperzia squarrosa (G. Forst.) Trevis., H. carinata (Desv. ex. Poir.) Trevis., H. phlegmaria (L.), and Phlegmariurus nummulariifolius (Blume) Chambers (Lycopodiaceae), exerts inhibitory activity on acetylcholinesterase, a known target for Alzheimer's disease therapy. This study investigated the structure-activity relationship of C(2)-functionalized and O- or N-methyl-substituted huperzine A derivatives. In silico-guided screening was performed to search for potential active compounds. Molecular docking analysis suggested that substitution at the C(2) position of Hup A with small functional groups could enhance binding affinity with AChE. Consequently, 12 C(2)-functionalized and four O- or N-methyl-substituted compounds were semi-synthesized and evaluated for their eeAChE and eqBChE inhibitory activities. The result showed that 2-methoxyhuperzine A (10) displayed moderate to high eeAChE inhibitory potency (IC50 = 0.16 μM) with the best selectivity over eqBChE (selectivity index = 3633). Notably, this work showed a case of which computational analysis could be utilized as a tool to rationally screen and design promising drug molecules, getting rid of impotent molecules before going more deeply on labor-intensive and time-consuming drug discovery and development processes.
Collapse
Affiliation(s)
- Shisanupong Anukanon
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Pornkanok Pongpamorn
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Wareepat Tiyabhorn
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Jaruwan Chatwichien
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Worawat Niwetmarin
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Richard B. Sessions
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Somsak Ruchirawat
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
- The
Center of Excellence on Environmental Health and Toxicology, Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
- The
Center of Excellence on Environmental Health and Toxicology, Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|
32
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
33
|
Oudewortel L, van der Roest HG, Onder G, Wijnen VJM, Liperoti R, Denkinger M, Finne-Soveri H, Topinková E, Henrard JC, van Gool WA. The Association of Anticholinergic Drugs and Delirium in Nursing Home Patients With Dementia: Results From the SHELTER Study. J Am Med Dir Assoc 2021; 22:2087-2092. [PMID: 34197793 DOI: 10.1016/j.jamda.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Drugs with anticholinergic properties are associated with an increased prevalence of delirium, especially in older persons. The aim of this study was to evaluate the association between the use of this class of drugs in nursing home (NH) patients and prevalence of delirium, particularly in people with dementia. DESIGN Cross-sectional multicenter study. SETTING AND PARTICIPANTS 3924 nursing home patients of 57 nursing homes in 7 European countries participating in the Services and Health for Elderly in Long TERmcare (SHELTER) project. METHODS Descriptive statistics, calculation of percentage, and multivariable logistic analysis were applied to describe the relationship between anticholinergic drug use and prevalence of delirium in NH patients. The Anticholinergic Risk Scale (ARS) and the Anticholinergic Burden Scale (ACB) were used to calculate the anticholinergic load. RESULTS 54% of patients with dementia and 60% without dementia received at least 1 anticholinergic drug according to the ACB. The prevalence of delirium was higher in the dementia group (21%) compared with the nondementia group (11%). Overall, anticholinergic burden according to the ACB and ARS was associated with delirium both in patients with and without dementia, with odds ratios ranging from 1.07 [95% confidence interval (CI) 0.94-1.21] to 1.26 (95% CI 1.11-1.44). These associations reached statistical significance only in the group of patients with dementia. Among patients with dementia, delirium prevalence increased only modestly with increasing anticholinergic burden according to the ACB, from 20% (with none or minimal anticholinergic burden) to 25% (with moderate burden) and 27% delirium (with strong burden scores). CONCLUSIONS AND IMPLICATIONS The ACB scale is relatively capable to detect anticholinergic side effects, which are positively associated with prevalence of delirium in NH patients. Given the modest nature of this association, strong recommendations are currently not warranted, and more longitudinal studies are needed.
