1
|
Kupers ER, Kim I, Grill-Spector K. Rethinking simultaneous suppression in visual cortex via compressive spatiotemporal population receptive fields. Nat Commun 2024; 15:6885. [PMID: 39128923 PMCID: PMC11317513 DOI: 10.1038/s41467-024-51243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
When multiple visual stimuli are presented simultaneously in the receptive field, the neural response is suppressed compared to presenting the same stimuli sequentially. The prevailing hypothesis suggests that this suppression is due to competition among multiple stimuli for limited resources within receptive fields, governed by task demands. However, it is unknown how stimulus-driven computations may give rise to simultaneous suppression. Using fMRI, we find simultaneous suppression in single voxels, which varies with both stimulus size and timing, and progressively increases up the visual hierarchy. Using population receptive field (pRF) models, we find that compressive spatiotemporal summation rather than compressive spatial summation predicts simultaneous suppression, and that increased simultaneous suppression is linked to larger pRF sizes and stronger compressive nonlinearities. These results necessitate a rethinking of simultaneous suppression as the outcome of stimulus-driven compressive spatiotemporal computations within pRFs, and open new opportunities to study visual processing capacity across space and time.
Collapse
Affiliation(s)
- Eline R Kupers
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Klímová M, Bloem IM, Ling S. Attention preserves the selectivity of feature-tuned normalization. J Neurophysiol 2023; 130:990-998. [PMID: 37706234 PMCID: PMC10648940 DOI: 10.1152/jn.00194.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Attention and divisive normalization both contribute to making visual processing more efficient. Attention selectively increases the neural gain of relevant information in the early visual cortex, resulting in stronger perceived salience for attended regions or features. Divisive normalization improves processing efficiency by suppressing responses to homogeneous inputs and highlighting salient boundaries, facilitating sparse coding of inputs. Theoretical and empirical research suggest a tight link between attention and normalization, wherein attending to a stimulus results in a release from normalization, thereby allowing for an increase in neural response gain. In the present study, we address whether attention alters the qualitative properties of normalization. Specifically, we examine how attention influences the feature-tuned nature of normalization, whereby suppression is stronger between visual stimuli whose orientation contents are similar, and weaker when the orientations are different. Ten human observers viewed stimuli that varied in orientation content while we acquired fMRI BOLD responses under two attentional states: attending toward or attending away from the stimulus. Our results indicate that attention does not alter the specificity of feature-tuned normalization. Instead, attention seems to enhance visuocortical responses evenly, regardless of the degree of orientation similarity within the stimulus. Since visuocortical responses exhibit adaptation to statistical regularities in natural scenes, we conclude that while attention can selectively increase the gain of responses to attended items, it does not appear to alter the ecologically relevant correspondence between orientation differences and strength of tuned normalization.NEW & NOTEWORTHY The magnitude of visuocortical BOLD responses scales with orientation differences in visual stimuli, with the strongest response suppression for collinear stimuli and least suppression for orthogonal, in a way that appears to match natural scene statistics. We examined the effects of attention on this feature-tuned property of suppression and found that while attending to a stimulus increases the overall gain of visuocortical responses, the qualitative properties of feature-tuning remain unchanged, suggesting attention preserves tuned normalization properties.
Collapse
Affiliation(s)
- Michaela Klímová
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
| | - Ilona M Bloem
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Psychology, New York University, New York City, New York, United States
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Kınıklıoğlu M, Boyaci H. Increasing the spatial extent of attention strengthens surround suppression. Vision Res 2022; 199:108074. [PMID: 35717748 DOI: 10.1016/j.visres.2022.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Here we investigate how the extent of spatial attention affects center-surround interaction in visual motion processing. To do so, we measured motion direction discrimination thresholds in humans using drifting gratings and two attention conditions. Participants were instructed to limit their attention to the central part of the stimulus under the narrow attention condition, and to both central and surround parts under the wide attention condition. We found stronger surround suppression under the wide attention condition. The magnitude of the attention effect increased with the size of the surround when the stimulus had low contrast, but did not change when it had high contrast. Results also showed that attention had a weaker effect when the center and surround gratings drifted in opposite directions. Next, to establish a link between the behavioral results and the neuronal response characteristics, we performed computer simulations using the divisive normalization model. Our simulations showed that using smaller versus larger multiplicative attentional gain and parameters derived from the medial temporal (MT) area of the cortex, the model can successfully predict the observed behavioral results. These findings reveal the critical role of spatial attention on surround suppression and establish a link between neuronal activity and behavior. Further, these results also suggest that the reduced surround suppression found in certain clinical disorders (e.g., schizophrenia and autism spectrum disorder) may be caused by abnormal attention mechanisms.
