1
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Chaimow D, Lorenz R, Weiskopf N. Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230085. [PMID: 39428874 PMCID: PMC11513163 DOI: 10.1098/rstb.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 10/22/2024] Open
Abstract
Technological advances in fMRI including ultra-high magnetic fields (≥ 7 T) and acquisition methods that increase spatial specificity have paved the way for studies of the human cortex at the scale of layers and columns. This mesoscopic scale promises an improved mechanistic understanding of human cortical function so far only accessible to invasive animal neurophysiology. In recent years, an increasing number of studies have applied such methods to better understand the cortical function in perception and cognition. This future perspective article asks whether closed-loop fMRI studies could equally benefit from these methods to achieve layer and columnar specificity. We outline potential applications and discuss the conceptual and concrete challenges, including data acquisition and volitional control of mesoscopic brain activity. We anticipate an important role of fMRI with mesoscopic resolution for closed-loop fMRI and neurofeedback, yielding new insights into brain function and potentially clinical applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Denis Chaimow
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Romy Lorenz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neuroscience & Neurotechnology Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, LondonWC1N 3AR, UK
| |
Collapse
|
3
|
Dudina AN, Tomyshev AS, Ilina EV, Romanov DV, Lebedeva IS. Structural and functional alterations in different types of delusions across schizophrenia spectrum: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111185. [PMID: 39486472 DOI: 10.1016/j.pnpbp.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Despite the high clinical role of delusions as a transnosological psychopathological phenomenon, the number of experimental studies on the different types of delusions across schizophrenia spectrum is still relatively small, and their results are somehow inconsistent. We aimed to understand the current state of knowledge regarding the structural and functional brain alterations in delusions to determine whether particular types of delusions are associated with specific brain changes and to identify common alterations underlying the formation and persistence of delusions regardless of their content. METHODS For this systematic review, we followed PRISMA guidelines to search in PubMed for English papers published between 1953 and September 30, 2023. The initial inclusion criteria for screening purposes were articles that investigated delusions or subclinical delusional beliefs in schizophrenia spectrum disorders, high clinical or genetic risk for schizophrenia using fMRI, sMRI or/and dwMRI methods. Exclusion criteria during the screening phase were articles that investigated lesion-induced or substance-induced delusions, delusions in Alzheimer's disease and other neurocognitive disorders, single case studies and non-human studies. The publication metadata were uploaded to the web-tool for working on systematic reviews, Rayyan. For each of the studies, a table was filled out with detailed information. RESULTS We found 1752 records, of which 95 full-text documents were reviewed and included in the current paper. Both nonspecific and particular types of delusions were associated with widespread structural and functional alterations. The most prominent areas affected across all types of delusions were the superior temporal cortex (predominantly left language processing areas), anterior cingulate/medial prefrontal cortex and insula. The most reproducible findings in paranoia may be alterations in the functioning of the amygdala and its interactions with other regions. Somatic delusions and delusional infestation were mostly characterized by alterations in the insula and thalamus. DISCUSSION The data are ambiguous; however, in general the predictive processing framework seems to be the most widely accepted approach to explaining different types of delusions. Aberrant prediction errors signaling during processing of social, self-generated and sensory information may lead to inaccuracies in assessing the intentions of others, self-relevancy of ambiguous stimuli, misattribution of self-generated actions and unusual sensations, which could provoke delusional ideation with persecutory, reference, control and somatic content correspondingly. However, currently available data are still insufficient to draw conclusions about the specific biological mechanisms of predictive coding account of delusions. Thus, further studies exploring more homogeneous groups and interaction of diagnoses by types of delusions are needed. There are also some limitations in this review. Studies that investigate delusions induced by lesions, substance abuse or neurodegeneration and studies using modalities other than fMRI, sMRI or dwMRI were not included in the review. Due to the relatively small number of publications, we systematized them based on a certain type of delusions, while the results could also be affected by the diagnosis of patients, the presence and type of therapy, illness duration etc.
Collapse
Affiliation(s)
- Anastasiia N Dudina
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation.
| | - Alexander S Tomyshev
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| | - Ekaterina V Ilina
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Dmitriy V Romanov
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Irina S Lebedeva
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| |
Collapse
|
4
|
Du C, Dang M, Chen K, Chen Y, Zhang Z. Divergent brain regional atrophy and associated fiber disruption in amnestic and non-amnestic MCI. Alzheimers Res Ther 2023; 15:199. [PMID: 37957768 PMCID: PMC10642051 DOI: 10.1186/s13195-023-01335-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Understanding the pathological characteristics of various mild cognitive impairment (MCI) subtypes is crucial for the differential diagnosis of dementia. The purpose of this study was to feature divergent symptom-deficit profiles in amnestic MCI (aMCI) and non-amnestic MCI (naMCI). METHODS T1 and DTI MRI data from a total of 158 older adults with 50 normal controls, 56 aMCI, and 52 naMCI were included. The voxel-wise gray matter volumes and the number of seed-based white matter fiber bundles were compared among these three groups. Furthermore, correlation and mediation analyses between the neuroimaging indices and cognitive measures were performed. RESULTS The aMCI with specific memory abnormalities was characterized by volumetric atrophy of the left hippocampus but not by damage in the linked white matter fiber bundles. Conversely, naMCI was characterized by both the altered volume of the right inferior frontal gyrus and the significant damage to fiber bundles traversing the region in all three directions, not only affecting fibers around the atrophied area but also distant fibers. Mediation analyses of gray matter-white matter-cognition showed that gray matter atrophy affects the number of fiber bundles and further affects attention and executive function. Meanwhile, fiber bundle damage also affects gray matter volume, which further affects visual processing and language. CONCLUSIONS The divergent structural damage patterns of the MCI subtypes and cognitive dysfunctions highlight the importance of detailed differential diagnoses in the early stages of pathological neurodegenerative diseases to deepen the understanding of dementia subtypes and inform targeted early clinical interventions.
Collapse
Affiliation(s)
- Chao Du
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China
- Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai, 200433, China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
- Arizona State University, Temple, AZ, 85281, USA
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Fede SJ, Kisner MA, Dean SF, Kerich M, Roopchansingh V, Diazgranados N, Momenan R. Selecting an optimal real-time fMRI neurofeedback method for alcohol craving control training. Psychophysiology 2023; 60:e14367. [PMID: 37326428 DOI: 10.1111/psyp.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Real-time fMRI neurofeedback (rt-fMRI-NF) is a technique in which information about an individual's neural state is given back to them, typically to enable and reinforce neuromodulation. Its clinical potential has been demonstrated in several applications, but lack of evidence on optimal parameters limits clinical utility of the technique. This study aimed to identify optimal parameters for rt-fMRI-NF-aided craving regulation training in alcohol use disorder (AUD). Adults with AUD (n = 30) participated in a single-session study of four runs of rt-fMRI-NF where they downregulated "craving-related" brain activity. They received one of three types of neurofeedback: multi-region of interest (ROI), support vector machine with continuous feedback (cSVM), and support vector machine with intermittent feedback (iSVM). Performance was assessed on the success rate, change in neural downregulation, and change in self-reported craving for alcohol. Participants had more successful trials in run 4 versus 1, as well as improved downregulation of the insula, anterior cingulate, and dorsolateral prefrontal cortex (dlPFC). Greater downregulation of the latter two regions predicted greater reduction in craving. iSVM performed significantly worse than the other two methods. Downregulation of the striatum and dlPFC, enabled by ROI but not cSVM neurofeedback, was correlated with a greater reduction in craving. rt-fMRI-NF training for downregulation of alcohol craving in individuals with AUD shows potential for clinical use, though this pilot study should be followed with a larger randomized-control trial before clinical meaningfulness can be established. Preliminary results suggest an advantage of multi-ROI over SVM and intermittent feedback approaches.
Collapse
Affiliation(s)
- Samantha J Fede
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Mallory A Kisner
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah F Dean
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mike Kerich
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Vinai Roopchansingh
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Reza Momenan
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Martinez-Lincoln A, Fotidzis TS, Cutting LE, Price GR, Barquero LA. Examination of common and unique brain regions for atypical reading and math: a meta-analysis. Cereb Cortex 2023; 33:6959-6989. [PMID: 36758954 PMCID: PMC10233309 DOI: 10.1093/cercor/bhad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study is to identify consistencies across functional neuroimaging studies regarding common and unique brain regions/networks for individuals with reading difficulties (RD) and math difficulties (MD) compared to typically developing (TD) individuals. A systematic search of the literature, utilizing multiple databases, yielded 116 functional magnetic resonance imaging and positron emission tomography studies that met the criteria. Coordinates that directly compared TD with either RD or MD were entered into GingerALE (Brainmap.org). An activation likelihood estimate (ALE) meta-analysis was conducted to examine common and unique brain regions for RD and MD. Overall, more studies examined RD (n = 96) than MD (n = 20). Across studies, overactivation for reading and math occurred in the right insula and inferior frontal gyrus for atypically developing (AD) > TD comparisons, albeit in slightly different areas of these regions; however, inherent threshold variability across imaging studies could diminish overlying regions. For TD > AD comparisons, there were no similar or overlapping brain regions. Results indicate there were domain-specific differences for RD and MD; however, there were some similarities in the ancillary recruitment of executive functioning skills. Theoretical and practical implications for researchers and educators are discussed.
