1
|
Tian L, Chen H, Kujala J, Parviainen T. Spatiotemporal dynamics of abstract concept processing: An MEG study. BRAIN AND LANGUAGE 2025; 260:105505. [PMID: 39637563 DOI: 10.1016/j.bandl.2024.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Our current understanding of how linguistic concepts are represented and retrieved in the brain is largely based on studies using concrete language, and only few studies have focused on the neural correlates of abstract concepts. The role of the motor system, besides the classical language network, has been intensively discussed in action-related concrete concepts. To advance our understanding of spatiotemporal dynamics underlying abstract concept processing, our study investigated to what extent language and motor regions are engaged in the processing of abstract concepts vs. concrete concepts. We used concrete, metaphorical, and abstract phrases as stimuli, creating a graded continuum of abstractness. Neuromagnetic signals were recorded from 26 Chinese native speakers using a 306-channel whole-head magnetoencephalography (MEG) system. Cluster-based permutation F-tests were carried out on the amplitude of source waveform for individual language and motor regions of interest (ROIs) in the three consecutive time-windows (200-300, 300-400, and 400-500 ms). Results showed that, compared with concrete and metaphorical phrases, abstract phrases evoked significantly weaker activation in the left posterior part of superior temporal sulcus (STS) at 200-300 ms, and significantly stronger activation in the left anterior temporal pole (TP) at 300-400 ms. We found no significant differences in the involvement of motor ROIs across conditions. Our results suggest that concrete concept processing engages more the posterior STS in an earlier time window, while abstract concept processing relies more strongly on the anterior TP in a later time window. Results are discussed by revisiting the ATL (anterior temporal lobe)-hub hypothesis and the novel definition of concrete and abstract concepts.
Collapse
Affiliation(s)
- Lili Tian
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä 40014, Finland; School of Foreign Languages, Dalian University of Technology, Dalian 116024, China; Language and Brain Research Centre, Sichuan International Studies University, Chongqing 400031, China
| | - Hongjun Chen
- School of Foreign Languages, Dalian University of Technology, Dalian 116024, China.
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä 40014, Finland.
| |
Collapse
|
2
|
Kewenig VN, Vigliocco G, Skipper JI. When abstract becomes concrete, naturalistic encoding of concepts in the brain. eLife 2024; 13:RP91522. [PMID: 39636743 PMCID: PMC11620750 DOI: 10.7554/elife.91522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Language is acquired and processed in complex and dynamic naturalistic contexts, involving the simultaneous processing of connected speech, faces, bodies, objects, etc. How words and their associated concepts are encoded in the brain during real-world processing is still unknown. Here, the representational structure of concrete and abstract concepts was investigated during movie watching to address the extent to which brain responses dynamically change depending on visual context. First, across contexts, concrete and abstract concepts are shown to encode different experience-based information in separable sets of brain regions. However, these differences are reduced when multimodal context is considered. Specifically, the response profile of abstract words becomes more concrete-like when these are processed in visual scenes highly related to their meaning. Conversely, when the visual context is unrelated to a given concrete word, the activation pattern resembles more that of abstract conceptual processing. These results suggest that while concepts generally encode habitual experiences, the underlying neurobiological organisation is not fixed but depends dynamically on available contextual information.