Collapse
Affiliation(s)
- Merve Kınıklıoğlu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey.
| | - Huseyin Boyaci
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara 06800, Turkey; Aysel Sabuncu Brain Research Center & National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Psychology, Bilkent University, Ankara 06800, Turkey; Department of Psychology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Klímová M, Bloem IM, Ling S. The specificity of orientation-tuned normalization within human early visual cortex. J Neurophysiol 2021; 126:1536-1546. [PMID: 34550028 PMCID: PMC8794056 DOI: 10.1152/jn.00203.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Normalization within visual cortex is modulated by contextual influences; stimuli sharing similar features suppress each other more than dissimilar stimuli. This feature-tuned component of suppression depends on multiple factors, including the orientation content of stimuli. Indeed, pairs of stimuli arranged in a center-surround configuration attenuate each other's response to a greater degree when oriented collinearly than when oriented orthogonally. Although numerous studies have examined the nature of surround suppression at these two extremes, far less is known about how the strength of tuned normalization varies as a function of continuous changes in orientation similarity, particularly in humans. In this study, we used functional magnetic resonance imaging (fMRI) to examine the bandwidth of orientation-tuned suppression within human visual cortex. Blood-oxygen-level-dependent (BOLD) responses were acquired as participants viewed a full-field circular stimulus composed of wedges of orientation-bandpass filtered noise. This stimulus configuration allowed us to parametrically vary orientation differences between neighboring wedges in gradual steps between collinear and orthogonal. We found the greatest suppression for collinearly arranged stimuli with a gradual increase in BOLD response as the orientation content became more dissimilar. We quantified the tuning width of orientation-tuned suppression, finding that the voxel-wise bandwidth of orientation tuned normalization was between 20° and 30°, and did not differ substantially between early visual areas. Voxel-wise analyses revealed that suppression width covaried with retinotopic preference, with the tightest bandwidths at outer eccentricities. Having an estimate of orientation-tuned suppression bandwidth can serve to constrain models of tuned normalization, establishing the precise degree to which suppression strength depends on similarity between visual stimulus components.NEW & NOTEWORTHY Neurons in the early visual cortex are subject to divisive normalization, but the feature-tuning aspect of this computation remains understudied, particularly in humans. We investigated orientation tuning of normalization in human early visual cortex using fMRI and estimated the bandwidth of the tuned normalization function across observers. Our findings provide a characterization of tuned normalization in early visual cortex that could help constrain models of divisive normalization in vision.
Collapse
Affiliation(s)
- Michaela Klímová
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Ilona M Bloem
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
- Department of Psychology, New York University, New York City, New York
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
6
|
Distinct patterns of surround modulation in V1 and hMT. Neuroimage 2020; 220:117084. [PMID: 32629144 DOI: 10.1016/j.neuroimage.2020.117084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Modulation of a neuron's responses by the stimuli presented outside of its classical receptive field is ubiquitous in the visual system. This "surround modulation" mechanism is believed to be critical for efficient processing and leads to many well-known perceptual effects. The details of surround modulation, however, are still not fully understood. One of the open questions is related to the differences in surround modulation mechanisms in different cortical areas, and their interactions. Here we study patterns of surround modulation in primary visual cortex (V1) and middle temporal complex (hMT+) utilizing a well-studied effect in motion perception, where human observers' ability to discriminate the drift direction of a grating improves as its size gets bigger if the grating has a low contrast, and deteriorates if it has a high contrast. We first replicated the findings in the literature with a behavioral experiment using small and large (1.67 and 8.05 degrees of visual angle) drifting gratings with either low (2%) or high (99%) contrast presented at the periphery. Next, using functional MRI, we found that in V1 with increasing size cortical responses increased at both contrast levels. Whereas in hMT+ with increasing size cortical responses remained unchanged or decreased at high contrast, and increased at low contrast, reflecting the perceptual effect. We also show that the divisive normalization model successfully predicts these activity patterns, and establishes a link between the behavioral results and hMT+ activity. We conclude that surround modulation patterns in V1 and hMT+ are different, and that the size-contrast interaction in motion perception is likely to originate in hMT+.
