1
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Revealing the MRI-Contrast in Optically Cleared Brains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400316. [PMID: 38647385 PMCID: PMC11165557 DOI: 10.1002/advs.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods' substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Galit Saar
- Biomedical Core FacilityFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Shunit Olszakier
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Ronit Heinrich
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico‐Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine
| | - Shai Berlin
- Department of NeuroscienceFaculty of MedicineTechnion‐Israel Institute of TechnologyHaifa3525433Israel
| |
Collapse
|
2
|
Yun SD, Pais-Roldán P, Palomero-Gallagher N, Shah NJ. Mapping of whole-cerebrum resting-state networks using ultra-high resolution acquisition protocols. Hum Brain Mapp 2022; 43:3386-3403. [PMID: 35384130 PMCID: PMC9248311 DOI: 10.1002/hbm.25855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (fMRI) has been used in numerous studies to map networks in the brain that employ spatially disparate regions. However, attempts to map networks with high spatial resolution have been hampered by conflicting technical demands and associated problems. Results from recent fMRI studies have shown that spatial resolution remains around 0.7 × 0.7 × 0.7 mm3, with only partial brain coverage. Therefore, this work aims to present a novel fMRI technique that was developed based on echo‐planar‐imaging with keyhole (EPIK) combined with repetition‐time‐external (TR‐external) EPI phase correction. Each technique has been previously shown to be effective in enhancing the spatial resolution of fMRI, and in this work, the combination of the two techniques into TR‐external EPIK provided a nominal spatial resolution of 0.51 × 0.51 × 1.00 mm3 (0.26 mm3 voxel) with whole‐cerebrum coverage. Here, the feasibility of using half‐millimetre in‐plane TR‐external EPIK for resting‐state fMRI was validated using 13 healthy subjects and the corresponding reproducible mapping of resting‐state networks was demonstrated. Furthermore, TR‐external EPIK enabled the identification of various resting‐state networks distributed throughout the brain from a single fMRI session, with mapping fidelity onto the grey matter at 7T. The high‐resolution functional image further revealed mesoscale anatomical structures, such as small cerebral vessels and the internal granular layer of the cortex within the postcentral gyrus.
Collapse
Affiliation(s)
- Seong Dae Yun
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Pais-Roldán
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine-1, Structural and Functional Organisation of the Brain, Forschungszentrum Jülich, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine-11, Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich, Jülich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Abstract
A defining aspect of brain organization is its spatial heterogeneity, which gives rise to multiple topographies at different scales. Brain parcellation - defining distinct partitions in the brain, be they areas or networks that comprise multiple discontinuous but closely interacting regions - is thus fundamental for understanding brain organization and function. The past decade has seen an explosion of in vivo MRI-based approaches to identify and parcellate the brain on the basis of a wealth of different features, ranging from local properties of brain tissue to long-range connectivity patterns, in addition to structural and functional markers. Given the high diversity of these various approaches, assessing the convergence and divergence among these ensuing maps is a challenge. Inter-individual variability adds to this challenge but also provides new opportunities when coupled with cross-species and developmental parcellation studies.
Collapse
|
4
|
Trampel R, Bazin PL, Pine K, Weiskopf N. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex. Neuroimage 2019; 197:707-715. [DOI: 10.1016/j.neuroimage.2017.09.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
5
|
Leuze C, Aswendt M, Ferenczi E, Liu CW, Hsueh B, Goubran M, Tian Q, Steinberg G, Zeineh MM, Deisseroth K, McNab JA. The separate effects of lipids and proteins on brain MRI contrast revealed through tissue clearing. Neuroimage 2017; 156:412-422. [PMID: 28411157 DOI: 10.1016/j.neuroimage.2017.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/20/2017] [Accepted: 04/08/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the widespread use of magnetic resonance imaging (MRI) of the brain, the relative contribution of different biological components (e.g. lipids and proteins) to structural MRI contrasts (e.g., T1, T2, T2*, proton density, diffusion) remains incompletely understood. This limitation can undermine the interpretation of clinical MRI and hinder the development of new contrast mechanisms. Here, we determine the respective contribution of lipids and proteins to MRI contrast by removing lipids and preserving proteins in mouse brains using CLARITY. We monitor the temporal dynamics of tissue clearance via NMR spectroscopy, protein assays and optical emission spectroscopy. MRI of cleared brain tissue showed: 1) minimal contrast on standard MRI sequences; 2) increased relaxation times; and 3) diffusion rates close to free water. We conclude that lipids, present in myelin and membranes, are a dominant source of MRI contrast in brain tissue.