Collapse
Affiliation(s)
- Letty Oudewortel
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Henriëtte G van der Roest
- Department on Aging, Netherlands Institute of Mental Health and Addiction (Trimbos Institute), Utrecht, the Netherlands
| | - Graziano Onder
- Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Viona J M Wijnen
- Psychogeriatric Observation Unit, Institution for Mental Health Care, Parnassia Groep, the Netherlands
| | - Rosa Liperoti
- Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michael Denkinger
- Agaplesion Bethesda Clinic, Geriatric Centre Ulm/Alb-Donau, Ulm University, Ulm, Germany
| | - Harriet Finne-Soveri
- Department of Welfare, National Institute for Health and Welfare, Helsinki, Finland
| | - Eva Topinková
- Department of Geriatrics, First Faculty of Medicine, Charles University, Prague, Czech Republic; Faculty of Health and Social Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jean-Claude Henrard
- Research Unit Health-Environment-Ageing, Versailles-Saint-Quentin en Yvelines University, Paris, France
| | - Willem A van Gool
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Anticholinesterase Activity of Eight Medicinal Plant Species: In Vitro and In Silico Studies in the Search for Therapeutic Agents against Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9995614. [PMID: 34257698 PMCID: PMC8260289 DOI: 10.1155/2021/9995614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023]
Abstract
Many Bangladeshi medicinal plants have been used to treat Alzheimer's disease and other neurodegenerative diseases. In the present study, the anticholinesterase effects of eight selected Bangladeshi medicinal plant species were investigated. Species were selected based on the traditional uses against CNS-related diseases. Extracts were prepared using a gentle cold extraction method. In vitro cholinesterase inhibitory effects were measured by Ellman's method in 96-well microplates. Blumea lacera (Compositae) and Cyclea barbata (Menispermaceae) were found to have the highest acetylcholinesterase inhibitory (IC50, 150 ± 11 and 176 ± 14 µg/mL, respectively) and butyrylcholinesterase inhibitory effect (IC50, 297 ± 13 and 124 ± 2 µg/mL, respectively). Cyclea barbata demonstrated competitive inhibition, where Blumea lacera showed an uncompetitive inhibition mode for acetylcholinesterase. Smilax guianensis (Smilacaceae) and Byttneria pilosa (Malvaceae) were also found to show moderate AChE inhibition (IC50, 205 ± 31 and 221 ± 2 µg/mL, respectively), although no significant BChE inhibitory effect was observed for extracts from these plant species. Among others, Thunbergia grandiflora (Acanthaceae) and Mikania micrantha (Compositae) were found to display noticeable AChE (IC50, 252 ± 22 µg/mL) and BChE (IC50, 314 ± 15 µg/mL) inhibitory effects, respectively. Molecular docking experiment suggested that compounds 5-hydroxy-3,6,7,3′,4′-pentamethoxyflavone (BL4) and kaempferol-3-O-α-L-rhamnopyranosyl-(1⟶6)-β-D-glucopyranoside (BL5) from Blumea lacera bound stably to the binding groove of the AChE and BChE by hydrogen-bond interactions, respectively. Therefore, these compounds could be candidates for cholinesterase inhibitors. The present findings demonstrated that Blumea lacera and Cyclea barbata are interesting objects for further studies aiming at future therapeutics for Alzheimer's disease.
Collapse
|
35
|
Hong Y, Choi YH, Han YE, Oh SJ, Lee A, Lee B, Magnan R, Ryu SY, Choi CW, Kim MS. Central Administration of Ampelopsin A Isolated from Vitis vinifera Ameliorates Cognitive and Memory Function in a Scopolamine-Induced Dementia Model. Antioxidants (Basel) 2021; 10:antiox10060835. [PMID: 34073796 PMCID: PMC8225166 DOI: 10.3390/antiox10060835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive degeneration of the function of the central nervous system or peripheral nervous system and the decline of cognition and memory abilities. The dysfunctions of the cognitive and memory battery are closely related to inhibitions of neurotrophic factor (BDNF) and brain-derived cAMP response element-binding protein (CREB) to associate with the cholinergic system and long-term potentiation. Vitis vinifera, the common grapevine, is viewed as the important dietary source of stilbenoids, particularly the widely-studied monomeric resveratrol to be used as a natural compound with wide-ranging therapeutic benefits on neurodegenerative diseases. Here we found that ampelopsin A is a major compound in V. vinifera and it has neuroprotective effects on experimental animals. Bath application of ampelopsin A (10 ng/µL) restores the long-term potentiation (LTP) impairment induced by scopolamine (100 μM) in hippocampal CA3-CA1 synapses. Based on these results, we administered the ampelopsin A (10 ng/µL, three times a week) into the third ventricle of the brain in C57BL/6 mice for a month. Chronic administration of ampelopsin A into the brain ameliorated cognitive memory-behaviors in mice given scopolamine (0.8 mg/kg, i.p.). Studies of mice’s hippocampi showed that the response of ampelopsin A was responsible for the restoration of the cholinergic deficits and molecular signal cascades via BDNF/CREB pathways. In conclusion, the central administration of ampelopsin A contributes to increasing neurocognitive and neuroprotective effects on intrinsic neuronal excitability and behaviors, partly through elevated BDNF/CREB-related signaling.