Collapse
|
7
|
Infanti E, Schwarzkopf DS. Mapping sequences can bias population receptive field estimates. Neuroimage 2020; 211:116636. [PMID: 32070751 DOI: 10.1016/j.neuroimage.2020.116636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022] Open
Abstract
Population receptive field (pRF) modelling is a common technique for estimating the stimulus-selectivity of populations of neurons using neuroimaging. Here, we aimed to address if pRF properties estimated with this method depend on the spatio-temporal structure and the predictability of the mapping stimulus. We mapped the polar angle preference and tuning width of voxels in visual cortex (V1-V4) of healthy, adult volunteers. We compared sequences sweeping orderly through the visual field or jumping from location to location employing stimuli of different width (45° vs 6°) and cycles of variable duration (8s vs 60s). While we did not observe any systematic influence of stimulus predictability, the temporal structure of the sequences significantly affected tuning width estimates. Ordered designs with large wedges and short cycles produced systematically smaller estimates than random sequences. Interestingly, when we used small wedges and long cycles, we obtained larger tuning width estimates for ordered than random sequences. We suggest that ordered and random mapping protocols show different susceptibility to other design choices such as stimulus type and duration of the mapping cycle and can produce significantly different pRF results.
Collapse
Affiliation(s)
- Elisa Infanti
- UCL Experimental Psychology, 26 Bedford Way, London, WC1H 0AP, UK.
| | - D Samuel Schwarzkopf
- UCL Experimental Psychology, 26 Bedford Way, London, WC1H 0AP, UK; School of Optometry & Vision Science, University of Auckland, 85 Park Road, New Zealand
| |
Collapse
|
8
|
McKendrick AM, Chan YM, Nguyen BN. Spatial vision in older adults: perceptual changes and neural bases. Ophthalmic Physiol Opt 2018; 38:363-375. [PMID: 29774576 DOI: 10.1111/opo.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The number of older adults is rapidly increasing internationally, leading to a significant increase in research on how healthy ageing impacts vision. Most clinical assessments of spatial vision involve simple detection (letter acuity, grating contrast sensitivity, perimetry). However, most natural visual environments are more spatially complicated, requiring contrast discrimination, and the delineation of object boundaries and contours, which are typically present on non-uniform backgrounds. In this review we discuss recent research that reports on the effects of normal ageing on these more complex visual functions, specifically in the context of recent neurophysiological studies. RECENT FINDINGS Recent research has concentrated on understanding the effects of healthy ageing on neural responses within the visual pathway in animal models. Such neurophysiological research has led to numerous, subsequently tested, hypotheses regarding the likely impact of healthy human ageing on specific aspects of spatial vision. SUMMARY Healthy normal ageing impacts significantly on spatial visual information processing from the retina through to visual cortex. Some human data validates that obtained from studies of animal physiology, however some findings indicate that rethinking of presumed neural substrates is required. Notably, not all spatial visual processes are altered by age. Healthy normal ageing impacts significantly on some spatial visual processes (in particular centre-surround tasks), but leaves contrast discrimination, contrast adaptation, and orientation discrimination relatively intact. The study of older adult vision contributes to knowledge of the brain mechanisms altered by the ageing process, can provide practical information regarding visual environments that older adults may find challenging, and may lead to new methods of assessing visual performance in clinical environments.