Collapse
Affiliation(s)
- Amanda Martinez-Lincoln
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Tess S Fotidzis
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| | - Laurie E Cutting
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, 110 Magnolia Circle, Nashville, TN 37203, United States
| | - Gavin R Price
- Department of Psychology, University of Exeter, Washington Singer Building Perry Road Exeter EX44QG, United Kingdom
| | - Laura A Barquero
- Department of Special Education, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203, United States
| |
Collapse
|
7
|
Bernhard RM, Frankland SM, Plunkett D, Sievers B, Greene JD. Evidence for Spinozan "Unbelieving" in the Right Inferior Prefrontal Cortex. J Cogn Neurosci 2023; 35:659-680. [PMID: 36638227 DOI: 10.1162/jocn_a_01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Humans can think about possible states of the world without believing in them, an important capacity for high-level cognition. Here, we use fMRI and a novel "shell game" task to test two competing theories about the nature of belief and its neural basis. According to the Cartesian theory, information is first understood, then assessed for veracity, and ultimately encoded as either believed or not believed. According to the Spinozan theory, comprehension entails belief by default, such that understanding without believing requires an additional process of "unbelieving." Participants (n = 70) were experimentally induced to have beliefs, desires, or mere thoughts about hidden states of the shell game (e.g., believing that the dog is hidden in the upper right corner). That is, participants were induced to have specific "propositional attitudes" toward specific "propositions" in a controlled way. Consistent with the Spinozan theory, we found that thinking about a proposition without believing it is associated with increased activation of the right inferior frontal gyrus. This was true whether the hidden state was desired by the participant (because of reward) or merely thought about. These findings are consistent with a version of the Spinozan theory whereby unbelieving is an inhibitory control process. We consider potential implications of these results for the phenomena of delusional belief and wishful thinking.
Collapse
|
8
|
Osawa SI, Suzuki K, Asano E, Ukishiro K, Agari D, Kakinuma K, Kochi R, Jin K, Nakasato N, Tominaga T. Causal Involvement of Medial Inferior Frontal Gyrus of Non-dominant Hemisphere in Higher Order Auditory Perception: A single case study. Cortex 2023; 163:57-65. [PMID: 37060887 DOI: 10.1016/j.cortex.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023]
Abstract
The medial side of the operculum is invisible from the lateral surface of cerebral cortex, and its functions remain largely unexplored using direct evidence. Non-invasive and invasive studies have proved functions on peri-sylvian area including the inferior frontal gyrus (IFG) and superior temporal gyrus within the language-dominant hemisphere for semantic processing during verbal communication. However, within the non-dominant hemisphere, there was less evidence of its functions except for pitch or prosody processing. Here we add direct evidence for the functions of the non-dominant hemisphere, the causal involvement of the medial IFG for subjective auditory perception, which is affected by the context of the condition, regarded as a contribution in higher order auditory perception. The phenomenon was clearly distinguished from absolute and invariant pitch perception which is regarded as lower order auditory perception. Electrical stimulation of the medial surface of pars triangularis of IFG in non-dominant hemisphere via depth electrode in an epilepsy patient rapidly and reproducibly elicited perception of pitch changes of auditory input. Pitches were perceived as either higher or lower than those given without stimulation and there was no selectivity for sound type. The patient perceived sounds as higher when she had greater control over the situation when her eyes were open and there were self-cues, and as lower when her eyes were closed and there were investigator-cues. Time-frequency analysis of electrocorticography signals during auditory naming demonstrated medial IFG activation, characterized by low-gamma band augmentation during her own vocal response. The overall evidence provides a neural substrate for altered perception of other vocal tones according to the condition context.
Collapse
|
9
|
Butera C, Kaplan J, Kilroy E, Harrison L, Jayashankar A, Loureiro F, Aziz-Zadeh L. The relationship between alexithymia, interoception, and neural functional connectivity during facial expression processing in autism spectrum disorder. Neuropsychologia 2023; 180:108469. [PMID: 36610493 PMCID: PMC9898240 DOI: 10.1016/j.neuropsychologia.2023.108469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Neural processing differences of emotional facial expressions, while common in autism spectrum disorder (ASD), may be related to co-occurring alexithymia and interoceptive processing differences rather than autism per se. Here, we investigate relationships between alexithymia, interoceptive awareness of emotions, and functional connectivity during observation of facial expressions in youth (aged 8-17) with ASD (n = 28) compared to typically developing peers (TD; n = 37). Behaviorally, we found no significant differences between ASD and TD groups in interoceptive awareness of emotions, though alexithymia severity was significantly higher in the ASD group. In the ASD group, increased alexithymia was significantly correlated with lower interoceptive sensation felt during emotion. Using psycho-physiological interaction (PPI) analysis, the ASD group showed higher functional connectivity between the left ventral anterior insula and the left lateral prefrontal cortex than the TD group when viewing facial expressions. Further, alexithymia was associated with reduced left anterior insula-right precuneus connectivity and reduced right dorsal anterior insula-left ventral anterior insula connectivity when viewing facial expressions. In the ASD group, the degree of interoceptive sensation felt during emotion was positively correlated with left ventral anterior insula-right IFG connectivity when viewing facial expressions. However, across all participants, neither alexithymia nor interoceptive awareness of emotions predicted connectivity between emotion-related brain regions when viewing emotional facial expressions. To summarize, we found that in ASD compared to TD: 1) there is stronger connectivity between the insula and lateral prefrontal cortex; and 2) differences in interhemispheric and within left hemisphere connectivity between the insula and other emotion-related brain regions are related to individual differences in interoceptive processing and alexithymia. These results highlight complex relationships between alexithymia, interoception, and brain processing in ASD.
Collapse
Affiliation(s)
- Christiana Butera
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jonas Kaplan
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emily Kilroy
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laura Harrison
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aditya Jayashankar
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fernanda Loureiro
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lisa Aziz-Zadeh
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Neural and functional validation of fMRI-informed EEG model of right inferior frontal gyrus activity. Neuroimage 2023; 266:119822. [PMID: 36535325 DOI: 10.1016/j.neuroimage.2022.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The right inferior frontal gyrus (rIFG) is a region involved in the neural underpinning of cognitive control across several domains such as inhibitory control and attentional allocation process. Therefore, it constitutes a desirable neural target for brain-guided interventions such as neurofeedback (NF). To date, rIFG-NF has shown beneficial ability to rehabilitate or enhance cognitive functions using functional Magnetic Resonance Imaging (fMRI-NF). However, the utilization of fMRI-NF for clinical purposes is severely limited, due to its poor scalability. The present study aimed to overcome the limited applicability of fMRI-NF by developing and validating an EEG model of fMRI-defined rIFG activity (hereby termed "Electrical FingerPrint of rIFG"; rIFG-EFP). To validate the computational model, we employed two experiments in healthy individuals. The first study (n = 14) aimed to test the target engagement of the model by employing rIFG-EFP-NF training while simultaneously acquiring fMRI. The second study (n = 41) aimed to test the functional outcome of two sessions of rIFG-EFP-NF using a risk preference task (known to depict cognitive control processes), employed before and after the training. Results from the first study demonstrated neural target engagement as expected, showing associated rIFG-BOLD signal changing during simultaneous rIFG-EFP-NF training. Target anatomical specificity was verified by showing a more precise prediction of the rIFG-BOLD by the rIFG-EFP model compared to other EFP models. Results of the second study suggested that successful learning to up-regulate the rIFG-EFP signal through NF can reduce one's tendency for risk taking, indicating improved cognitive control after two sessions of rIFG-EFP-NF. Overall, our results confirm the validity of a scalable NF method for targeting rIFG activity by using an EEG probe.
Collapse
|
11
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Pereira JA, Ray A, Rana M, Silva C, Salinas C, Zamorano F, Irani M, Opazo P, Sitaram R, Ruiz S. A real-time fMRI neurofeedback system for the clinical alleviation of depression with a subject-independent classification of brain states: A proof of principle study. Front Hum Neurosci 2022; 16:933559. [PMID: 36092645 PMCID: PMC9452730 DOI: 10.3389/fnhum.2022.933559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Most clinical neurofeedback studies based on functional magnetic resonance imaging use the patient's own neural activity as feedback. The objective of this study was to create a subject-independent brain state classifier as part of a real-time fMRI neurofeedback (rt-fMRI NF) system that can guide patients with depression in achieving a healthy brain state, and then to examine subsequent clinical changes. In a first step, a brain classifier based on a support vector machine (SVM) was trained from the neural information of happy autobiographical imagery and motor imagery blocks received from a healthy female participant during an MRI session. In the second step, 7 right-handed female patients with mild or moderate depressive symptoms were trained to match their own neural activity with the neural activity corresponding to the “happiness emotional brain state” of the healthy participant. The training (4 training sessions over 2 weeks) was carried out using the rt-fMRI NF system guided by the brain-state classifier we had created. Thus, the informative voxels previously obtained in the first step, using SVM classification and Effect Mapping, were used to classify the Blood-Oxygen-Level Dependent (BOLD) activity of the patients and converted into real-time visual feedback during the neurofeedback training runs. Improvements in the classifier accuracy toward the end of the training were observed in all the patients [Session 4–1 Median = 6.563%; Range = 4.10–27.34; Wilcoxon Test (0), 2-tailed p = 0.031]. Clinical improvement also was observed in a blind standardized clinical evaluation [HDRS CE2-1 Median = 7; Range 2 to 15; Wilcoxon Test (0), 2-tailed p = 0.016], and in self-report assessments [BDI-II CE2-1 Median = 8; Range 1–15; Wilcoxon Test (0), 2-tailed p = 0.031]. In addition, the clinical improvement was still present 10 days after the intervention [BDI-II CE3-2_Median = 0; Range −1 to 2; Wilcoxon Test (0), 2-tailed p = 0.50/ HDRS CE3-2 Median = 0; Range −1 to 2; Wilcoxon Test (0), 2-tailed p = 0.625]. Although the number of participants needs to be increased and a control group included to confirm these findings, the results suggest a novel option for neural modulation and clinical alleviation in depression using noninvasive stimulation technologies.