Collapse
Affiliation(s)
- Christoph Leuze
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Markus Aswendt
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Emily Ferenczi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
6
|
Waehnert MD, Dinse J, Schäfer A, Geyer S, Bazin PL, Turner R, Tardif CL. A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI. Neuroimage 2016; 125:94-107. [DOI: 10.1016/j.neuroimage.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/22/2023] Open
|
7
|
A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI. Neuroimage 2015; 114:71-87. [DOI: 10.1016/j.neuroimage.2015.04.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/27/2022] Open
|
8
|
Zilles K, Amunts K. Anatomical Basis for Functional Specialization. FMRI: FROM NUCLEAR SPINS TO BRAIN FUNCTIONS 2015. [DOI: 10.1007/978-1-4899-7591-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage 2014; 105:473-85. [PMID: 25449739 DOI: 10.1016/j.neuroimage.2014.10.054] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/19/2014] [Accepted: 10/19/2014] [Indexed: 11/23/2022] Open
Abstract
The myelin content of the cortex changes over the human lifetime and aberrant cortical myelination is associated with diseases such as schizophrenia and multiple sclerosis. Recently magnetic resonance imaging (MRI) techniques have shown potential in differentiating between myeloarchitectonically distinct cortical regions in vivo. Here we introduce a new algorithm for correcting partial volume effects present in mm-scale MRI images which was used to investigate the myelination pattern of the cerebral cortex in 1555 clinically normal subjects using the ratio of T1-weighted (T1w) and T2-weighted (T2w) MRI images. A significant linear cross-sectional age increase in T1w/T2w estimated myelin was detected across an 18 to 35 year age span (highest value of ~ 1%/year compared to mean T1w/T2w myelin value at 18 years). The cortex was divided at mid-thickness and the value of T1w/T2w myelin calculated for the inner and outer layers separately. The increase in T1w/T2w estimated myelin occurs predominantly in the inner layer for most cortical regions. The ratio of the inner and outer layer T1w/T2w myelin was further validated using high-resolution in vivo MRI scans and also a high-resolution MRI scan of a postmortem brain. Additionally, the relationships between cortical thickness, curvature and T1w/T2w estimated myelin were found to be significant, although the relationships varied across the cortex. We discuss these observations as well as limitations of using the T1w/T2w ratio as an estimate of cortical myelin.
Collapse
|
10
|
Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, Streicher M, Barapatre N, Reimann K, Geyer S, Spemann D, Turner R. Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage 2014; 93 Pt 1:95-106. [DOI: 10.1016/j.neuroimage.2014.02.026] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/25/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
|
11
|
Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau MÉ, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah NJ, Lippert T, Zilles K, Evans AC. BigBrain: an ultrahigh-resolution 3D human brain model. Science 2013; 340:1472-5. [PMID: 23788795 DOI: 10.1126/science.1235381] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reference brains are indispensable tools in human brain mapping, enabling integration of multimodal data into an anatomically realistic standard space. Available reference brains, however, are restricted to the macroscopic scale and do not provide information on the functionally important microscopic dimension. We created an ultrahigh-resolution three-dimensional (3D) model of a human brain at nearly cellular resolution of 20 micrometers, based on the reconstruction of 7404 histological sections. "BigBrain" is a free, publicly available tool that provides considerable neuroanatomical insight into the human brain, thereby allowing the extraction of microscopic data for modeling and simulation. BigBrain enables testing of hypotheses on optimal path lengths between interconnected cortical regions or on spatial organization of genetic patterning, redefining the traditional neuroanatomy maps such as those of Brodmann and von Economo.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-4), Research Centre Jülich, Jülich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB. Tackling the multifunctional nature of Broca's region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 2013; 83:174-88. [PMID: 23791915 DOI: 10.1016/j.neuroimage.2013.06.041] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/12/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Cytoarchitectonic area 44 of Broca's region in the left inferior frontal gyrus is known to be involved in several functional domains including language, action and music processing. We investigated whether this functional heterogeneity is reflected in distinct modules within cytoarchitectonically defined left area 44 using meta-analytic connectivity-based parcellation (CBP). This method relies on identifying the whole-brain co-activation pattern for each area 44 voxel across a wide range of functional neuroimaging experiments and subsequently grouping the voxels into distinct clusters based on the similarity of their co-activation patterns. This CBP analysis revealed that five separate clusters exist within left area 44. A post-hoc functional characterization and functional connectivity analysis of these five clusters was then performed. The two posterior clusters were primarily associated with action processes, in particular with phonology and overt speech (posterior-dorsal cluster) and with rhythmic sequencing (posterior-ventral cluster). The three anterior clusters were primarily associated with language and cognition, in particular with working memory (anterior-dorsal cluster), with detection of meaning (anterior-ventral cluster) and with task switching/cognitive control (inferior frontal junction cluster). These five clusters furthermore showed specific and distinct connectivity patterns. The results demonstrate that left area 44 is heterogeneous, thus supporting anatomical data on the molecular architecture of this region, and provide a basis for more specific interpretations of activations localized in area 44.