Collapse
Affiliation(s)
| | | | - Jeremy I Skipper
- Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Fraunberger EA, Wilson AJ, Idriss A, Campbell C, King R, Wang M, Debert CT. Cluster-based analysis of PTSD-Checklist for DSM-5 (PCL-5) in civilians with post-concussive cognitive changes. Brain Inj 2024; 38:1236-1244. [PMID: 39082467 DOI: 10.1080/02699052.2024.2381065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE This study explores the relationship between PTSD symptoms and cognition in patients with persistent post-concussive symptoms (PPCS). METHODS Adults with PPCS presenting to a specialized brain injury clinic provided demographic and injury information and completed the PTSD checklist for DSM-5, Generalized Anxiety Disorder Scale-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9). The Montreal Cognitive Assessment (MoCA) was used to screen for possible cognitive concerns. Multiple regression analysis (MLR) adjusting for age, sex, mechanism of injury, psychiatric history, number of previous concussions, months since most recent injury, and mental health questionnaire scores was used to determine associations between PTSD and cognition. Binomial logistic regression explored the relationship between domains of the MoCA and PCL-5 scores. RESULTS We found a negative correlation between MoCA scores, PCL-5 (ρ=-0.211, p = 0.009) and PHQ-9 (ρ=-0.187, p = 0.021) in patients with PPCS and collinearity of PCL-5 and PHQ-9 scores. Significantly higher Arousal and Reactivity cluster scores within the PCL-5 were associated with poorer scores on naming and abstract tasks on the MoCA. CONCLUSION The association between specific PCL-5 clusters and lower MoCA scores may represent a viable target for psychotherapeutic and psychopharmacologic intervention in patients with cognitive changes associated with PPCS.
Collapse
Affiliation(s)
- Erik A Fraunberger
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Alison J Wilson
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Adam Idriss
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Regan King
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| | - Meng Wang
- Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary Alberta, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Division of Physical Medicine & Rehabilitation, University of Calgary, Calgary Alberta, Canada
| |
Collapse
|
4
|
Garcia A, Cohen RA, Langer KG, O'Neal AG, Porges EC, Woods AJ, Williamson JB. Semantic processing in older adults is associated with distributed neural activation which varies by association and abstractness of words. GeroScience 2024; 46:6195-6212. [PMID: 38822124 PMCID: PMC11493883 DOI: 10.1007/s11357-024-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The extent to which the neural systems underlying semantic processes degrade with advanced age remains unresolved, which motivated the current study of neural activation on functional magnetic resonance imaging (fMRI) during semantic judgments of associated vs. unassociated, semantic vs. rhyme, and abstract vs. rhyme word pairs. Thirty-eight older adults, 55-85 years of age, performed semantic association decision tasks in a mixed event-related block fMRI paradigm involving binary judgments as to whether word pairs were related (i.e., semantically associated). As hypothesized, significantly greater activation was evident during processing of associated (vs. unassociated) word pairs in cortical areas implicated in semantic processing, including the angular gyrus, temporal cortex, and inferior frontal cortex. Cortical areas showed greater activation to unassociated (vs. associated) word pairs, primarily within a large occipital cluster. Greater activation was evident in cortical areas when response to semantic vs. phonemic word pairs. Contrasting activation during abstract vs. concrete semantic processing revealed areas of co-activation to both semantic classes, and areas that had greater response to either abstract or concrete word pairs. Neural activation across conditions did not vary as a function of greater age, indicating only minimal age-associated perturbation in neural activation during semantic processing. Therefore, the response of the semantic hubs, semantic control, and secondary association areas appear to be largely preserved with advanced age among older adults exhibiting successful cognitive aging. These findings may provide a useful clinical contrast if compared to activation among adults experiencing cognitive decline due Alzheimer's, frontal-temporal dementia, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Garcia
- Behavioral Sciences Department, James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA.
| | - Kailey G Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alexandria G O'Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John B Williamson
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, USA
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Botch TL, Finn ES. Neural Representations of Concreteness and Concrete Concepts Are Specific to the Individual. J Neurosci 2024; 44:e0288242024. [PMID: 39349055 PMCID: PMC11551891 DOI: 10.1523/jneurosci.0288-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
Different people listening to the same story may converge upon a largely shared interpretation while still developing idiosyncratic experiences atop that shared foundation. What linguistic properties support this individualized experience of natural language? Here, we investigate how the "concrete-abstract" axis-the extent to which a word is grounded in sensory experience-relates to within- and across-subject variability in the neural representations of language. Leveraging a dataset of human participants of both sexes who each listened to four auditory stories while undergoing functional magnetic resonance imaging, we demonstrate that neural representations of "concreteness" are both reliable across stories and relatively unique to individuals, while neural representations of "abstractness" are variable both within individuals and across the population. Using natural language processing tools, we show that concrete words exhibit similar neural representations despite spanning larger distances within a high-dimensional semantic space, which potentially reflects an underlying representational signature of sensory experience-namely, imageability-shared by concrete words but absent from abstract words. Our findings situate the concrete-abstract axis as a core dimension that supports both shared and individualized representations of natural language.