Collapse
Affiliation(s)
- Jaime A. Pereira
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andreas Ray
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Mohit Rana
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Claudio Silva
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Cesar Salinas
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Martin Irani
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Opazo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
- *Correspondence: Ranganatha Sitaram
| | - Sergio Ruiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Sergio Ruiz
| |
Collapse
|
13
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Schneider JM, McIlvain G, Johnson CL. Mechanical Properties of the Developing Brain are Associated with Language Input and Vocabulary Outcome. Dev Neuropsychol 2022; 47:258-272. [PMID: 35938379 PMCID: PMC9397825 DOI: 10.1080/87565641.2022.2108425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
The quality of language that children hear in their environment is associated with the development of language-related brain regions, in turn promoting vocabulary knowledge. Although informative, it remains unknown how these environmental influences alter the structure of neural tissue and subsequent vocabulary outcomes. The current study uses magnetic resonance elastography (MRE) to examine how children's language environments underlie brain tissue mechanical properties, characterized as brain tissue stiffness and damping ratio, and promote vocabulary knowledge. Twenty-five children, ages 5-7, had their audio and video recorded while engaging in a play session with their parents. Children also completed the Picture Vocabulary Task (from NIH Toolbox) and participated in an MRI, where MRE and anatomical images were acquired. Higher quality input was associated with greater stiffness in the bilateral inferior frontal gyrus and right superior temporal gyrus, whereas greater vocabulary knowledge was associated with lower damping ratio in the right inferior frontal gyrus. These findings suggest changes in neural tissue composition are sensitive to malleable aspects of the environment, whereas tissue organization is more strongly associated with vocabulary outcome. Notably, these associations were independent of maternal education, suggesting more proximal measures of a child's environment may be the source of differences in neural tissue structure underlying variability in vocabulary outcomes.
Collapse
Affiliation(s)
- Julie M. Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware; Newark, DE
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware; Newark, DE
| |
Collapse
|
15
|
De Filippi E, Marins T, Escrichs A, Gilson M, Moll J, Tovar-Moll F, Deco G. One session of fMRI-Neurofeedback training on motor imagery modulates whole-brain effective connectivity and dynamical complexity. Cereb Cortex Commun 2022; 3:tgac027. [PMID: 36072710 PMCID: PMC9441014 DOI: 10.1093/texcom/tgac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
In the past decade, several studies have shown that Neurofeedback (NFB) by functional magnetic resonance imaging can alter the functional coupling of targeted and non-targeted areas. However, the causal mechanisms underlying these changes remain uncertain. Here, we applied a whole-brain dynamical model to estimate Effective Connectivity (EC) profiles of resting-state data acquired before and immediately after a single-session NFB training for 17 participants who underwent motor imagery NFB training and 16 healthy controls who received sham feedback. Within-group and between-group classification analyses revealed that only for the NFB group it was possible to accurately discriminate between the 2 resting-state sessions. NFB training-related signatures were reflected in a support network of direct connections between areas involved in reward processing and implicit learning, together with regions belonging to the somatomotor, control, attention, and default mode networks, identified through a recursive-feature elimination procedure. By applying a data-driven approach to explore NFB-induced changes in spatiotemporal dynamics, we demonstrated that these regions also showed decreased switching between different brain states (i.e. metastability) only following real NFB training. Overall, our findings contribute to the understanding of NFB impact on the whole brain’s structure and function by shedding light on the direct connections between brain areas affected by NFB training.
Collapse
Affiliation(s)
- Eleonora De Filippi
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Carrer de Ramon Trias Fargas , 25-27, 08005 Barcelona, Catalonia, Spain
| | - Theo Marins
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo-Rio de Janeiro , 22281-100, Brazil
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Citade universitaria da Universidade Federal do Rio de Janeiro , 21941-590, Brazil
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Carrer de Ramon Trias Fargas , 25-27, 08005 Barcelona, Catalonia, Spain
| | - Matthieu Gilson
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Carrer de Ramon Trias Fargas , 25-27, 08005 Barcelona, Catalonia, Spain
| | - Jorge Moll
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo-Rio de Janeiro , 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo-Rio de Janeiro , 22281-100, Brazil
- Post-Graduate Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Citade universitaria da Universidade Federal do Rio de Janeiro , 21941-590, Brazil
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys , 23, 08010, Barcelona, Catalonia, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences , Stephanstrasse 1a, 04103, Leipzig, Germany
- Turner Institute for Brain and Mental Health, Monash University level 5 , 18 Innovation Walk, Clayton Campus. Wellington Road, Clayton VIC 3800, Australia
| |
Collapse
|
16
|
Kvamme TL, Ros T, Overgaard M. Can neurofeedback provide evidence of direct brain-behavior causality? Neuroimage 2022; 258:119400. [PMID: 35728786 DOI: 10.1016/j.neuroimage.2022.119400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
Neurofeedback is a procedure that measures brain activity in real-time and presents it as feedback to an individual, thus allowing them to self-regulate brain activity with effects on cognitive processes inferred from behavior. One common argument is that neurofeedback studies can reveal how the measured brain activity causes a particular cognitive process. The causal claim is often made regarding the measured brain activity being manipulated as an independent variable, similar to brain stimulation studies. However, this causal inference is vulnerable to the argument that other upstream brain activities change concurrently and cause changes in the brain activity from which feedback is derived. In this paper, we outline the inference that neurofeedback may causally affect cognition by indirect means. We further argue that researchers should remain open to the idea that the trained brain activity could be part of a "causal network" that collectively affects cognition rather than being necessarily causally primary. This particular inference may provide a better translation of evidence from neurofeedback studies to the rest of neuroscience. We argue that the recent advent of multivariate pattern analysis, when combined with implicit neurofeedback, currently comprises the strongest case for causality. Our perspective is that although the burden of inferring direct causality is difficult, it may be triangulated using a collection of various methods in neuroscience. Finally, we argue that the neurofeedback methodology provides unique advantages compared to other methods for revealing changes in the brain and cognitive processes but that researchers should remain mindful of indirect causal effects.
Collapse
Affiliation(s)
- Timo L Kvamme
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Universitetsbyen 3, Aarhus, Denmark; Centre for Alcohol and Drug Research (CRF), Aarhus University, Aarhus, Denmark.
| | - Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Morten Overgaard
- Cognitive Neuroscience Research Unit, CFIN/MINDLab, Aarhus University, Universitetsbyen 3, Aarhus, Denmark
| |
Collapse
|
17
|
Berro DH, Lemée JM, Leiber LM, Emery E, Menei P, Ter Minassian A. Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study. BMC Neurosci 2021; 22:74. [PMID: 34852787 PMCID: PMC8638205 DOI: 10.1186/s12868-021-00671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the “Covert” and “Overt” contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00671-y.
Collapse
Affiliation(s)
- David Hassanein Berro
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France. .,INSERM, CRCINA, Team 17, IRIS building, Angers, France.
| | - Jean-Michel Lemée
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | | | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France.,INSERM, UMR-S U1237, PhIND group, GIP Cyceron, Caen, France
| | - Philippe Menei
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS, ISISV team, University of Angers, Angers, France
| |
Collapse
|
18
|
Kuhn T, Blades R, Gottlieb L, Knudsen K, Ashdown C, Martin-Harris L, Ghahremani D, Dang BH, Bilder RM, Bookheimer SY. Neuroanatomical differences in the memory systems of intellectual giftedness and typical development. Brain Behav 2021; 11:e2348. [PMID: 34651457 PMCID: PMC8613411 DOI: 10.1002/brb3.2348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Studying neuro-structural markers of intellectual giftedness (IG) will inform scientific understanding of the processes helping children excel academically. METHODS Structural and diffusion-weighted MRI was used to compare regional brain shape and connectivity of 12 children with average to high average IQ and 18 IG children, defined as having IQ greater than 145. RESULTS IG had larger subcortical structures and more robust white matter microstructural organization between those structures in regions associated with explicit memory. TD had more connected, larger subcortical structures in regions associated with implicit memory. CONCLUSIONS It was found that the memory systems within brains of children with exceptional intellectual abilities are differently sized and connected compared to the brains of typically developing children. These different neurodevelopmental trajectories suggest different learning strategies. A spectrum of intelligence types is envisioned, facilitated by different ratios of implicit and explicit system, which was validated using a large external dataset.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Robin Blades
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Lev Gottlieb
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Kendra Knudsen
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Christopher Ashdown
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Laurel Martin-Harris
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Dara Ghahremani
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Bianca H Dang
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Robert M Bilder
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| | - Susan Y Bookheimer
- Department ofPsychiatry and Biobehavioral Sciences, UCLA, 635 Charles E Young Dr, South, Los Angeles, CA, 90025, USA
| |
Collapse
|
19
|
Borairi S, Fearon P, Madigan S, Plamondon A, Jenkins J. A mediation meta-analysis of the role of maternal responsivity in the association between socioeconomic risk and children's language. Child Dev 2021; 92:2177-2193. [PMID: 34664260 DOI: 10.1111/cdev.13695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This meta-analysis tested maternal responsivity as a mediator of the association between socioeconomic risk and children's preschool language abilities. The search included studies up to 2017 and meta-analytic structural equation modeling, allowed us to examine the magnitude of the indirect effect across 17 studies (k = 19). The meta-analysis included 6433 predominantly White, English speaking children (Mage = 36 months; 50% female) from Western, industrialized countries. All paths in the model were statistically significant, notably, the indirect effect was significant (b = -.052), showing that maternal responsivity may be a proximal intervening variable between socioeconomic risk and children's language development. Moderator analyses found that the indirect effect was stronger for sensitive parenting than warmth and when parenting was assessed in the family home.
Collapse
Affiliation(s)
- Sahar Borairi
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| | - Pasco Fearon
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sheri Madigan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Andre Plamondon
- FSÉ Department of Educational Foundations and Practices, Laval University, Quebec City, Quebec, Canada
| | - Jennifer Jenkins
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Haugg A, Renz FM, Nicholson AA, Lor C, Götzendorfer SJ, Sladky R, Skouras S, McDonald A, Craddock C, Hellrung L, Kirschner M, Herdener M, Koush Y, Papoutsi M, Keynan J, Hendler T, Cohen Kadosh K, Zich C, Kohl SH, Hallschmid M, MacInnes J, Adcock RA, Dickerson KC, Chen NK, Young K, Bodurka J, Marxen M, Yao S, Becker B, Auer T, Schweizer R, Pamplona G, Lanius RA, Emmert K, Haller S, Van De Ville D, Kim DY, Lee JH, Marins T, Megumi F, Sorger B, Kamp T, Liew SL, Veit R, Spetter M, Weiskopf N, Scharnowski F, Steyrl D. Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis. Neuroimage 2021; 237:118207. [PMID: 34048901 DOI: 10.1016/j.neuroimage.2021.118207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.