Collapse
Affiliation(s)
- Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany.
| | | | | | | | | |
Collapse
|
13
|
Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology. Mult Scler Int 2012; 2012:742018. [PMID: 23213531 PMCID: PMC3506905 DOI: 10.1155/2012/742018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022] Open
Abstract
Although significant improvements have been made regarding the visualization and characterization of cortical multiple sclerosis (MS) lesions using magnetic resonance imaging (MRI), cortical lesions (CL) continue to be under-detected in vivo, and we have a limited understanding of the causes of GM pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from a patient with MS is presented in combination with matched immunohistochemistry. Type III subpial lesions are characterized by an increase in T1, T2 and M0, and a decrease in MTR in comparison to the normal appearing cortex (NAC). All quantitative MR parameters were associated with cortical GM myelin content, while T1 showed the strongest correlation. The histogram analysis showed extensive overlap between CL and NAC for all MR parameters and myelin content. This is due to the poor contrast in myelin content between CL and NAC in comparison to the variability in myelo-architecture throughout the healthy cortex. This latter comparison is highlighted by the representation of T1 times on cortical surfaces at several laminar depths.
Collapse
|
14
|
Nieto-Castañón A, Fedorenko E. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. Neuroimage 2012; 63:1646-69. [PMID: 22784644 PMCID: PMC3477490 DOI: 10.1016/j.neuroimage.2012.06.065] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022] Open
Abstract
One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that multiple runs were acquired per subject, even if no explicit "localizer" task was included.
Collapse
Affiliation(s)
- Alfonso Nieto-Castañón
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Building 46, Room 3037G, Cambridge, MA 02139, U.S.A, Phone: (617) 253–5774; fax: (617) 258–8654
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Building 46, Room 3037G, Cambridge, MA 02139, U.S.A, Phone: (617) 253–5774; fax: (617) 258–8654
| |
Collapse
|
15
|
Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 2011; 22:2241-62. [PMID: 22047963 DOI: 10.1093/cercor/bhr291] [Citation(s) in RCA: 404] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm(2) per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer "fsaverage" atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average "fs_LR" midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque.
Collapse
Affiliation(s)
- David C Van Essen
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
16
|
Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 2011; 31:11597-616. [PMID: 21832190 DOI: 10.1523/jneurosci.2180-11.2011] [Citation(s) in RCA: 936] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface--i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.
Collapse
|
17
|
de la Iglesia-Vayá M, Molina-Mateo J, Escarti-Fabra MJ, Martí-Bonmatí L, Robles M, Meneu T, Aguilar EJ, Sanjuán J. [Magnetic resonance imaging postprocessing techniques in the study of brain connectivity]. RADIOLOGIA 2011; 53:236-45. [PMID: 21477826 DOI: 10.1016/j.rx.2010.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
Brain connectivity is a key concept for understanding brain function. Current methods to detect and quantify different types of connectivity with neuroimaging techniques are fundamental for understanding the pathophysiology of many neurologic and psychiatric disorders. This article aims to present a critical review of the magnetic resonance imaging techniques used to measure brain connectivity within the context of the Human Connectome Project. We review techniques used to measure: a) structural connectivity b) functional connectivity (main component analysis, independent component analysis, seed voxel, meta-analysis), and c) effective connectivity (psychophysiological interactions, causal dynamic models, multivariate autoregressive models, and structural equation models). These three approaches make it possible to combine and use different statistical techniques to elaborate mathematical models in the attempt to understand the functioning of the brain. The findings obtained with these techniques must be validated by other techniques for analyzing structural and functional connectivity. This information is integrated in the Human Connectome Project where all these approaches converge to provide a representation of all the different models of connectivity.