Collapse
Affiliation(s)
- Allison M McKendrick
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Yu Man Chan
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Bao N Nguyen
- Department of Optometry & Vision Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Nguyen BN, Hew SA, Ly J, Shin HY, Wong JC, Yeung E, McKendrick AM. Acute caffeine ingestion affects surround suppression of perceived contrast. J Psychopharmacol 2018; 32:81-88. [PMID: 28879800 DOI: 10.1177/0269881117725684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caffeine is a widely used psychostimulant that is associated with increased acetylcholine levels in mammalian brain and acetycholinesterase antagonism. Acetylcholine, a neuromodulator, plays an important role in the processing of visual information. One key example in human vision, thought to at least partly involve cholinergic neuromodulation, is perceptual surround suppression of contrast, whereby the perceived contrast of a pattern is altered by the presence of a neighbouring pattern. Perceptual surround suppression is weaker with pharmacological administration of donepezil (a centrally-acting acetylcholine enzyme inhibitor) in healthy human observers. Here, we test whether temporarily manipulating caffeine levels (from complete washout to a controlled dose of caffeine) has a similar effect on perceptual surround suppression in 21 healthy young adults (aged 20-24 years, 11 females). Neither ingestion of a caffeine pill nor placebo altered contrast judgments when the target pattern was presented on a uniform grey background ( p=0.54). With caffeine ingestion, perceptual surround suppression strength was reduced relative to baseline (prior to pill ingestion, p=0.003) and placebo ( p=0.029), irrespective of whether the surround was oriented parallel or orthogonal to the central target. While daily habitual caffeine consumption of low-to-moderate doses (<400 mg/day, estimated from a written questionnaire) is not predictive of performance, our study indicates that acute consumption of caffeine on the day of testing influences perceptual surround suppression strength. Perceptual surround suppression is predominantly attributed to inhibitory processes involving the major cortical inhibitory neurotransmitter, gamma-aminobutyric acid. Our results point to the involvement of other neuromodulators, possibly cholinergic, in perceptual surround suppression.
Collapse
Affiliation(s)
- Bao N Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Sui-Ann Hew
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - John Ly
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Hee-Young Shin
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Jessica C Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Emily Yeung
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Yildirim F, Carvalho J, Cornelissen FW. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping. Neuroimage 2017; 164:183-193. [PMID: 28666882 DOI: 10.1016/j.neuroimage.2017.06.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 12/01/2022] Open
Abstract
Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas.
Collapse
Affiliation(s)
- Funda Yildirim
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | - Joana Carvalho
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
11
|
Schallmo MP, Grant AN, Burton PC, Olman CA. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study. J Vis 2017; 16:19. [PMID: 27565016 PMCID: PMC5015919 DOI: 10.1167/16.10.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.
Collapse
|
12
|
Williams RJ, Reutens DC, Hocking J. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex. Front Neurosci 2016; 10:279. [PMID: 27445654 PMCID: PMC4923189 DOI: 10.3389/fnins.2016.00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 11/24/2022] Open
Abstract
Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute and Department of Radiology, University of CalgaryCalgary, AB, Canada; Centre for Advanced Imaging, The University of QueenslandSt. Lucia, QLD, Australia; Queensland Brain Institute, The University of QueenslandSt. Lucia, QLD, Australia; Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Julia Hocking
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology Kelvin Grove, QLD, Australia
| |
Collapse
|
13
|
Abstract
Surround suppression is a well-known phenomenon in which the response to a visual stimulus is diminished by the presence of neighboring stimuli. This effect is observed in neural responses in areas such as primary visual cortex, and also manifests in visual contrast perception. Studies in animal models have identified at least two separate mechanisms that may contribute to surround suppression: one that is monocular and resistant to contrast adaptation, and another that is binocular and strongly diminished by adaptation. The current study was designed to investigate whether these two mechanisms exist in humans and if they can be identified psychophysically using eye-of-origin and contrast adaptation manipulations. In addition, we examined the prediction that the monocular suppression component is broadly tuned for orientation, while suppression between eyes is narrowly tuned. Our results confirmed that when center and surrounding stimuli were presented dichoptically (in opposite eyes), suppression was orientation-tuned. Following adaptation in the surrounding region, no dichoptic suppression was observed, and monoptic suppression no longer showed orientation selectivity. These results are consistent with a model of surround suppression that depends on both low-level and higher level components. This work provides a method to assess the separate contributions of these components during spatial context processing in human vision.