Collapse
Affiliation(s)
- Amelie Haugg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria.
| | - Fabian M Renz
- Faculty of Psychology, University of Vienna, Austria
| | | | - Cindy Lor
- Faculty of Psychology, University of Vienna, Austria
| | | | - Ronald Sladky
- Faculty of Psychology, University of Vienna, Austria
| | - Stavros Skouras
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Amalia McDonald
- Department of Psychology, University of Virginia, United States
| | - Cameron Craddock
- Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, United States
| | - Lydia Hellrung
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Canada
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland
| | - Yury Koush
- Department of Radiology and Biomedical Imaging, Yale University, United States
| | - Marina Papoutsi
- UCL Huntington's Disease Centre, Institute of Neurology, University College London, United Kingdom; IXICO plc, United Kingdom
| | - Jackob Keynan
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Israel
| | - Talma Hendler
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Israel
| | | | - Catharina Zich
- Nuffiled Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany; German Center for Diabetes Research (DZD), Germany
| | - Jeff MacInnes
- Institute for Learning and Brain Sciences, University of Washington, United States
| | - R Alison Adcock
- Duke Institute for Brain Sciences, Duke University, United States; Department of Psychiatry and Behavioral Sciences, Duke University, United States
| | - Kathryn C Dickerson
- Department of Psychiatry and Behavioral Sciences, Duke University, United States
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, United States
| | - Kymberly Young
- Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, United States; Stephenson School of Biomedical Engineering, University of Oklahoma, United States
| | - Michael Marxen
- Department of Psychiatry, Technische Universität Dresden, Germany
| | - Shuxia Yao
- Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, China
| | - Benjamin Becker
- Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, China
| | - Tibor Auer
- School of Psychology, University of Surrey, United Kingdom
| | | | - Gustavo Pamplona
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Switzerland
| | - Ruth A Lanius
- Department of Psychiatry, University of Western Ontario, Canada
| | - Kirsten Emmert
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden
| | - Dimitri Van De Ville
- Center for Neuroprosthetics, Ecole polytechnique féderale de Lausanne, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Dong-Youl Kim
- Department of Brain and Cognitive Engineering, Korea University, Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Korea
| | - Theo Marins
- D'Or Institute for Research and Education, Brazil
| | | | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Tabea Kamp
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | | | - Ralf Veit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany; German Center for Diabetes Research (DZD), Germany; High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Germany
| | - Maartje Spetter
- School of Psychology, University of Birmingham, United Kingdom
| | - Nikolaus Weiskopf
- Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Germany
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria
| | - David Steyrl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
21
|
Russo AG, Lührs M, Di Salle F, Esposito F, Goebel R. Towards semantic fMRI neurofeedback: navigating among mental states using real-time representational similarity analysis. J Neural Eng 2021; 18. [PMID: 33684900 DOI: 10.1088/1741-2552/abecc3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Objective. Real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a non-invasive MRI procedure allowing examined participants to learn to self-regulate brain activity by performing mental tasks. A novel two-step rt-fMRI-NF procedure is proposed whereby the feedback display is updated in real-time based on high-level representations of experimental stimuli (e.g. objects to imagine) via real-time representational similarity analysis of multi-voxel patterns of brain activity.Approach. In a localizer session, the stimuli become associated with anchored points on a two-dimensional representational space where distances approximate between-pattern (dis)similarities. In the NF session, participants modulate their brain response, displayed as a movable point, to engage in a specific neural representation. The developed method pipeline is verified in a proof-of-concept rt-fMRI-NF study at 7 T involving a single healthy participant imagining concrete objects. Based on this data and artificial data sets with similar (simulated) spatio-temporal structure and variable (injected) signal and noise, the dependence on noise is systematically assessed.Main results. The participant in the proof-of-concept study exhibited robust activation patterns in the localizer session and managed to control the neural representation of a stimulus towards the selected target in the NF session. The offline analyses validated the rt-fMRI-NF results, showing that the rapid convergence to the target representation is noise-dependent.Significance. Our proof-of-concept study introduces a new NF method allowing the participant to navigate among different mental states. Compared to traditional NF designs (e.g. using a thermometer display to set the level of the neural signal), the proposed approach provides content-specific feedback to the participant and extra degrees of freedom to the experimenter enabling real-time control of the neural activity towards a target brain state without suggesting a specific mental strategy to the subject.
Collapse
Affiliation(s)
- Andrea G Russo
- Department of Political and Communication Sciences, University of Salerno, Fisciano (Salerno), Italy.,Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi (Salerno), Italy
| | - Michael Lührs
- Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands.,Brain Innovation B.V., Maastricht, The Netherlands
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi (Salerno), Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi (Salerno), Italy.,Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands.,Department of Advanced Medical and Surgical Sciences,University of Campania 'Luigi Vanvitelli', Napoli,Italy
| | - Rainer Goebel
- Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands.,Brain Innovation B.V., Maastricht, The Netherlands
| |
Collapse
|
22
|
Guerrero Moreno J, Biazoli CE, Baptista AF, Trambaiolli LR. Closed-loop neurostimulation for affective symptoms and disorders: An overview. Biol Psychol 2021; 161:108081. [PMID: 33757806 DOI: 10.1016/j.biopsycho.2021.108081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
Affective and anxiety disorders are the most prevalent and incident psychiatric disorders worldwide. Therapeutic approaches to these disorders using non-invasive brain stimulation (NIBS) and analogous techniques have been extensively investigated. In this paper, we discuss the combination of NIBS and neurofeedback in closed-loop setups and its application for affective symptoms and disorders. For this, we first provide a rationale for this combination by presenting some of the main original findings of NIBS, with a primary focus on transcranial magnetic stimulation (TMS), and neurofeedback, including protocols based on electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Then, we provide a scope review of studies combining real-time neurofeedback with NIBS protocols in the so-called closed-loop brain state-dependent neuromodulation (BSDS). Finally, we discuss the concomitant use of TMS and real-time functional near-infrared spectroscopy (fNIRS) as a possible solution to the current limitations of BSDS-based protocols for affective and anxiety disorders.
Collapse
Affiliation(s)
- Javier Guerrero Moreno
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Department of Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Abrahão Fontes Baptista
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil; Laboratory of Medical Investigations 54 (LIM-54), Universidade de São Paulo, São Paulo, Brazil; NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Lucas Remoaldo Trambaiolli
- McLean Hospital, Harvard Medical School, Boston, USA; School of Medicine and Dentistry, University of Rochester, Rochester, USA.
| |
Collapse
|
23
|
Sorella S, Grecucci A, Piretti L, Job R. Do anger perception and the experience of anger share common neural mechanisms? Coordinate-based meta-analytic evidence of similar and different mechanisms from functional neuroimaging studies. Neuroimage 2021; 230:117777. [PMID: 33503484 DOI: 10.1016/j.neuroimage.2021.117777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The neural bases of anger are still a matter of debate. In particular we do not know whether anger perception and anger experience rely on similar or different neural mechanisms. To study this topic, we performed activation-likelihood-estimation meta-analyses of human neuroimaging studies on 61 previous studies on anger perception and experience. Anger perception analysis resulted in significant activation in the amygdala, the right superior temporal gyrus, the right fusiform gyrus and the right IFG, thus revealing the role of perceptual temporal areas for perceiving angry stimuli. Anger experience analysis resulted in the bilateral activations of the insula and the ventrolateral prefrontal cortex, thus revealing a role for these areas in the subjective experience of anger and, possibly, in a subsequent evaluation of the situation. Conjunction analyses revealed a common area localized in the right inferior frontal gyrus, probably involved in the conceptualization of anger for both perception and experience. Altogether these results provide new insights on the functional architecture underlying the neural processing of anger that involves separate and joint mechanisms. According to our tentative model, angry stimuli are processed by temporal areas, such as the superior temporal gyrus, the fusiform gyrus and the amygdala; on the other hand, the subjective experience of anger mainly relies on the anterior insula; finally, this pattern of activations converges in the right IFG. This region seems to play a key role in the elaboration of a general meaning of this emotion, when anger is perceived or experienced.
Collapse
Affiliation(s)
- Sara Sorella
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Luca Piretti
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Remo Job
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| |
Collapse
|
24
|
Upregulation of Supplementary Motor Area Activation with fMRI Neurofeedback during Motor Imagery. eNeuro 2021; 8:ENEURO.0377-18.2020. [PMID: 33376115 PMCID: PMC7877466 DOI: 10.1523/eneuro.0377-18.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) neurofeedback (NF) is a promising tool to study the relationship between behavior and brain activity. It enables people to self-regulate their brain signal. Here, we applied fMRI NF to train healthy participants to increase activity in their supplementary motor area (SMA) during a motor imagery (MI) task of complex body movements while they received a continuous visual feedback signal. This signal represented the activity of participants’ localized SMA regions in the NF group and a prerecorded signal in the control group (sham feedback). In the NF group only, results showed a gradual increase in SMA-related activity across runs. This upregulation was largely restricted to the SMA, while other regions of the motor network showed no, or only marginal NF effects. In addition, we found behavioral changes, i.e., shorter reaction times in a Go/No-go task after the NF training only. These results suggest that NF can assist participants to develop greater control over a specifically targeted motor region involved in motor skill learning. The results contribute to a better understanding of the underlying mechanisms of SMA NF based on MI with a direct implication for rehabilitation of motor dysfunctions.
Collapse
|
25
|
Baqapuri HI, Roes LD, Zvyagintsev M, Ramadan S, Keller M, Roecher E, Zweerings J, Klasen M, Gur RC, Mathiak K. A Novel Brain-Computer Interface Virtual Environment for Neurofeedback During Functional MRI. Front Neurosci 2021; 14:593854. [PMID: 33505237 PMCID: PMC7830095 DOI: 10.3389/fnins.2020.593854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)-based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain-computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player's avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE's objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.