Collapse
Affiliation(s)
- Thomas L Botch
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Emily S Finn
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
6
|
Marín-Gutiérrez A, Díez Villoria E, González Martín AM. The differential illusion memory for high-associated abstract concepts (DIM-HA) effect. Cogn Process 2024; 25:575-586. [PMID: 39153036 PMCID: PMC11541266 DOI: 10.1007/s10339-024-01220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
A vast body of evidence has shown that concrete concepts are processed faster and more accurately than abstract concepts in a variety of cognitive tasks. This phenomenon is widely known as the concreteness effect, and explanations for its occurrence seem to reflect differences in processing and organization for both types of representations. While there is considerable evidence to support this concreteness effect, the nature of these differences is still controversial. In developing an explanation, we have proposed a relatively different approach from a false memory perspective using the Deese-Roediger-McDermott paradigm. To explore the implications of the association in creating false memories, we explore behavioral and electrophysiologically the false memory effect, where targets were manipulated according to their association strength and their concreteness. Results showed that false recognition rates differed significantly between concrete and abstract critical words when they were associated strongly with their respective lists, which led to a higher proportion of abstract false alarms both in behavioral and electrophysiological experiments. The principal outcome, which was called the DIM-HA effect, was discussed in terms of theories of associative activation and qualitatively different representation.
Collapse
Affiliation(s)
- Alejandro Marín-Gutiérrez
- Facultad de Educación y Psicología, Universidad del Atlántico Medio, Carretera de Quilmes, 37, Gran Canaria, 35017, Tafira Baja, Spain.
| | - Emiliano Díez Villoria
- Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento. Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain
- Instituto Universitario de Integración en la Comunidad (INICO), Universidad de Salamanca, Salamanca, Spain
| | - Ana María González Martín
- Facultad de Educación y Psicología, Universidad del Atlántico Medio, Carretera de Quilmes, 37, Gran Canaria, 35017, Tafira Baja, Spain
| |
Collapse
|
7
|
Kearney E, McMahon KL, Guenther F, Arciuli J, de Zubicaray GI. Revisiting the concreteness effect: Non-arbitrary mappings between form and concreteness of English words influence lexical processing. Cognition 2024; 254:105972. [PMID: 39388784 DOI: 10.1016/j.cognition.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
How do we represent and process abstract and concrete concepts? The "concreteness effect", in which words with more concrete meanings are processed more quickly and accurately across a range of language tasks compared to abstract ones, suggests a differential conceptual organization of these words in the brain. However, concrete words tend to be marked by specific phonotactic features, such as having fewer syllables and more phonological neighbours. It is unclear whether these non-arbitrary form-meaning relationships that systematically denote the concreteness of a word impact language processing. In the current study, we first establish the extent of systematic mappings between phonological/phonetic features and concreteness ratings in a large set of monosyllabic and polysyllabic English words (i.e., concreteness form typicality), then demonstrate that they significantly influence lexical processing using behavioural megastudy datasets. Surface form features predicted a significant proportion of variance in concreteness ratings of monomorphemic words (25 %) which increased with the addition of polymorphemic forms (43 %). In addition, concreteness form typicality was a significant predictor of performance on visual and auditory lexical decision, naming, and semantic (concrete/abstract) decision tasks, after controlling for a range of psycholinguistic variables and concreteness ratings. Overall, our results provide the first evidence that concreteness form typicality influences lexical processing. We discuss theoretical implications for interpretations of the concreteness effect and models of language processing that have yet to incorporate non-arbitrary relationships between form and meaning into their feature sets.
Collapse
Affiliation(s)
- Elaine Kearney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia.