Collapse
|
14
|
Inverso SA, Goh XL, Henriksson L, Vanni S, James AC. From evoked potentials to cortical currents: Resolving V1 and V2 components using retinotopy constrained source estimation without fMRI. Hum Brain Mapp 2016; 37:1696-709. [PMID: 26870938 DOI: 10.1002/hbm.23128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 11/09/2022] Open
Abstract
Despite evoked potentials' (EP) ubiquity in research and clinical medicine, insights are limited to gross brain dynamics as it remains challenging to map surface potentials to their sources in specific cortical regions. Multiple sources cancellation due to cortical folding and cross-talk obscures close sources, e.g. between visual areas V1 and V2. Recently retinotopic functional magnetic resonance imaging (fMRI) responses were used to constrain source locations to assist separating close sources and to determine cortical current generators. However, an fMRI is largely infeasible for routine EP investigation. We developed a novel method that replaces the fMRI derived retinotopic layout (RL) by an approach where the retinotopy and current estimates are generated from EEG or MEG signals and a standard clinical T1-weighted anatomical MRI. Using the EEG-RL, sources were localized to within 2 mm of the fMRI-RL constrained localized sources. The EEG-RL also produced V1 and V2 current waveforms that closely matched the fMRI-RL's (n = 2) r(1,198) = 0.99, P < 0.0001. Applying the method to subjects without fMRI (n = 4) demonstrates it generates waveforms that agree closely with the literature. Our advance allows investigators with their current EEG or MEG systems to create a library of brain models tuned to individual subjects' cortical folding in retinotopic maps, and should be applicable to auditory and somatosensory maps. The novel method developed expands EP's ability to study specific brain areas, revitalizing this well-worn technique. Hum Brain Mapp 37:1696-1709, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samuel A Inverso
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence in Vision Science and Research School of Biology, Australian National University, Canberra, ACT, Australia.,Wyss Institute, Harvard University, Boston, Massachusetts
| | - Xin-Lin Goh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence in Vision Science and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Linda Henriksson
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,AMI Centre, Aalto Neuroimaging, Aalto University, Finland
| | - Simo Vanni
- AMI Centre, Aalto Neuroimaging, Aalto University, Finland.,Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andrew C James
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence in Vision Science and Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Chen J, Yu Q, Zhu Z, Peng Y, Fang F. Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity. J Neurophysiol 2015; 115:500-9. [PMID: 26561595 DOI: 10.1152/jn.00044.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
In natural scenes, multiple objects are usually presented simultaneously. How do specific areas of the brain respond to multiple objects based on their responses to each individual object? Previous functional magnetic resonance imaging (fMRI) studies have shown that the activity induced by a multiobject stimulus in the primary visual cortex (V1) can be predicted by the linear or nonlinear sum of the activities induced by its component objects. However, there has been little evidence from electroencephelogram (EEG) studies so far. Here we explored how V1 responded to multiple objects by comparing the EEG signals evoked by a three-grating stimulus with those evoked by its two components (the central grating and 2 flanking gratings). We focused on the earliest visual component C1 (onset latency of ∼50 ms) because it has been shown to reflect the feedforward responses of neurons in V1. We found that when the stimulus was unattended, the amplitude of the C1 evoked by the three-grating stimulus roughly equaled the sum of the amplitudes of the C1s evoked by its two components, regardless of the distances between these gratings. When the stimulus was attended, this linear spatial summation existed only when the three gratings were far apart from each other. When the three gratings were close to each other, the spatial summation became compressed. These results suggest that the earliest visual responses in V1 follow a linear summation rule when attention is not involved and that attention can affect the earliest interactions between multiple objects.
Collapse
Affiliation(s)
- Juan Chen
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
| | - Qing Yu
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
| | - Ziyun Zhu
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
| | - Yujia Peng
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China
| | - Fang Fang
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Henriksson L, Mur M, Kriegeskorte N. Faciotopy-A face-feature map with face-like topology in the human occipital face area. Cortex 2015; 72:156-167. [PMID: 26235800 PMCID: PMC4643680 DOI: 10.1016/j.cortex.2015.06.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/04/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for “faciotopy”, a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance.