Collapse
Affiliation(s)
- Yuni Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Yun-Hyeok Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Rebecca Magnan
- Department of Neuroscience, Pomona College, Claremont, CA 91711, USA;
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon 34122, Korea;
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
- Correspondence: (C.W.C.); (M.S.K.)
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Correspondence: (C.W.C.); (M.S.K.)
| |
Collapse
|
36
|
Gentzsch C, Chen X, Spatz P, Košak U, Knez D, Nose N, Gobec S, Higuchi T, Decker M. Synthesis and Initial Characterization of a Reversible, Selective 18F-Labeled Radiotracer for Human Butyrylcholinesterase. Mol Imaging Biol 2021; 23:505-515. [PMID: 33660167 PMCID: PMC8277621 DOI: 10.1007/s11307-021-01584-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE A neuropathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-β (Aβ) plaques in the brain, which are observed in a significant number of cognitively normal, older adults as well. In AD, butyrylcholinesterase (BChE) becomes associated with Aβ aggregates, making it a promising target for imaging probes to support diagnosis of AD. In this study, we present the synthesis, radiochemistry, in vitro and preliminary ex and in vivo investigations of a selective, reversible BChE inhibitor as PET-tracer for evaluation as an AD diagnostic. PROCEDURES Radiolabeling of the inhibitor was achieved by fluorination of a respective tosylated precursor using K[18F]. IC50 values of the fluorinated compound were obtained in a colorimetric assay using recombinant, human (h) BChE. Dissociation constants were determined by measuring hBChE activity in the presence of different concentrations of inhibitor. RESULTS Radiofluorination of the tosylate precursor gave the desired radiotracer in an average radiochemical yield of 20 ± 3 %. Identity and > 95.5 % radiochemical purity were confirmed by HPLC and TLC autoradiography. The inhibitory potency determined in Ellman's assay gave an IC50 value of 118.3 ± 19.6 nM. Dissociation constants measured in kinetic experiments revealed lower affinity of the inhibitor for binding to the acylated enzyme (K2 = 68.0 nM) in comparison to the free enzyme (K1 = 32.9 nM). CONCLUSIONS The reversibly acting, selective radiotracer is synthetically easily accessible and retains promising activity and binding potential on hBChE. Radiosynthesis with 18F labeling of tosylates was feasible in a reasonable time frame and good radiochemical yield.
Collapse
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Xinyu Chen
- Department of Nuclear Medicine, University Hospital of Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.,Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Urban Košak
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Naoko Nose
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Stanislav Gobec
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany. .,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
37
|
Effects of vanillic acid on Aβ 1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 2021; 170:264-273. [PMID: 33652070 DOI: 10.1016/j.brainresbull.2021.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which the accumulation of β-amyloid (Aβ) peptide in the extracellular space causes a progressive reduction in cognitive performance. Aβ stimulates active oxygen species generation leading to oxidative stress and neural cell death. Vanillic Acid (VA) is the oxidant form of vanillin widely found in vanilla beans. VA has many properties, such as suppressing apoptosis and eliminating the harmful effects of oxidative stress in animal models. The VA effects on impaired learning and memory in Aβ rats were assessed. Forty adults male Wistar rats were assigned to the following five groups in random: the control, sham (received saline (vehicle) via intracerebroventricular (ICV) injection), Aβ (received Aβ1-40 via ICV injection), VA (50 mg/kg by oral gavage once a day through four weeks), and Aβ + VA (50 mg/kg) groups. Open field test, novel object recognition (NOR) test, Morris water maze (MWM) test, and passive avoidance learning (PAL) task were performed, and finally, we determined the malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidant status (TOS) levels. Aβ decreased the cognitive memory in NOR, spatial memory in MWM, and passive avoidance memory in PAL tests. In contrast, VA improved learning and memory in the treated group. Aβ significantly increased MDA and TOS and decreased TAC levels, whereas VA treatment significantly reversed TAC, TOS and MDA levels. In conclusion, VA decreased the Aβ effects on learning and memory by suppressing oxidative stress and can be regarded as a neuroprotective substance in AD.