Collapse
Affiliation(s)
- M de la Iglesia-Vayá
- Grupo de Informática Biomédica, IBIME, Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones avanzadas, Instituto ITACA, Universidad Politécnica de Valencia, Centro de Excelencia de Imagen Biomédica. Hospital la Fe, Conselleria de Sanitat, Valencia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Eickhoff SB, Grefkes C. Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 2011; 42:107-21. [PMID: 21675600 PMCID: PMC8005855 DOI: 10.1177/155005941104200211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Understanding the organization of the human brain is the fundamental prerequisite for appreciating the neural dysfunctions underlying neurological or psychiatric disorders. One major challenge in this context is the presence of multiple organizational aspects, in particular the regional differentiation in structure and function on one hand and the integration by inter-regional connectivity on the other. We here review these fundamental distinctions and introduce current methods for mapping regional specialization. The main focus of this review is to provide an overview over the different concepts and methods for assessing connections and interactions in the brain, in particular anatomical, functional and effective connectivity. In this context, we focus less on technical details and more on the comparative description of strengths and weaknesses of different aspects of connectivity as well as different methods for examining a particular aspect. This overview closes by raising several open questions on the conceptual and empirical relationship between different approaches towards understanding brain structure, function and connectivity.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, JARA--Translational Brain Medicine, Institute of of Neuroscienes and Medicine, Germany
| | | |
Collapse
|
19
|
Schmitt O, Birkholz H. Improvement in cytoarchitectonic mapping by combining electrodynamic modeling with local orientation in high-resolution images of the cerebral cortex. Microsc Res Tech 2011; 74:225-43. [DOI: 10.1002/jemt.20897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/28/2010] [Indexed: 11/11/2022]
|
20
|
|
21
|
Koyano KW, Machino A, Takeda M, Matsui T, Fujimichi R, Ohashi Y, Miyashita Y. In vivo visualization of single-unit recording sites using MRI-detectable elgiloy deposit marking. J Neurophysiol 2010; 105:1380-92. [PMID: 21123662 DOI: 10.1152/jn.00358.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise localization of single-neuron activity has elucidated functional architectures of the primate cerebral cortex, related to vertically stacked layers and horizontally aligned columns. The traditional "gold standard" method for localizing recorded neuron is histological examination of electrolytic lesion marks at recording sites. Although this method can localize recorded neurons with fine neuroanatomy, the necessity for postmortem analysis prohibits its use in long-term chronic experiments. To localize recorded single-neuron positions in vivo, we introduced MRI-detectable elgiloy deposit marks, which can be created by electrolysis of an elgiloy microelectrode tip and visualized on highly contrasted magnetic resonance (MR) images. Histological analysis validated that the deposit mark centers could be localized relative to neuroanatomy in vivo with single-voxel accuracy, at an in-plane resolution of 200 μm. To demonstrate practical applications of the technique, we recorded single-neuron activity from a monkey performing a cognitive task and localized it in vivo using deposit marks (deposition: 2 μA for 3 min; scanning: fast-spin-echo sequence with 0.15 × 0.15 × 0.8 mm(3) resolution, 120/4,500 ms of echo-time/repetition-time and 8 echo-train-length), as is usually performed with conventional postmortem methods using electrolytic lesion marks. Two localization procedures were demonstrated: 1) deposit marks within a microelectrode track were used to reconstruct a dozen recorded neuron positions along the track directly on MR images; 2) combination with X-ray imaging allowed estimation of hundreds of neuron positions on MR images. This new in vivo method is feasible for chronic experiments with nonhuman primates, enabling analysis of the functional architecture of the cerebral cortex underlying cognitive processes.