Collapse
Affiliation(s)
- Linda Henriksson
- MRC Cognition and Brain Sciences Unit, Cambridge, UK; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| | - Marieke Mur
- MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | | |
Collapse
|
17
|
Thomas JM, Huber E, Stecker GC, Boynton GM, Saenz M, Fine I. Population receptive field estimates of human auditory cortex. Neuroimage 2015; 105:428-39. [PMID: 25449742 PMCID: PMC4262557 DOI: 10.1016/j.neuroimage.2014.10.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 01/07/2023] Open
Abstract
Here we describe a method for measuring tonotopic maps and estimating bandwidth for voxels in human primary auditory cortex (PAC) using a modification of the population Receptive Field (pRF) model, developed for retinotopic mapping in visual cortex by Dumoulin and Wandell (2008). The pRF method reliably estimates tonotopic maps in the presence of acoustic scanner noise, and has two advantages over phase-encoding techniques. First, the stimulus design is flexible and need not be a frequency progression, thereby reducing biases due to habituation, expectation, and estimation artifacts, as well as reducing the effects of spatio-temporal BOLD nonlinearities. Second, the pRF method can provide estimates of bandwidth as a function of frequency. We find that bandwidth estimates are narrower for voxels within the PAC than in surrounding auditory responsive regions (non-PAC).
Collapse
Affiliation(s)
- Jessica M Thomas
- Department of Psychology, University of Washington, Seattle WA 98195-1525, USA.
| | - Elizabeth Huber
- Department of Psychology, University of Washington, Seattle WA 98195-1525, USA
| | - G Christopher Stecker
- Department of Speech and Hearing Sciences, University of Washington, Seattle WA 98105, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Geoffrey M Boynton
- Department of Psychology, University of Washington, Seattle WA 98195-1525, USA
| | - Melissa Saenz
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital, 1011, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Switzerland
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle WA 98195-1525, USA
| |
Collapse
|
18
|
Sharifian F, Nurminen L, Vanni S. Visual interactions conform to pattern decorrelation in multiple cortical areas. PLoS One 2013; 8:e68046. [PMID: 23874491 PMCID: PMC3707897 DOI: 10.1371/journal.pone.0068046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/24/2013] [Indexed: 11/23/2022] Open
Abstract
Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.
Collapse
Affiliation(s)
- Fariba Sharifian
- Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, Espoo, Finland.
| | | | | |
Collapse
|
19
|
Binda P, Thomas JM, Boynton GM, Fine I. Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. J Vis 2013; 13:13. [PMID: 23788461 DOI: 10.1167/13.7.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is substantial interest in using functional magnetic resonance imaging (fMRI) retinotopic mapping techniques to examine reorganization of the occipital cortex after vision loss in humans and nonhuman primates. However, previous reports suggest that standard phase encoding and the more recent population Receptive Field (pRF) techniques give biased estimates of retinotopic maps near the boundaries of retinal or cortical scotomas. Here we examine the sources of this bias and show how it can be minimized with a simple modification of the pRF method. In normally sighted subjects, we measured fMRI responses to a stimulus simulating a foveal scotoma; we found that unbiased retinotopic map estimates can be obtained in early visual areas, as long as the pRF fitting algorithm takes the scotoma into account and a randomized "multifocal" stimulus sequence is used.