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, QUT, Kelvin Grove, QLD 4059, Australia; Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Frank Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Joanne Arciuli
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
8
|
Tran SHN, Fernandes MA. Effectiveness of production and drawing as encoding techniques on recall using mixed- and pure-list designs. Memory 2024:1-18. [PMID: 39288221 DOI: 10.1080/09658211.2024.2399116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
We compared the benefit of production and drawing on recall of concrete and abstract words, using mixed- and pure-list designs. We varied stimulus and list types to examine whether the memory benefit from these strategies was sustained across these manipulations. For all experiments, the memory retrieval task was free recall. In Experiment 1, participants studied concrete and abstract words sequentially, with prompts to either silently-read, read aloud, write, or draw each target (intermixed). Reading aloud, writing, and drawing improved recall compared to silent reading, with drawing leading to the largest boost. Performance, however, was at floor in all but the drawing condition. In Experiment 2, the number of targets was reduced, and each strategy (between-subjects) was compared to silent-reading. We eliminated floor effects and replicated results from Experiment 1. In Experiment 3, we manipulated strategy in a pure-list-design. The drawing benefit was maintained while that from production was eliminated. In all experiments, recall was higher for concrete than abstract words that were drawn; no such effect was found for words produced. Results suggest that drawing facilitates memory by enhancing semantic elaboration, whereas the production benefit is largely perceptually based. Importantly, the memory benefit conferred by drawing at encoding, unlike production, cannot be explained by a distinctiveness account as it was relatively unaffected by study design.
Collapse
Affiliation(s)
- Sophia H N Tran
- Department of Psychology, University of Waterloo, Waterloo, Canada
| | - Myra A Fernandes
- Department of Psychology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
9
|
Balconi M, Rovelli K. Does emotional valence affect cognitive performance and neurophysiological response during decision making? A preliminary study. Front Neurosci 2024; 18:1408526. [PMID: 39184323 PMCID: PMC11341406 DOI: 10.3389/fnins.2024.1408526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
This study investigated the impact of the emotional valence of external situations (EVES) on cognitive performance and electrophysiological (EEG) responses during decision-making. 26 healthy adults underwent a modified version of the Trier social stress test, performing five interview-style discourses. Each discourse entailed preparing a speech under increasingly stressful conditions. Participants were also exposed to gradually increasing EVES (i.e., an examining committee displaying progressively more negative-connoted emotional facial expressions). In addition, after each speech, participants completed an arithmetic task to test how emotional manipulation affected cognitive performance. Behavioral data (preparation times) and EEG data (frequency bands) were collected to assess stress regulation, stress resilience, and cognitive performance. The results indicate that EVES significantly influenced stress regulation and resilience, as reflected in the behavioral data. Neurophysiological findings showed increased parietal lobe activity (P4) in the theta and delta bands with rising emotional valence, plateauing from the preparation of the second discourse onward. This suggests enhanced emotional processing and attentional demands. However, gamma band activity decreased in P4 during the preparations for the two discourses following the first, indicating a shift of cognitive resources from higher cognitive functions to emotional processing. This highlights the cognitive cost of maintaining performance and stress regulation under emotionally charged conditions. Such findings suggest that emotional valence modulates cognitive performance and that specific neural mechanisms are involved in managing stress responses. The findings underscore the complex relationship between emotion, cognition, and neural mechanisms, offering valuable insights for stress regulation and resilience, and enhancing performance under pressure.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
10
|
Kafkas A, Mayes AR, Montaldi D. The hippocampus supports the representation of abstract concepts: Implications for the study of recognition memory. Neuropsychologia 2024; 199:108899. [PMID: 38697557 DOI: 10.1016/j.neuropsychologia.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Words, unlike images, are symbolic representations. The associative details inherent within a word's meaning and the visual imagery it generates, are inextricably connected to the way words are processed and represented. It is well recognised that the hippocampus associatively binds components of a memory to form a lasting representation, and here we show that the hippocampus is especially sensitive to abstract word processing. Using fMRI during recognition, we found that the increased abstractness of words produced increased hippocampal activation regardless of memory outcome. Interestingly, word recollection produced hippocampal activation regardless of word content, while the parahippocampal cortex was sensitive to concreteness of word representations, regardless of memory outcome. We reason that the hippocampus has assumed a critical role in the representation of uncontextualized abstract word meaning, as its information-binding ability allows the retrieval of the semantic and visual associates that, when bound together, generate the abstract concept represented by word symbols. These insights have implications for research on word representation, memory, and hippocampal function, perhaps shedding light on how the human brain has adapted to encode and represent abstract concepts.