Collapse
Affiliation(s)
- Kenji W Koyano
- Department of Physiology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Klein JC, Rushworth MFS, Behrens TEJ, Mackay CE, de Crespigny AJ, D'Arceuil H, Johansen-Berg H. Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 2010; 51:555-64. [PMID: 20206702 PMCID: PMC2877805 DOI: 10.1016/j.neuroimage.2010.02.062] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/24/2009] [Accepted: 02/22/2010] [Indexed: 01/11/2023] Open
Abstract
Studies in monkeys show clear anatomical and functional distinctions among networks connecting with subregions within the prefrontal cortex. Three such networks are centered on lateral orbitofrontal cortex, medial frontal and cingulate cortex, and lateral prefrontal cortex and all have been identified with distinct cognitive roles. Although these areas differ in a number of their cortical connections, some of the first anatomical evidence for these networks came from tracer studies demonstrating their distinct patterns of connectivity with the mediodorsal (MD) nucleus of the thalamus. Here, we present evidence for a similar topography of MD thalamus prefrontal connections, using non-invasive imaging and diffusion tractography (DWI-DT) in human and macaque. DWI-DT suggested that there was a high probability of interconnection between medial MD and lateral orbitofrontal cortex, between caudodorsal MD and medial frontal/cingulate cortex, and between lateral MD and lateral prefrontal cortex, in both species. Within the lateral prefrontal cortex a dorsolateral region (the principal sulcus in the macaque and middle frontal gyrus in the human) was found to have a high probability of interconnection with the MD region between the regions with a high probability of interconnection with other parts of the lateral prefrontal cortex and with the lateral orbitofrontal cortex. In addition to suggesting that the thalamic connectivity in the macaque is a good guide to human prefrontal cortex, and therefore that there are likely to be similarities in the cognitive roles played by the prefrontal areas in both species, the present results are also the first to provide insight into the topography of projections of an individual thalamic nucleus in the human brain.
Collapse
Affiliation(s)
- Johannes C Klein
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Tardif CL, Collins DL, Eskildsen SF, Richardson JB, Pike GB. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2010; 13:181-8. [PMID: 20879398 DOI: 10.1007/978-3-642-15711-0_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cortical multiple sclerosis lesions are difficult to detect in magnetic resonance images due to poor contrast with surrounding grey matter, spatial variation in healthy grey matter and partial volume effects. We propose using an observer-independent laminar profile-based parcellation method to detect cortical lesions. Following cortical surface extraction, profiles are extended from the white matter surface to the grey matter surface. The cortex is parcellated according to profile intensity and shape features using a k-means classifier. The method is applied to a high-resolution quantitative magnetic resonance data set from a fixed post mortem multiple sclerosis brain, and validated using histology.
Collapse
|
24
|
Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 2009; 30:2907-26. [PMID: 19172646 DOI: 10.1002/hbm.20718] [Citation(s) in RCA: 1403] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Cole MW, Yeung N, Freiwald WA, Botvinick M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci 2009; 32:566-74. [PMID: 19781794 DOI: 10.1016/j.tins.2009.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 06/12/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
Cognitive neuroscience research relies, in part, on homologies between the brains of human and non-human primates. A quandary therefore arises when presumed anatomical homologues exhibit different functional properties. Such a situation has recently arisen in the case of the anterior cingulate cortex (ACC). In humans, numerous studies suggest a role for ACC in detecting conflicts in information processing. Studies of macaque monkey ACC, in contrast, have failed to find conflict-related responses. We consider several interpretations of this discrepancy, including differences in research methodology and cross-species differences in functional neuroanatomy. New directions for future research are outlined, emphasizing the importance of distinguishing illusory cross-species differences from the true evolutionary differences that make our species unique.
Collapse
Affiliation(s)
- Michael W Cole
- Psychology Department, Washington University, St. Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
26
|
Schleicher A, Morosan P, Amunts K, Zilles K. Quantitative Architectural Analysis: A New Approach to Cortical Mapping. J Autism Dev Disord 2009; 39:1568-81. [DOI: 10.1007/s10803-009-0790-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/15/2009] [Indexed: 12/19/2022]
|
27
|
Derrfuss J, Brass M, von Cramon DY, Lohmann G, Amunts K. Neural activations at the junction of the inferior frontal sulcus and the inferior precentral sulcus: interindividual variability, reliability, and association with sulcal morphology. Hum Brain Mapp 2009; 30:299-311. [PMID: 18072280 DOI: 10.1002/hbm.20501] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sulcal morphology of the human frontal lobe is highly variable. Although the structural images usually acquired in functional magnetic resonance imaging studies provide information about this interindividual variability, this information is only rarely used to relate structure and function. Here, we investigated the spatial relationship between posterior frontolateral activations in a task-switching paradigm and the junction of the inferior frontal sulcus and the inferior precentral sulcus (inferior frontal junction, IFJ) on an individual-subject basis. Results show that, although variable in terms of stereotaxic coordinates, the posterior frontolateral activations observed in task-switching are consistently and reliably located at the IFJ in the brains of individual participants. The IFJ shares such consistent localization with other nonprimary areas as motion-sensitive area V5/MT and the frontal eye field. Building on tension-based models of morphogenesis, this structure-function correspondence might indicate that the cytoarchitectonic area underlying activations of the IFJ develops at early stages of cortical folding.