Collapse
Affiliation(s)
- Paola Binda
- Department of Psychology, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
20
|
Salminen-Vaparanta N, Vanni S, Noreika V, Valiulis V, Móró L, Revonsuo A. Subjective Characteristics of TMS-Induced Phosphenes Originating in Human V1 and V2. Cereb Cortex 2013; 24:2751-60. [DOI: 10.1093/cercor/bht131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Kay KN, Winawer J, Mezer A, Wandell BA. Compressive spatial summation in human visual cortex. J Neurophysiol 2013; 110:481-94. [PMID: 23615546 DOI: 10.1152/jn.00105.2013] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons within a small (a few cubic millimeters) region of visual cortex respond to stimuli within a restricted region of the visual field. Previous studies have characterized the population response of such neurons using a model that sums contrast linearly across the visual field. In this study, we tested linear spatial summation of population responses using blood oxygenation level-dependent (BOLD) functional MRI. We measured BOLD responses to a systematic set of contrast patterns and discovered systematic deviation from linearity: the data are more accurately explained by a model in which a compressive static nonlinearity is applied after linear spatial summation. We found that the nonlinearity is present in early visual areas (e.g., V1, V2) and grows more pronounced in relatively anterior extrastriate areas (e.g., LO-2, VO-2). We then analyzed the effect of compressive spatial summation in terms of changes in the position and size of a viewed object. Compressive spatial summation is consistent with tolerance to changes in position and size, an important characteristic of object representation.
Collapse
Affiliation(s)
- Kendrick N Kay
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
22
|
Nurminen L, Kilpeläinen M, Vanni S. Fovea-periphery axis symmetry of surround modulation in the human visual system. PLoS One 2013; 8:e57906. [PMID: 23469101 PMCID: PMC3585267 DOI: 10.1371/journal.pone.0057906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
A visual stimulus activates different sized cortical area depending on eccentricity of the stimulus. Here, our aim is to understand whether the visual field size of a stimulus or cortical size of the corresponding representation determines how strongly it interacts with other stimuli. We measured surround modulation of blood-oxygenation-level-dependent signal and perceived contrast with surrounds that extended either towards the periphery or the fovea from a center stimulus, centered at 6° eccentricity. This design compares the effects of two surrounds which are identical in visual field size, but differ in the sizes of their cortical representations. The surrounds produced equally strong suppression, which suggests that visual field size of the surround determines suppression strength. A modeled population of neuronal responses, in which all the parameters were experimentally fixed, captured the pattern of results both in psychophysics and functional magnetic resonance imaging. Although the fovea-periphery anisotropy affects nearly all aspects of spatial vision, our results suggest that in surround modulation the visual system compensates for it.
Collapse
Affiliation(s)
- Lauri Nurminen
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University, Espoo, Finland.
| | | | | |
Collapse
|
23
|
Henriksson L, Karvonen J, Salminen-Vaparanta N, Railo H, Vanni S. Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked FMRI designs. PLoS One 2012; 7:e36859. [PMID: 22590626 PMCID: PMC3348898 DOI: 10.1371/journal.pone.0036859] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/10/2012] [Indexed: 11/26/2022] Open
Abstract
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies.
Collapse
Affiliation(s)
- Linda Henriksson
- Brain Research Unit, OV Lounasmaa Laboratory, Aalto University, Espoo, Finland.
| | | | | | | | | |
Collapse
|
24
|
Salminen-Vaparanta N, Noreika V, Revonsuo A, Koivisto M, Vanni S. Is selective primary visual cortex stimulation achievable with TMS? Hum Brain Mapp 2012; 33:652-65. [PMID: 21416561 PMCID: PMC6870472 DOI: 10.1002/hbm.21237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/28/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
The primary visual cortex (V1) has been the target of stimulation in a number of transcranial magnetic stimulation (TMS) studies. In this study, we estimated the actual sites of stimulation by modeling the cortical location of the TMS-induced electric field when participants reported visual phosphenes or scotomas. First, individual retinotopic areas were identified by multifocal functional magnetic resonance imaging (mffMRI). Second, during the TMS stimulation, the cortical stimulation sites were derived from electric field modeling. When an external anatomical landmark for V1 was used (2 cm above inion), the cortical stimulation landed in various functional areas in different individuals, the dorsal V2 being the most affected area at the group level. When V1 was specifically targeted based on the individual mffMRI data, V1 could be selectively stimulated in half of the participants. In the rest, the selective stimulation of V1 was obstructed by the intermediate position of the dorsal V2. We conclude that the selective stimulation of V1 is possible only if V1 happens to be favorably located in the individual anatomy. Selective and successful targeting of TMS pulses to V1 requires MRI-navigated stimulation, selection of participants and coil positions based on detailed retinotopic maps of individual functional anatomy, and computational modeling of the TMS-induced electric field distribution in the visual cortex. It remains to be resolved whether even more selective stimulation of V1 could be achieved by adjusting the coil orientation according to sulcal orientation of the target site.