Collapse
Affiliation(s)
- Halim I. Baqapuri
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Linda D. Roes
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Souad Ramadan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Zhang J, Wu X, Nie D, Zhuo Y, Li J, Hu Q, Xu J, Yu H. Magnetic Resonance Imaging Studies on Acupuncture Therapy in Depression: A Systematic Review. Front Psychiatry 2021; 12:670739. [PMID: 34489749 PMCID: PMC8417590 DOI: 10.3389/fpsyt.2021.670739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies had been performed using magnetic resonance imaging (MRI) to understand the neural mechanism of acupuncture therapy for depression. However, inconsistencies remain due to differences in research designs and MRI analytical methods. Therefore, we aim to summarize the current MRI research and provide useful information for further research by identifying papers published in English and Chinese about MRI studies on acupuncture for depression up to November 2020. A total of 22 studies met the inclusion criteria, including 810 depression patients and 416 health controls (HCs). The applied designs of these studies are mainly random control trial and pre-post designs. The MRI analytical methods are mainly (fractional) amplitude of low-frequency fluctuation (fALFF/ALFF) and functional connectivity (FC), whereas a small subset of studies used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). The most consistent functional MRI (fMRI) results showed increased N-acetylaspartate/creatine (NAA/Cr) ratios, increased ALFF in the right precuneus, decreased ALFF in the inferior frontal gyrus (IFG), and increased FC of the anterior cingulate cortex (ACC). In contrast, no significant neurological changes were identified in any of the DTI or VBM studies. However, clear, reliable conclusions cannot be drawn due to the use of different designs, analytical methods, seed points selected, types of depression, acupuncture points, and so on. Improved report specifications, well-designed studies, consistent analytical methods, and larger sample sizes will enable the field to better elucidate the underlying mechanisms of acupuncture in depressed patients.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoxiong Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dehui Nie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanyuan Zhuo
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
27
|
Haugg A, Sladky R, Skouras S, McDonald A, Craddock C, Kirschner M, Herdener M, Koush Y, Papoutsi M, Keynan JN, Hendler T, Cohen Kadosh K, Zich C, MacInnes J, Adcock RA, Dickerson K, Chen N, Young K, Bodurka J, Yao S, Becker B, Auer T, Schweizer R, Pamplona G, Emmert K, Haller S, Van De Ville D, Blefari M, Kim D, Lee J, Marins T, Fukuda M, Sorger B, Kamp T, Liew S, Veit R, Spetter M, Weiskopf N, Scharnowski F. Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity? Hum Brain Mapp 2020; 41:3839-3854. [PMID: 32729652 PMCID: PMC7469782 DOI: 10.1002/hbm.25089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Collapse
Affiliation(s)
- Amelie Haugg
- Psychiatric University Hospital ZurichUniversity of ZurichZürichSwitzerland
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Ronald Sladky
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Stavros Skouras
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Amalia McDonald
- Department of PsychologyUniversity of VirginiaCharlottesvilleVirginia
| | - Cameron Craddock
- Department of Diagnostic MedicineThe University of Texas at Austin Dell Medical SchoolAustinTexas
| | - Matthias Kirschner
- Psychiatric University Hospital ZurichUniversity of ZurichZürichSwitzerland
- McConnell Brain Imaging CentreMontréal Neurological Institute, McGill UniversityMontrealCanada
| | - Marcus Herdener
- Psychiatric University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical ImagingYale UniversityNew HavenConnecticut
| | - Marina Papoutsi
- UCL Huntington's Disease CentreInstitute of Neurology, University College LondonLondonEngland
| | - Jackob N. Keynan
- Functional Brain CenterWohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv UniversityTel AvivIsrael
| | - Talma Hendler
- Functional Brain CenterWohl Institute for Advanced Imaging, Tel‐Aviv Sourasky Medical Center, Tel‐Aviv UniversityTel AvivIsrael
| | | | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordEngland
| | - Jeff MacInnes
- Institute for Learning and Brain SciencesUniversity of WashingtonSeattleWashington
| | - R. Alison Adcock
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth Carolina
| | - Kathryn Dickerson
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth Carolina
| | - Nan‐Kuei Chen
- Department of Biomedical EngineeringUniversity of ArizonaTucsonArizona
| | - Kymberly Young
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvania
| | | | - Shuxia Yao
- Clinical Hospital of Chengdu the Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Benjamin Becker
- Clinical Hospital of Chengdu the Brain Science Institute, MOE Key Laboratory for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tibor Auer
- School of PsychologyUniversity of SurreyGuildfordEngland
| | - Renate Schweizer
- Functional Imaging LaboratoryGerman Primate CenterGöttingenGermany
| | - Gustavo Pamplona
- Hôpital and Ophtalmique Jules GoninUniversity of LausanneLausanneSwitzerland
| | - Kirsten Emmert
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Kiel UniversityKielGermany
| | - Sven Haller
- Radiology‐Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Dimitri Van De Ville
- Center for NeuroprostheticsEcole Polytechnique Féderale de LausanneLausanneSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria‐Laura Blefari
- Center for NeuroprostheticsEcole Polytechnique Féderale de LausanneLausanneSwitzerland
| | - Dong‐Youl Kim
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea
| | - Jong‐Hwan Lee
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea
| | - Theo Marins
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
| | - Megumi Fukuda
- School of Fundamental Science and EngineeringWaseda UniversityTokyoJapan
| | - Bettina Sorger
- Department Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Tabea Kamp
- Department Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Sook‐Lei Liew
- Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Maartje Spetter
- School of PsychologyUniversity of BirminghamBirminghamEngland
| | - Nikolaus Weiskopf
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Frank Scharnowski
- Psychiatric University Hospital ZurichUniversity of ZurichZürichSwitzerland
- Faculty of PsychologyUniversity of ViennaViennaAustria
| |
Collapse
|
28
|
Papanastasiou G, Drigas A, Skianis C, Lytras M. Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon 2020; 6:e04250. [PMID: 32954024 PMCID: PMC7482019 DOI: 10.1016/j.heliyon.2020.e04250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/23/2019] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this article is to explore a paradigm shift on Brain Computer Interface (BCI) research, as well as on intervention best practices for training and rehabilitation of students with neurodevelopmental disorders. Recent studies indicate that BCI devices have positive impact on students' attention skills and working memory as well as on other skills, such as visuospatial, social, imaginative and emotional abilities. BCI applications aim to emulate humans' brain and address the appropriate understanding for each student's neurodevelopmental disorders. Studies conducted to provide knowledge about BCI-based intervention applications regarding memory, attention, visuospatial, learning, collaboration, and communication, social, creative and emotional skills are highlighted. Only non-invasive BCI type of applications are being investigated based upon representative, non-exhaustive and state-of-the-art studies within the field. This article examines the progress of BCI research so far, while different BCI paradigms are investigated. BCI-based applications could successfully regulate students' cognitive abilities when used for their training and rehabilitation. Future directions to investigate BCI-based applications for training and rehabilitation of students with neurodevelopmental disorders concerning the different populations involved are discussed.
Collapse
Affiliation(s)
- George Papanastasiou
- NSCR Demokritos, Patr. Gregoriou E' & 27, Neapoleos str., 15341, Greece.,University of the Aegean Karlovassi Samos, 83200, Greece
| | - Athanasios Drigas
- NSCR Demokritos, Patr. Gregoriou E' & 27, Neapoleos str., 15341, Greece
| | | | - Miltiadis Lytras
- The American College of Greece, 6 Gravias str., 153 42, Greece.,King Abdulaziz University, Saudi Arabia
| |
Collapse
|
29
|
Liu N, Yao L, Zhao X. Evaluating the amygdala network induced by neurofeedback training for emotion regulation using hierarchical clustering. Brain Res 2020; 1740:146853. [PMID: 32339500 DOI: 10.1016/j.brainres.2020.146853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Previous studies have shown that regulating the target region by real-time fMRI-based neurofeedback training can influence the activation of other regions and the functional connectivity between them. However, it is not clear whether the training effect of neurofeedback, especially in emotion regulation, is manifested in local network specialization or global network integration. In the current study, we chose the left amygdala (LA) as the target region to regulate positive emotion through real-time fMRI training. Average-linkage hierarchical clustering was employed to cluster the fMRI data recorded during the training to construct whole-brain networks and the LA network to which the LA belongs. RESULTS The activation in the LA and those in some other regions were significantly up-regulated during the training. The clustering analysis at group level showed that the feedback training did not affect the number of networks in the whole brain but altered the distribution and functional connectivity in the LA network. CONCLUSION These findings suggested that the feedback training effects in emotion regulation pattern reflected by the activity of the target brain network and the connections within the network were robustly embodied in local network specialization instead of in global network integration.
Collapse
Affiliation(s)
- Ning Liu
- College of Information Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Li Yao
- College of Information Science and Technology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaojie Zhao
- College of Information Science and Technology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
30
|
Bagarinao E, Yoshida A, Terabe K, Kato S, Nakai T. Improving Real-Time Brain State Classification of Motor Imagery Tasks During Neurofeedback Training. Front Neurosci 2020; 14:623. [PMID: 32670011 PMCID: PMC7326956 DOI: 10.3389/fnins.2020.00623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the effect of the dynamic changes in brain activation during neurofeedback training in the classification of the different brain states associated with the target tasks. We hypothesized that ongoing activation patterns could change during neurofeedback session due to learning effects and, in the process, could affect the performance of brain state classifiers trained using data obtained prior to the session. Using a motor imagery paradigm, we then examined the application of an incremental training approach where classifiers were continuously updated in order to account for these activation changes. Our results confirmed our hypothesis that neurofeedback training could be associated with dynamic changes in brain activation characterized by an initially more widespread brain activation followed by a more focused and localized activation pattern. By continuously updating the trained classifiers after each feedback run, significant improvement in accurately classifying the different brain states associated with the target motor imagery tasks was achieved. These findings suggest the importance of taking into account brain activation changes during neurofeedback in order to provide more reliable and accurate feedback information to the participants, which is critical for an effective neurofeedback application.