Collapse
Affiliation(s)
- Jan Derrfuss
- Medicine (INB3), Institute of Neurosciences and Biophysics - Medicine (INB-3), Research Center Juelich, Juelich, Germany.
| | | | | | | | | |
Collapse
|
28
|
Van Horn JD, Grafton ST, Miller MB. Individual Variability in Brain Activity: A Nuisance or an Opportunity? Brain Imaging Behav 2008; 2:327-334. [PMID: 19777073 DOI: 10.1007/s11682-008-9049-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators.
Collapse
Affiliation(s)
- John Darrell Van Horn
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025 USA , Fax (310) 206-5518
| | | | | |
Collapse
|
29
|
Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 2007; 28:1045-59. [PMID: 17266106 PMCID: PMC6871378 DOI: 10.1002/hbm.20348] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The extrastriate visual cortex forms a complex system enabling the analysis of visually presented objects. To gain deeper insight into the anatomical basis of this system, we cytoarchitectonically mapped the ventral occipital cortex lateral to BA 18/V2 in 10 human postmortem brains. The anatomical characterization of this part of the ventral stream was performed by examination of cell-body-stained histological sections using quantitative cytoarchitectonic analysis. First, the gray level index (GLI) was measured in the ventral occipital lobe. Cytoarchitectonic borders, i.e., significant changes in the cortical lamination pattern, were then identified using an observer-independent algorithm based on multivariate analysis of GLI profiles. Two distinct cytoarchitectonic areas (hOC3v, hOC4v) were characterized in the ventral extrastriate cortex lateral to BA 18/V2. Area hOC3v was found in the collateral sulcus. hOC4v was located in this sulcus and also covered the fusiform gyrus in more occipital sections. Topographically, these areas thus seem to represent the anatomical substrates of functionally defined areas, VP/V3v and V4/V4v. Following histological analysis, the delineated cytoarchitectonic areas were transferred to 3D reconstructions of the respective postmortem brains, which in turn were spatially normalized to the Montreal Neurological Institute reference space. A probabilistic map was generated for each area which describes how many brains had a representation of this area in a particular voxel. These maps can now be used to identify the anatomical correlates of functional activations observed in neuroimaging experiments to enable a more informed investigation into the many open questions regarding the organization of the human visual cortex.
Collapse
Affiliation(s)
- Claudia Rottschy
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Axel Schleicher
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | | | - Milenko Kujovic
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| | - Karl Zilles
- Institute of Medicine, Research Centre Jülich, Germany
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
- Brain Imaging Centre West, Research Centre Jülich, Germany
| | - Katrin Amunts
- Institute of Medicine, Research Centre Jülich, Germany
- Brain Imaging Centre West, Research Centre Jülich, Germany
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Germany
| |
Collapse
|
30
|
Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 2007; 36:511-21. [PMID: 17499520 DOI: 10.1016/j.neuroimage.2007.03.060] [Citation(s) in RCA: 786] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/19/2007] [Accepted: 03/19/2007] [Indexed: 11/20/2022] Open
Abstract
Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut für Medizin, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Amunts K, Armstrong E, Malikovic A, Hömke L, Mohlberg H, Schleicher A, Zilles K. Gender-specific left-right asymmetries in human visual cortex. J Neurosci 2007; 27:1356-64. [PMID: 17287510 PMCID: PMC6673571 DOI: 10.1523/jneurosci.4753-06.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 12/22/2006] [Accepted: 12/22/2006] [Indexed: 11/21/2022] Open
Abstract
The structural correlates of gender differences in visuospatial processing are essentially unknown. Our quantitative analysis of the cytoarchitecture of the human primary visual cortex [V1/Brodmann area 17 (BA17)], neighboring area V2 (BA18), and the cytoarchitectonic correlate of the motion-sensitive complex (V5/MT+/hOc5) shows that the visual areas are sexually dimorphic and that the type of dimorphism differs among the areas. Gender differences exist in the interhemispheric asymmetry of hOc5 volumes and in the right-hemispheric volumetric ratio of hOc5 to BA17, an area that projects to V5/MT+/hOc5. Asymmetry was also observed in the surface area of hOc5 but not in its cortical thickness. The differences give males potentially more space in which to process additional information, a finding consistent with superior male processing in particular visuospatial tasks, such as mental rotation. Gender differences in hOc5 exist with similar volume fractions of cell bodies, implying that, overall, the visual neural circuitry is similar in males and females.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute of Medicine, Research Center Jülich, D-52525 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|