Collapse
|
25
|
Local non-linear interactions in the visual cortex may reflect global decorrelation. J Comput Neurosci 2010; 30:109-24. [PMID: 20422445 DOI: 10.1007/s10827-010-0239-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
The classical receptive field in the primary visual cortex have been successfully explained by sparse activation of relatively independent units, whose tuning properties reflect the statistical dependencies in the natural environment. Robust surround modulation, emerging from stimulation beyond the classical receptive field, has been associated with increase of lifetime sparseness in the V1, but the system-wide modulation of response strength have currently no theoretical explanation. We measured fMRI responses from human visual cortex and quantified the contextual modulation with a decorrelation coefficient (d), derived from a subtractive normalization model. All active cortical areas demonstrated local non-linear summation of responses, which were in line with hypothesis of global decorrelation of voxels responses. In addition, we found sensitivity to surrounding stimulus structure across the ventral stream, and large-scale sensitivity to the number of simultaneous objects. Response sparseness across voxel population increased consistently with larger stimuli. These data suggest that contextual modulation for a stimulus event reflect optimization of the code and perhaps increase in energy efficiency throughout the ventral stream hierarchy. Our model provides a novel prediction that average suppression of response amplitude for simultaneous stimuli across the cortical network is a monotonic function of similarity of response strengths in the network when the stimuli are presented alone.
Collapse
|
26
|
Schumacher JF, Olman CA. High-resolution BOLD fMRI measurements of local orientation-dependent contextual modulation show a mismatch between predicted V1 output and local BOLD response. Vision Res 2010; 50:1214-24. [PMID: 20382175 DOI: 10.1016/j.visres.2010.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 01/01/2010] [Accepted: 04/03/2010] [Indexed: 11/28/2022]
Abstract
The blood oxygenation level-dependent (BOLD) functional MRI response to suppressive neural activity has not been tested on a fine spatial scale. Using Gabor patches placed in the near periphery, we precisely localized individual regions of interest in primary visual cortex and measured the response at a range of contrasts in two different contexts: with parallel and with orthogonal flanking Gabor patches. Psychophysical measurements confirmed strong suppression of the target Gabor response when flanked by parallel Gabors. However, the BOLD response to the target with parallel flankers decreased as the target contrast increased, which contradicts psychophysical estimates of local neural activity.
Collapse
Affiliation(s)
- Jennifer F Schumacher
- Department of Neuroscience, University of Minnesota, N-218 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
27
|
Abstract
Previous research suggests that feedback circuits mediate the effect of attention to the primary visual cortex (V1). This inference is mainly based on temporal information of the responses, where late modulation is associated with feedback signals. However, temporal data alone are inconclusive because the anatomical hierarchy between cortical areas differs significantly from the temporal sequence of activation. In the current work, we relied on recent physiological and computational models of V1 network architecture, which have shown that the thalamic feedforward, local horizontal and feedback contribution are reflected in the spatial spread of responses. We used multifocal functional localizer and quantitative analysis in functional magnetic resonance imaging to determine the spatial scales of attention and sensory responses. Representations of 60 visual field regions in V1 were functionally localized and four of these regions were targets in a subsequent attention experiment, where human volunteers fixated centrally and performed a visual discrimination task at the attended location. Attention enhanced the peak amplitudes significantly more in the lower than in the upper visual field. This enhancement by attention spread with a 2.4 times larger radius (approximately 10 mm, assuming an average magnification factor) compared with the unattended response. The corresponding target region of interest was on average 20% stronger than that caused by the afferent sensory stimulation alone. This modulation could not be attributed to eye movements. Given the contemporary view of primate V1 connections, the activation spread along the cortex provides further evidence that the signal enhancement by spatial attention is dependent on feedback circuits.
Collapse
Affiliation(s)
- Jaana Simola
- Finland Brain Research Unit/AMI Centre, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland.
| | | | | |
Collapse
|