Collapse
Affiliation(s)
| | - Akihiro Yoshida
- Neuroimaging and Informatics Group, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazunori Terabe
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shohei Kato
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshiharu Nakai
- Neuroimaging and Informatics Group, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Radiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
31
|
Cognitive and Social Rehabilitation in Schizophrenia-From Neurophysiology to Neuromodulation. Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114034. [PMID: 32517043 PMCID: PMC7312635 DOI: 10.3390/ijerph17114034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022]
Abstract
The aim of this pilot study was to analyse the influence of Galvanic Skin Response (GSR) Biofeedback training in a group of 18 men with schizophrenia at the remission stage. The results were verified according to: Positive and Negative Syndrome Scale (PANSS), Acceptance of Illness Scale (AIS), Self-efficacy Scale (GSES), Beck Cognitive Insight Scale (BCIS) scales, Colour Trial Test (CTT-1, CTT-2), d2 psychological tests, Quantitative Electroencephalogram (QEEG) Biofeedback, auditory event-related potentials (ERPs), and serum levels of brain-derived neurotrophic factor (BDNF). The results were compared in the same patients after 3 months. Statistically significant changes were noted in results for the variables on the PANSS scale. For the BDNF variable, a statistically significant increase occurred, indicating that GSR Biofeedback training may influence serum levels of the neurotrophic factor. Statistically significant changes were noted in results for the variables on the BCIS, AIS, and GSES indicating an improvement in the cognitive and social functioning. Changes were noted for results for theta/beta and theta/Sensory Motor Rhythm (SMR) ratios, which indicate an improvement in concentration and attention. Changes were noted for the N1 wave amplitude in the frontal brain region (F-z), and for the P2 wave latency in the central brain region (C-z), which indicates an improvement in the initial perceptual analysis. The use of GSR Biofeedback in a group of patients with schizophrenia gives interesting results, but requires further in-depth research.
Collapse
|
32
|
Hong W, Zhao Z, Wang D, Li M, Tang C, Li Z, Xu R, Chan CCH. Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NEUROIMAGE-CLINICAL 2020; 26:102224. [PMID: 32146322 PMCID: PMC7063237 DOI: 10.1016/j.nicl.2020.102224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Stroke survivors are known to suffer from post-stroke depression (PSD). However, the likelihood of structural changes in the brains of PSD patients has not been explored. This study aims to extract changes in the gray matter of these patients and test how these changes account for the PSD symptoms. High-resolution T1 weighted images were collected from 23 PSD patients diagnosed with subcortical stroke. Voxel-based morphometry and support vector machine analyses were used to analyze the data. The results were compared with those collected from 33 non-PSD patients. PSD group showed decreased gray matter volume (GMV) in the left middle frontal gyrus (MFG) when compared to the non-PSD patients. Together with the clinical and demographic variables, the MFG's GMV predictive model was able to distinguish PSD from the non-PSD patients (0•70 sensitivity and 0•88 specificity). The changes in the left inferior frontal gyrus (61%) and dorsolateral prefrontal cortex (39%) suggest that the somatic/affective symptoms in PSD is likely to be due to patients' problems with understanding and appraising negative emotional stimuli. The impact brought by the reduced prefrontal to limbic system connectivity needs further exploration. These findings indicate possible systemic involvement of the frontolimbic network resulting in PSD after brain lesions which is likely to be independent from the location of the lesion. The results inform specific clinical interventions to be provided for treating depressive symptoms in post-stroke patients.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Dongmei Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chaozheng Tang
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China.
| | - Zheng Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
33
|
Okano K, Bauer CCC, Ghosh SS, Lee YJ, Melero H, de Los Angeles C, Nestor PG, Del Re EC, Northoff G, Whitfield-Gabrieli S, Niznikiewicz MA. Real-time fMRI feedback impacts brain activation, results in auditory hallucinations reduction: Part 1: Superior temporal gyrus -Preliminary evidence. Psychiatry Res 2020; 286:112862. [PMID: 32113035 PMCID: PMC7808413 DOI: 10.1016/j.psychres.2020.112862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/19/2023]
Abstract
Auditory hallucinations (AH) are one of the core symptoms of schizophrenia (SZ) and constitute a significant source of suffering and disability. One third of SZ patients experience pharmacology-resistant AH, so an alternative/complementary treatment strategy is needed to alleviate this debilitating condition. In this study, real-time functional Magnetic Resonance Imaging neurofeedback (rt-fMRI NFB), a non-invasive technique, was used to teach 10 SZ patients with pharmacology-resistant AH to modulate their brain activity in the superior temporal gyrus (STG), a key area in the neurophysiology of AH. A functional task was designed in order to provide patients with a specific strategy to help them modify their brain activity in the desired direction. Specifically, they received neurofeedback from their own STG and were trained to upregulate it while listening to their own voice recording and downregulate it while ignoring a stranger's voice recording. This guided performance neurofeedback training resulted in a) a significant reduction in STG activation while ignoring a stranger's voice, and b) reductions in AH scores after the neurofeedback session. A single, 21-minute session of rt-fMRI NFB was enough to produce these effects, suggesting that this approach may be an efficient and clinically viable alternative for the treatment of pharmacology-resistant AH.
Collapse
Affiliation(s)
- Kana Okano
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Clemens C C Bauer
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yoon Ji Lee
- Northeastern University, Boston, MA 02139, USA
| | - Helena Melero
- Northeastern University, Boston, MA 02139, USA; Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| | - Carlo de Los Angeles
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul G Nestor
- University of Massachusetts, Boston, Boston MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Boston VA Healthcare System, Boston, MA 02130, USA
| | - Elisabetta C Del Re
- Harvard Medical School, Boston, MA 02115, USA; Boston VA Healthcare System, Boston, MA 02130, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Northeastern University, Boston, MA 02139, USA
| | - Margaret A Niznikiewicz
- Harvard Medical School, Boston, MA 02115, USA; Boston VA Healthcare System, Boston, MA 02130, USA; Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
34
|
Pereira J, Direito B, Sayal A, Ferreira C, Castelo-Branco M. Self-Modulation of Premotor Cortex Interhemispheric Connectivity in a Real-Time Functional Magnetic Resonance Imaging Neurofeedback Study Using an Adaptive Approach. Brain Connect 2019; 9:662-672. [DOI: 10.1089/brain.2019.0697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- João Pereira
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging, Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Bruno Direito
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging, Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging, Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carlos Ferreira
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging, Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging, Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Zhu Y, Gao H, Tong L, Li Z, Wang L, Zhang C, Yang Q, Yan B. Emotion Regulation of Hippocampus Using Real-Time fMRI Neurofeedback in Healthy Human. Front Hum Neurosci 2019; 13:242. [PMID: 31379539 PMCID: PMC6660260 DOI: 10.3389/fnhum.2019.00242] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/28/2019] [Indexed: 01/12/2023] Open
Abstract
Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) is a prospective tool to enhance the emotion regulation capability of participants and to alleviate their emotional disorders. The hippocampus is a key brain region in the emotional brain network and plays a significant role in social cognition and emotion processing in the brain. However, few studies have focused on the emotion NF of the hippocampus. This study investigated the feasibility of NF training of healthy participants to self-regulate the activation of the hippocampus and assessed the effect of rtfMRI-NF on the hippocampus before and after training. Twenty-six right-handed healthy volunteers were randomly assigned to the experimental group receiving hippocampal rtfMRI-NF (n = 13) and the control group (CG) receiving rtfMRI-NF from the intraparietal sulcus rtfMRI-NF (n = 13) and completed a total of four NF runs. The hippocampus and the intraparietal sulcus were defined based on the Montreal Neurological Institute (MNI) standard template, and NF signal was measured as a percent signal change relative to the baseline obtained by averaging the fMRI signal for the preceding 20 s long rest block. NF signal (percent signal change) was updated every 2 s and was displayed on the screen. The amplitude of low-frequency fluctuation and regional homogeneity values was calculated to evaluate the effects of NF on spontaneous neural activity in resting-state fMRI. A standard general linear model (GLM) analysis was separately conducted for each fMRI NF run. Results showed that the activation of hippocampus increased after four NF training runs. The hippocampal activity of the experiment group participants was higher than that of the CG. They also showed elevated hippocampal activity and the greater amygdala–hippocampus connectivity. The anterior temporal lobe, parahippocampal gyrus, hippocampus, and amygdala of brain regions associated with emotional processing were activated during training. We presented a proof-of-concept study using rtfMRI-NF for hippocampus up-regulation in the recall of positive autobiographical memories. The current study may provide a new method to regulate our emotions and can potentially be applied to the clinical treatment of emotional disorders.
Collapse
Affiliation(s)
- Yashuo Zhu
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - Hui Gao
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - Li Tong
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - ZhongLin Li
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Linyuan Wang
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - Chi Zhang
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - Qiang Yang
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| | - Bin Yan
- PLA Strategy Support Force Information Engineering University, Communication Engineering College, Zhengzhou, China
| |
Collapse
|
36
|
|
37
|
Karch S, Paolini M, Gschwendtner S, Jeanty H, Reckenfelderbäumer A, Yaseen O, Maywald M, Fuchs C, Rauchmann BS, Chrobok A, Rabenstein A, Ertl-Wagner B, Pogarell O, Keeser D, Rüther T. Real-Time fMRI Neurofeedback in Patients With Tobacco Use Disorder During Smoking Cessation: Functional Differences and Implications of the First Training Session in Regard to Future Abstinence or Relapse. Front Hum Neurosci 2019; 13:65. [PMID: 30886575 PMCID: PMC6409331 DOI: 10.3389/fnhum.2019.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 02/04/2023] Open
Abstract
One of the most prominent symptoms in addiction disorders is the strong desire to consume a particular substance or to show a certain behavior (craving). The strong association between craving and the probability of relapse emphasizes the importance of craving in the therapeutic process. Former studies have demonstrated that neuromodulation using real-time fMRI (rtfMRI) neurofeedback (NF) can be used as a treatment modality in patients with tobacco use disorder. The aim of the present project was to determine whether it is possible to predict the outcome of NF training plus group psychotherapy at the beginning of the treatment. For that purpose, neuronal responses during the first rtfMRI NF session of patients who remained abstinent for at least 3 months were compared to those of patients with relapse. All patients were included in a certified smoke-free course and took part in three NF sessions. During the rtfMRI NF sessions tobacco-associated and neutral pictures were presented. Subjects were instructed to reduce their neuronal responses during the presentation of smoking cues in an individualized region of interest for craving [anterior cingulate cortex (ACC), insula or dorsolateral prefrontal cortex]. Patients were stratified to different groups [abstinence (N = 10) vs. relapse (N = 12)] according to their individual smoking status 3 months after the rtfMRI NF training. A direct comparison of BOLD responses during the first NF-session of patients who had remained abstinent over 3 months after the NF training and patients who had relapsed after 3 months showed that patients of the relapse group demonstrated enhanced BOLD responses, especially in the ACC, the supplementary motor area as well as dorsolateral prefrontal areas, compared to abstinent patients. These results suggest that there is a probability of estimating a successful withdrawal in patients with tobacco use disorder by analyzing the first rtfMRI NF session: a pronounced reduction of frontal responses during NF training in patients might be the functional correlate of better therapeutic success. The results of the first NF sessions could be useful as predictor whether a patient will be able to achieve success after the behavioral group therapy and NF training in quitting smoking or not.