Collapse
|
38
|
The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci 2021; 22:ijms22041653. [PMID: 33562110 PMCID: PMC7915290 DOI: 10.3390/ijms22041653] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apoptosis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition, and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a therapeutic target of cancer treatment.
Collapse
|
39
|
Oh Y, Do HTT, Kim S, Kim YM, Chin YW, Cho J. Memory-Enhancing Effects of Mangosteen Pericarp Water Extract through Antioxidative Neuroprotection and Anti-Apoptotic Action. Antioxidants (Basel) 2020; 10:antiox10010034. [PMID: 33396950 PMCID: PMC7823671 DOI: 10.3390/antiox10010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Mangosteen has long been utilized as a traditional medicine in Southeast Asia. Diverse extracts of mangosteen pericarp and its bioactive xanthones exhibit various bioactivities. However, the pharmacological potential of mangosteen pericarp water extract (MPW) has not been reported yet. This study used primary cultured rat cortical cells to investigate the effect of MPW on neurotoxicity. We found that MPW inhibited neurotoxicity and production of reactive oxygen species triggered by Aβ(25–35) or excitatory amino acids. MPW inhibited caspase 3 activation and DNA fragmentation in Aβ(25–35)- or N-methyl-D-aspartate-treated cells, suggesting an anti-apoptotic action. Additionally, MPW reduced lipid peroxidation and scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, assuring its antioxidant property. Furthermore, MPW suppressed β-secretase and acetylcholinesterase activities. These findings prompted us to evaluate its effect on memory dysfunction in scopolamine-treated mice using Morris water maze test. Oral administration of MPW at the dosage of 50, 100, or 300 mg/kg for four days significantly decreased the latency time to find the platform and markedly increased the swimming time in the target quadrant. Taken together, our results suggest that MPW exerts memory-enhancing effect through antioxidative neuroprotection and anti-apoptotic action. Accordingly, MPW may have a potential to prevent or treat memory impairment associated with Alzheimer’s disease.
Collapse
Affiliation(s)
- Yeonsoo Oh
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea; (Y.O.); (H.T.T.D.); (S.K.)
| | - Ha Thi Thu Do
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea; (Y.O.); (H.T.T.D.); (S.K.)
| | - Sunyoung Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea; (Y.O.); (H.T.T.D.); (S.K.)
| | - Young-Mi Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (Y.-M.K.); (Y.-W.C.)
| | - Young-Won Chin
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (Y.-M.K.); (Y.-W.C.)
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea; (Y.O.); (H.T.T.D.); (S.K.)
- Correspondence: ; Tel.: +82-31-961-5211
| |
Collapse
|
40
|
Toublet FX, Lalut J, Hatat B, Lecoutey C, Davis A, Since M, Corvaisier S, Freret T, Sopková-de Oliveira Santos J, Claeysen S, Boulouard M, Dallemagne P, Rochais C. Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT 6 receptor antagonist with therapeutic interest in Alzheimer's disease. Eur J Med Chem 2020; 210:113059. [PMID: 33310288 DOI: 10.1016/j.ejmech.2020.113059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Beside acetylcholinesterase, butyrylcholinesterase could be considered as a putative target of interest for the symptomatic treatment of Alzheimer's disease (AD). As a result of complexity of AD, no molecule has been approved since 2002. Idalopirdine, a 5-HT6 receptors antagonist, did not show its effectiveness in clinical trial despite its evaluation as adjunct to cholinesterase inhibitors. Pleiotropic molecules, known as multitarget directed ligands (MTDLs) are currently developed to tackle the multifactorial origin of AD. In this context, we have developed a pleiotropic carbamate 7, that behaves as a covalent inhibitor of BuChE (IC50 = 0.97 μM). The latter will deliver after hydrolysis, compound 6, a potent 5-HT6 receptors antagonist (Ki = 11.4 nM) related to idalopirdine. In silico and in vitro evaluation proving our concept were performed completed with first in vivo results that demonstrate great promise in restoring working memory.