Collapse
Affiliation(s)
- Susanne Karch
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marco Paolini
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Gschwendtner
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hannah Jeanty
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Arne Reckenfelderbäumer
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Omar Yaseen
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maximilian Maywald
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina Fuchs
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Agnieszka Chrobok
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrea Rabenstein
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tobias Rüther
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
38
|
Rubia K, Criaud M, Wulff M, Alegria A, Brinson H, Barker G, Stahl D, Giampietro V. Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. Neuroimage 2019; 188:43-58. [PMID: 30513395 PMCID: PMC6414400 DOI: 10.1016/j.neuroimage.2018.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is associated with poor self-control, underpinned by inferior fronto-striatal deficits. We showed previously that 18 ADHD adolescents over 11 runs of 8.5 min of real-time functional magnetic resonance neurofeedback of the right inferior frontal cortex (rIFC) progressively increased activation in 2 regions of the rIFC which was associated with clinical symptom improvement. In this study, we used functional connectivity analyses to investigate whether fMRI-Neurofeedback of rIFC resulted in dynamic functional connectivity changes in underlying neural networks. Whole-brain seed-based functional connectivity analyses were conducted using the two clusters showing progressively increased activation in rIFC as seed regions to test for changes in functional connectivity before and after 11 fMRI-Neurofeedback runs. Furthermore, we tested whether the resulting functional connectivity changes were associated with clinical symptom improvements and whether they were specific to fMRI-Neurofeedback of rIFC when compared to a control group who had to self-regulate another region. rIFC showed increased positive functional connectivity after relative to before fMRI-Neurofeedback with dorsal caudate and anterior cingulate and increased negative functional connectivity with regions of the default mode network (DMN) such as posterior cingulate and precuneus. Furthermore, the functional connectivity changes were correlated with clinical improvements and the functional connectivity and correlation findings were specific to the rIFC-Neurofeedback group. The findings show for the first time that fMRI-Neurofeedback of a typically dysfunctional frontal region in ADHD adolescents leads to strengthening within fronto-cingulo-striatal networks and to weakening of functional connectivity with posterior DMN regions and that this may be underlying clinical improvement.
Collapse
Affiliation(s)
- K Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - M Criaud
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - M Wulff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - A Alegria
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - H Brinson
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - G Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - D Stahl
- Department of Biostatistics & Health Informatics, King's College London, UK
| | - V Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
39
|
Sorger B, Scharnowski F, Linden DEJ, Hampson M, Young KD. Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage 2019; 186:256-265. [PMID: 30423429 PMCID: PMC6338498 DOI: 10.1016/j.neuroimage.2018.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
fMRI Neurofeedback research employs many different control conditions. Currently, there is no consensus as to which control condition is best, and the answer depends on what aspects of the neurofeedback-training design one is trying to control for. These aspects can range from determining whether participants can learn to control brain activity via neurofeedback to determining whether there are clinically significant effects of the neurofeedback intervention. Lack of consensus over criteria for control conditions has hampered the design and interpretation of studies employing neurofeedback protocols. This paper presents an overview of the most commonly employed control conditions currently used in neurofeedback studies and discusses their advantages and disadvantages. Control conditions covered include no control, treatment-as-usual, bidirectional-regulation control, feedback of an alternative brain signal, sham feedback, and mental-rehearsal control. We conclude that the selection of the control condition(s) should be determined by the specific research goal of the study and best procedures that effectively control for relevant confounding factors.
Collapse
Affiliation(s)
- Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - David E J Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Psychiatry and the Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Kymberly D Young
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Hu YX, He JR, Yang B, Huang X, Li YP, Zhou FQ, Xu XX, Zhong YL, Wang J, Wu XR. Abnormal resting-state functional network centrality in patients with high myopia: evidence from a voxel-wise degree centrality analysis. Int J Ophthalmol 2018; 11:1814-1820. [PMID: 30450313 DOI: 10.18240/ijo.2018.11.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the functional networks underlying the brain-activity changes of patients with high myopia using the voxel-wise degree centrality (DC) method. METHODS In total, 38 patients with high myopia (HM) (17 males and 21 females), whose binocular refractive diopter were -6.00 to -7.00 D, and 38 healthy controls (17 males and 21 females), closely matched in age, sex, and education levels, participated in the study. Spontaneous brain activities were evaluated using the voxel-wise DC method. The receiver operating characteristic curve was measured to distinguish patients with HM from healthy controls. Correlation analysis was used to explore the relationship between the observed mean DC values of the different brain areas and the behavioral performance. RESULTS Compared with healthy controls, HM patients had significantly decreased DC values in the right inferior frontal gyrus/insula, right middle frontal gyrus, and right supramarginal/inferior parietal lobule (P<0.05). In contrast, HM patients had significantly increased DC values in the right cerebellum posterior lobe, left precentral gyrus/postcentral gyrus, and right middle cingulate gyrus (P<0.05). However, no relationship was found between the observed mean DC values of the different brain areas and the behavioral performance (P>0.05). CONCLUSION HM is associated with abnormalities in many brain regions, which may indicate the neural mechanisms of HM. The altered DC values may be used as a useful biomarker for the brain activity changes in HM patients.
Collapse
Affiliation(s)
- Yu-Xiang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun-Rong He
- Department of Quality Management Office, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, Jiangxi Province, China
| | - Bo Yang
- Department of Ophthalmology, Xinjiang People's Hospital, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Xin Huang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Ping Li
- Department of Ophthalmology, Dongxiang People's Hospital, Fuzhou 344000, Jiangxi Province, China
| | - Fu-Qing Zhou
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Xuan Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Lin Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun Wang
- Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Rong Wu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
41
|
Huang X, Zhou S, Su T, Ye L, Zhu PW, Shi WQ, Min YL, Yuan Q, Yang QC, Zhou FQ, Shao Y. Resting cerebral blood flow alterations specific to the comitant exophoria patients revealed by arterial spin labeling perfusion magnetic resonance imaging. Microvasc Res 2018; 120:67-73. [DOI: 10.1016/j.mvr.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
|
42
|
Ryherd K, Jasinska K, Van Dyke JA, Hung YH, Baron E, Mencl WE, Zevin J, Landi N. Cortical regions supporting reading comprehension skill for single words and discourse. BRAIN AND LANGUAGE 2018; 186:32-43. [PMID: 30212746 PMCID: PMC6447036 DOI: 10.1016/j.bandl.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
A substantial amount of variation in reading comprehension skill is explained by listening comprehension skill, suggesting tight links between printed and spoken discourse processing. In addition, both word level (e.g., vocabulary) and discourse-level sub-skills (e.g., inference-making) support overall comprehension. However, while these contributions to variation in comprehension skill have been well-studied behaviorally, the underlying neurobiological basis of these relationships is less well understood. In order to examine the neural bases of individual differences in reading comprehension as a function of input modality and processing level, we examined functional neural activation to both spoken and printed single words and passages in adolescents with a range of comprehension skill. Data driven Partial Least Squares Correlation (PLSC) analyses revealed that comprehension skill was positively related to activation in a number of regions associated with discourse comprehension and negatively related to activation in regions associated with executive function and memory across processing levels and input modalities.
Collapse
Affiliation(s)
- K Ryherd
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States; Haskins Laboratories, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - K Jasinska
- Department of Linguistics and Cognitive Science, University of Delaware, United States; Haskins Laboratories, New Haven, CT, United States
| | - J A Van Dyke
- Haskins Laboratories, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Y-H Hung
- Haskins Laboratories, New Haven, CT, United States
| | - E Baron
- Haskins Laboratories, New Haven, CT, United States
| | - W E Mencl
- Haskins Laboratories, New Haven, CT, United States; Department of Linguistics, Yale University, New Haven, CT, United States
| | - J Zevin
- Haskins Laboratories, New Haven, CT, United States; Departments of Psychology and Linguistics, University of Southern California, Los Angeles, CA, United States
| | - N Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States; Haskins Laboratories, New Haven, CT, United States; Yale Child Study Center, Yale University, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States.
| |
Collapse
|
43
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
44
|
Coben R, Middlebrooks M, Lightstone H, Corbell M. Four Channel Multivariate Coherence Training: Development and Evidence in Support of a New Form of Neurofeedback. Front Neurosci 2018; 12:729. [PMID: 30364276 PMCID: PMC6193115 DOI: 10.3389/fnins.2018.00729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
As the field of neurofeedback and neuromodulation grows, trends toward using neurofeedback to treat problems of brain dysfunction have emerged. While the use of connectivity based fMRI guided neurofeedback has shown itself to be efficacious, the expense related to the treatment calls for a more practical solution. The use of QEEG guided neurofeedback in the treatment has shown promise as an emerging treatment. To date, EEG based neurofeedback approaches have used technology with limited sophistication. We designed a new form of neurofeedback that uses four channels of EEG with a multivariate calculation of coherence metrics. Following a mathematical presentation of this model, we present findings of a multi-site study with clinical subjects with various diagnoses. We compared this form of multivariate coherence neurofeedback to the more standard two channel coherence training. Findings showed that there was a significant difference between the groups with four channel multivariate coherence neurofeedback leading to greater changes in EEG metrics. Compared to two channel coherence training, four channel multivariate coherence neurofeedback led to a greater than 50% change in power and 400% in coherence values per session. The significance of these findings is discussed in relation to complex calculations of effective connectivity and how this might lead to even greater enhancements in neurofeedback efficacy.
Collapse
Affiliation(s)
- Robert Coben
- Integrated Neuroscience Services, Fayetteville, AR, United States
| | | | | | - Madeleine Corbell
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
45
|
Aglieri V, Chaminade T, Takerkart S, Belin P. Functional connectivity within the voice perception network and its behavioural relevance. Neuroimage 2018; 183:356-365. [PMID: 30099078 PMCID: PMC6215333 DOI: 10.1016/j.neuroimage.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Recognizing who is speaking is a cognitive ability characterized by considerable individual differences, which could relate to the inter-individual variability observed in voice-elicited BOLD activity. Since voice perception is sustained by a complex brain network involving temporal voice areas (TVAs) and, even if less consistently, extra-temporal regions such as frontal cortices, functional connectivity (FC) during an fMRI voice localizer (passive listening of voices vs non-voices) has been computed within twelve temporal and frontal voice-sensitive regions (“voice patches”) individually defined for each subject (N = 90) to account for inter-individual variability. Results revealed that voice patches were positively co-activated during voice listening and that they were characterized by different FC pattern depending on the location (anterior/posterior) and the hemisphere. Importantly, FC between right frontal and temporal voice patches was behaviorally relevant: FC significantly increased with voice recognition abilities as measured in a voice recognition test performed outside the scanner. Hence, this study highlights the importance of frontal regions in voice perception and it supports the idea that looking at FC between stimulus-specific and higher-order frontal regions can help understanding individual differences in processing social stimuli such as voices.
Collapse
Affiliation(s)
- Virginia Aglieri
- Institut des Neurosciences de la Timone, UMR 7289, CNRS and Université Aix-Marseille, Marseille, France.
| | - Thierry Chaminade
- Institut des Neurosciences de la Timone, UMR 7289, CNRS and Université Aix-Marseille, Marseille, France; Institute of Language, Communication and the Brain, Marseille, France
| | - Sylvain Takerkart
- Institut des Neurosciences de la Timone, UMR 7289, CNRS and Université Aix-Marseille, Marseille, France; Institute of Language, Communication and the Brain, Marseille, France
| | - Pascal Belin
- Institut des Neurosciences de la Timone, UMR 7289, CNRS and Université Aix-Marseille, Marseille, France; Institute of Language, Communication and the Brain, Marseille, France; International Laboratories for Brain, Music and Sound, Department of Psychology, Université de Montréal, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
Sherwood MS, Parker JG, Diller EE, Ganapathy S, Bennett K, Nelson JT. Volitional down-regulation of the primary auditory cortex via directed attention mediated by real-time fMRI neurofeedback. AIMS Neurosci 2018; 5:179-199. [PMID: 32341960 PMCID: PMC7179344 DOI: 10.3934/neuroscience.2018.3.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/25/2018] [Indexed: 02/03/2023] Open
Abstract
The present work assessed the efficacy of training volitional down-regulation of the primary auditory cortex (A1) based on real-time functional magnetic resonance imaging neurofeedback (fMRI-NFT). A1 has been shown to be hyperactive in chronic tinnitus patients, and has been implicated as a potential source for the tinnitus percept. 27 healthy volunteers with normal hearing underwent 5 fMRI-NFT sessions: 18 received real neurofeedback and 9 sham neurofeedback. Each session was composed of a simple auditory fMRI followed by 2 runs of A1 fMRI-NFT. The auditory fMRI alternated periods of no auditory with periods of white noise stimulation at 90 dB. A1 activity, defined from a region using the activity during the preceding auditory run, was continuously updated during fMRI-NFT using a simple bar plot, and was accompanied by white noise (90 dB) stimulation for the duration of the scan. Each fMRI-NFT run alternated “relax” periods with “lower” periods. Subjects were instructed to watch the bar during the relax condition and actively reduce the bar by decreasing A1 activation during the lower condition. Average A1 de-activation, representative of the ability to volitionally down-regulate A1, was extracted from each fMRI-NFT run. A1 de-activation was found to increase significantly across training and to be higher in those receiving real neurofeedback. A1 de-activation in sessions 2 and 5 were found to be significantly greater than session 1 in only the group receiving real neurofeedback. The most successful subjects reportedly adopted mindfulness tasks associated with directed attention. For the first time, fMRI-NFT has been applied to teach volitional control of A1 de-activation magnitude over more than 1 session. These are important findings for therapeutic development as the magnitude of A1 activity is altered in tinnitus populations and it is unlikely a single fMRI-NFT session will reverse the effects of tinnitus.
Collapse
Affiliation(s)
- Matthew S Sherwood
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Jason G Parker
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University, IN, USA
| | - Emily E Diller
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University, IN, USA.,School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Subhashini Ganapathy
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA.,Department of Trauma Care, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kevin Bennett
- Department of Psychology, Wright State University, Dayton, OH, USA
| | - Jeremy T Nelson
- Department of Defense Hearing Center of Excellence, JBSA-Lackland, USA
| |
Collapse
|
47
|
Young KD, Zotev V, Phillips R, Misaki M, Drevets WC, Bodurka J. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review. Psychiatry Clin Neurosci 2018; 72:466-481. [PMID: 29687527 PMCID: PMC6035103 DOI: 10.1111/pcn.12665] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.
Collapse
Affiliation(s)
- Kymberly D. Young
- Laureate Institute for Brain Research, Tulsa, OK
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, OK
| | | | | | - Wayne C. Drevets
- Janssen Research and Development, LLC, of Johnson & Johnson, Inc., New Brunswick, NJ
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK
| |
Collapse
|
48
|
Rance M, Walsh C, Sukhodolsky DG, Pittman B, Qiu M, Kichuk SA, Wasylink S, Koller WN, Bloch M, Gruner P, Scheinost D, Pittenger C, Hampson M. Time course of clinical change following neurofeedback. Neuroimage 2018; 181:807-813. [PMID: 29729393 DOI: 10.1016/j.neuroimage.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022] Open
Abstract
Neurofeedback - learning to modulate brain function through real-time monitoring of current brain state - is both a powerful method to perturb and probe brain function and an exciting potential clinical tool. For neurofeedback effects to be useful clinically, they must persist. Here we examine the time course of symptom change following neurofeedback in two clinical populations, combining data from two ongoing neurofeedback studies. This analysis reveals a shared pattern of symptom change, in which symptoms continue to improve for weeks after neurofeedback. This time course has several implications for future neurofeedback studies. Most neurofeedback studies are not designed to test an intervention with this temporal pattern of response. We recommend that new studies incorporate regular follow-up of subjects for weeks or months after the intervention to ensure that the time point of greatest effect is sampled. Furthermore, this time course of continuing clinical change has implications for crossover designs, which may attribute long-term, ongoing effects of real neurofeedback to the control intervention that follows. Finally, interleaving neurofeedback sessions with assessments and examining when clinical improvement peaks may not be an appropriate approach to determine the optimal number of sessions for an application.
Collapse
Affiliation(s)
- Mariela Rance
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher Walsh
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denis G Sukhodolsky
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephen A Kichuk
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Suzanne Wasylink
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - William N Koller
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael Bloch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Patricia Gruner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA; Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Christopher Pittenger
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States; Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA; Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United States.
| |
Collapse
|
49
|
Thibault RT, MacPherson A, Lifshitz M, Roth RR, Raz A. Neurofeedback with fMRI: A critical systematic review. Neuroimage 2018; 172:786-807. [DOI: 10.1016/j.neuroimage.2017.12.071] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022] Open
|
50
|
da Silva RL, Labrecque D, Caromano FA, Higgins J, Frak V. Manual action verbs modulate the grip force of each hand in unimanual or symmetrical bimanual tasks. PLoS One 2018; 13:e0192320. [PMID: 29401468 PMCID: PMC5798821 DOI: 10.1371/journal.pone.0192320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2018] [Indexed: 11/18/2022] Open
Abstract
Manual action verbs modulate the right-hand grip force in right-handed subjects. However, to our knowledge, no studies demonstrate the ability to accomplish this modulation during bimanual tasks nor describe their effect on left-hand behavior in unimanual and bimanual tasks. Using load cells and word playlists, we evaluated the occurrence of grip force modulation by manual action verbs in unimanual and symmetrical bimanual tasks across the three auditory processing phases. We found a significant grip force increase for all conditions compared to baseline, indicating the occurrence of modulation. When compared to each other, the grip force variation from baseline for the three phases of both hands in the symmetrical bimanual task was not different from the right-hand in the unimanual task. The left-hand grip force showed a lower amplitude for auditory phases 1 and 2 when compared to the other conditions. The right-hand grip force modulation became significant from baseline at 220 ms after the word onset in the unimanual task. This moment occurred earlier for both hands in bimanual task (160 ms for the right-hand and 180 for the left-hand). It occurred later for the left-hand in unimanual task (320 ms). We discuss the hypothesis that Broca's area and Broca's homologue area likely control the left-hand modulation in a unilateral or a bilateral fashion. These results provide new evidence for understanding the linguistic function processing in both hemispheres.
Collapse
Affiliation(s)
- Ronaldo Luis da Silva
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
- * E-mail:
| | - David Labrecque
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Fátima Aparecida Caromano
- Laboratory of Physical Therapy and Behaviour, Department of Physical Therapy, Speech and Occupational Therapy, University of São Paulo Medical School, São Paulo, Brazil
| | - Johanne Higgins
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
- École de Réadaptation, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Victor Frak
- Faculté des Sciences, Université du Québec à Montréal, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation (CRIR), site de l’Institut de Réadaptation Gingras-Lindsay-de-Montréal (IRGLM) du CIUSSS Centre-Sud-de-l'Île-de-Montréal, Quebec, Canada
| |
Collapse
|