Collapse
Affiliation(s)
| | - Julien Lalut
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Bérénice Hatat
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France; IGF, Univ. Montpellier, CNRS, INSERM Montpellier, France
| | | | - Audrey Davis
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Marc Since
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | | | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | | - Michel Boulouard
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | |
Collapse
|
41
|
Benzobicyclo[3.2.1]octene Derivatives as a New Class of Cholinesterase Inhibitors. Molecules 2020; 25:molecules25214872. [PMID: 33105595 PMCID: PMC7659976 DOI: 10.3390/molecules25214872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
A library of amine, oxime, ether, epoxy and acyl derivatives of the benzobicyclo[3.2.1]octene were synthesized and evaluated as inhibitors of both human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The majority of the tested compounds exhibited higher selectivity for BChE. Structural adjustment for AChE seems to have been achieved by acylation, and the furan ring opening of furo-benzobicyclo[3.2.1]octadiene results for compound 51 with the highest AChE affinity (IC50 = 8.3 µM). Interestingly, its analogue, an oxime ether with a benzobicyclo[3.2.1]-skeleton, compound 32 was one of the most potent BChE inhibitors in this study (IC50 = 31 µM), but not as potent as endo-43, an ether derivative of the benzobicyclo[3.2.1]octene with an additional phenyl substituent (IC50 = 17 µM). Therefore, we identified several cholinesterase inhibitors with a potential for further development as potential drugs for the treatment of neurodegenerative diseases.
Collapse
|
42
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
43
|
Tripathi RKP, Ayyannan SR. Exploration of dual fatty acid amide hydrolase and cholinesterase inhibitory potential of some 3‐hydroxy‐3‐phenacyloxindole analogs. Arch Pharm (Weinheim) 2020; 353:e2000036. [DOI: 10.1002/ardp.202000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Rati K. P. Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical SciencesAssam University (A Central University) Silchar Assam India
| | - Senthil R. Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
| |
Collapse
|
44
|
Adefegha SA, Okeke BM, Oboh G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer's diseases-In vitro. J Food Biochem 2020; 45:e13276. [PMID: 32458455 DOI: 10.1111/jfbc.13276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022]
Abstract
This research work examined and likened effect of eugenol a natural phenolic compound with butylated hydroxylanisole (BHA) and butylated hydroxyl toluene (BHT) synthetic phenolic compounds with key biomolecules [acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidase (MAO)] relevant to Alzheimer's diseases (AD) in vitro. Ten millimolar each sample was prepared in a mixture of ethanol and water (1:1 v/v), and the interactions with AChE, BChE, and MAO were evaluated. Still, ferric reducing antioxidant property, ABTS radicals scavenging ability and lipid peroxidation were carried out. The results revealed eugenol, BHT, and BHA inhibited AChE, BChE, and MAO activities dose-dependently. Though, eugenol had greater inhibitory effect against AChE and BChE activities. Also, eugenol demonstrated higher antioxidant potential compared to BHT and BHA. The potent enzymatic inhibitory and antioxidant effects of eugenol indicate eugenol could be promising as an alternative food additive and neuromodulator in AD management. PRACTICAL APPLICATION: BHT and BHA are synthetic antioxidant employed industrially as food preservative. BHT and BHA are employed in food packaging, drugs, and cosmetics. Although BHT and BHA are widely in use but have been found were associated with alteration in sleeping, induced changes in brain serotonin and norepinephrine levels with increased cholinesterase activity. Endocrine disrupting effects, reproductive disorder is more side effects associated with the use of BHT and BHA. However, eugenol a natural compound found in plants compares favorably with BHT and BHA as antioxidant with many more health promoting benefits such as neuroprotective effects, antiapoptotic effects, and prevent aluminum toxicity. Eugenol being a natural antioxidant with no side effects showing more promising effects over the synthetic phenolic compounds and could be an alternative for the BHT and BHA.
Collapse
Affiliation(s)
- Stephen A Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Bathlomew M Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
45
|
Doulah A, Mahmoodi G, Pourmahdi Borujeni M. Evaluation of the pre-treatment effect of Centella asiatica medicinal plants on long-term potentiation (LTP) in rat model of Alzheimer's disease. Neurosci Lett 2020; 729:135026. [PMID: 32387717 DOI: 10.1016/j.neulet.2020.135026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023]
Abstract
The present study was aimed to investigate the pre-treatment effect of Centella asiatica (CeA) extract on long-term potentiation (LTP) in a rat model of Alzheimer's disease (AD). A total of 32 male Wistar rats weighing 380 ± 30 g were randomly divided into four groups (n = 8). Group 1 (C: Control): the control group. Group 2 (L: Lesion): The nucleus basalis of Meynert (NBM) of rats' brain was bilaterally destroyed by injection of Ibotenic acid. Group 3 (CeA): Animals in this group received the CeA leaf extract for only a period of six weeks. Group 4 (CeA + L): The NBM of rats was destroyed by Ibotenic acid after six weeks of a diet containing the CeA leaf extract. In all groups, LTP was recorded using the electrophysiological technique and fEPSP after high frequency stimulation (HFS). The results showed that the slope and amplitude of PS as well as the sub-curve level significantly increased in the CeA + L group compared with the L and CeA groups. The CeA extract improved and strengthened the slope, amplitude and sub-curve surface of cumulative waves in animals with NBM lesion. The results showed that administration CeA extract for six weeks before induction of NBM lesion and induction of Alzheimer could enhance memory. In other words, the CeA extract had a preventive or protective role. The present study showed that CeA had a protective role for neurons among rats with NBM lesion.
Collapse
Affiliation(s)
| | - Gelavij Mahmoodi
- Experimental Science Department, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
46
|
Thamban Chandrika N, Fosso MY, Tsodikov OV, LeVine H, Garneau-Tsodikova S. Combining Chalcones with Donepezil to Inhibit Both Cholinesterases and Aβ Fibril Assembly. Molecules 2019; 25:E77. [PMID: 31878304 PMCID: PMC6983213 DOI: 10.3390/molecules25010077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
The fact that the number of people with Alzheimer's disease is increasing, combined with the limited availability of drugs for its treatment, emphasize the need for the development of novel effective therapeutics for treating this brain disorder. Herein, we focus on generating 12 chalcone-donepezil hybrids, with the goal of simultaneously targeting amyloid-β (Aβ) peptides as well as cholinesterases (i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)). We present the design, synthesis, and biochemical evaluation of these two series of novel 1,3-chalcone-donepezil (15a-15f) or 1,4-chalcone-donepezil (16a-16f) hybrids. We evaluate the relationship between their structures and their ability to inhibit AChE/BChE activity as well as their ability to bind Aβ peptides. We show that several of these novel chalcone-donepezil hybrids can successfully inhibit AChE/BChE as well as the assembly of N-biotinylated Aβ(1-42) oligomers. We also demonstrate that the Aβ binding site of these hybrids differs from that of Pittsburgh Compound B (PIB).
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Marina Y. Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Harry LeVine
- Center on Aging, School of Medicine, University of Kentucky, Lexington, KY 40536-0230, USA;
- Department of Molecular and Cellular Biochemistry, School of Medicine, University of Kentucky, Lexington, KY 40536-0230, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| |
Collapse
|
47
|
Williams A, Zhou S, Zhan CG. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett 2019; 29:126754. [PMID: 31708262 PMCID: PMC6953623 DOI: 10.1016/j.bmcl.2019.126754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023]
Abstract
Cholinesterase inhibitors have long been used in the treatment of Alzheimer's Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.
Collapse
Affiliation(s)
- Alexander Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States
| | - Shuo Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, United States.
| |
Collapse
|
48
|
Mo J, Yang H, Chen T, Li Q, Lin H, Feng F, Liu W, Qu W, Guo Q, Chi H, Chen Y, Sun H. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg Chem 2019; 93:103310. [DOI: 10.1016/j.bioorg.2019.103310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
|
49
|
Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁDR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 187:111916. [PMID: 31812794 DOI: 10.1016/j.ejmech.2019.111916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023]
Abstract
Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aβ and tau protein at 10 μM (24b: 45% for Aβ, 53% for tau; 25b: 49% for Aβ, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 μM and 1.94 μM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
50
|
The Genus Nerine Herb. (Amaryllidaceae): Ethnobotany, Phytochemistry, and Biological Activity. Molecules 2019; 24:molecules24234238. [PMID: 31766438 PMCID: PMC6930486 DOI: 10.3390/molecules24234238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry winters. Most Nerine species have been cultivated for their elegant flowers, presenting a source of innumerable horticultural hybrids. For many years, species of Nerine have been subjected to extensive phytochemical and pharmacological investigations, which resulted in either the isolation or identification of more than fifty Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Nerine.
Collapse
|