Collapse
Affiliation(s)
- Alex Kafkas
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK.
| | - Andrew R Mayes
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK
| | - Daniela Montaldi
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, UK
| |
Collapse
|
11
|
Ulanov M, Kopytin G, Bermúdez-Margaretto B, Ntoumanis I, Gorin A, Moiseenko O, Blagovechtchenski E, Moiseeva V, Shestakova A, Jääskeläinen I, Shtyrov Y. Regionally specific cortical lateralization of abstract and concrete verb processing: Magnetic mismatch negativity study. Neuropsychologia 2024; 195:108800. [PMID: 38246413 DOI: 10.1016/j.neuropsychologia.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The neural underpinnings of processing concrete and abstract semantics remain poorly understood. Previous fMRI studies have shown that multimodal and amodal neural networks respond differentially to different semantic types; importantly, abstract semantics activates more left-lateralized networks, as opposed to more bilateral activity for concrete words. Due to the lack of temporal resolution, these fMRI results do not allow to easily separate language- and task-specific brain responses and to disentangle early processing stages from later post-comprehension phenomena. To tackle this, we used magnetoencephalography (MEG), a time-resolved neuroimaging technique, in combination with a task-free oddball mismatch negativity (MMN) paradigm, an established approach to tracking early automatic activation of word-specific memory traces in the brain. We recorded the magnetic MMN responses in 30 healthy adults to auditorily presented abstract and concrete action verbs to assess lateralization of word-specific lexico-semantic processing in a set of neocortical areas. We found that MMN responses to these stimuli showed different lateralization patterns of activity in the upper limb motor area (BA4) and parts of Broca's area (BA45/BA47) within ∼100-350 ms after the word disambiguation point. Importantly, the greater leftward response lateralization for abstract semantics was due to the lesser involvement of the right-hemispheric homologues, not increased left-hemispheric activity. These findings suggest differential region-specific involvement of bilateral sensorimotor systems already in the early automatic stages of processing abstract and concrete action semantics.
Collapse
Affiliation(s)
- Maxim Ulanov
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia.
| | - Grigory Kopytin
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Beatriz Bermúdez-Margaretto
- Universidad de Salamanca, Facultad de Psicología, Departamento de Psicología Básica, Psicobiología y Metodología de Las Ciencias Del Comportamiento, Salamanca, Spain; Instituto de Integración en La Comunidad - INICO, Salamanca, Spain
| | - Ioannis Ntoumanis
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Aleksei Gorin
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Olesya Moiseenko
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | | | - Victoria Moiseeva
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Anna Shestakova
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Iiro Jääskeläinen
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Lin N, Zhang X, Wang X, Wang S. The organization of the semantic network as reflected by the neural correlates of six semantic dimensions. BRAIN AND LANGUAGE 2024; 250:105388. [PMID: 38295716 DOI: 10.1016/j.bandl.2024.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Multiple sensory-motor and non-sensory-motor dimensions have been proposed for semantic representation, but it remains unclear how the semantic system is organized along them in the human brain. Using naturalistic fMRI data and large-scale semantic ratings, we investigated the overlaps and dissociations between the neural correlates of six semantic dimensions: vision, motor, socialness, emotion, space, and time. Our findings revealed a more complex semantic atlas than what is predicted by current neurobiological models of semantic representation. Brain regions that are selectively sensitive to specific semantic dimensions were found both within and outside the brain networks assumed to represent multimodal general and/or abstract semantics. Overlaps between the neural correlates of different semantic dimensions were mainly found inside the default mode network, concentrated in the left anterior superior temporal gyrus and angular gyrus, which have been proposed as two connector hubs that bridge the multimodal experiential semantic system and the language-supported semantic system.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory of Behavioural Sciences, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaohan Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioural Sciences, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shaonan Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Trumpp NM, Ulrich M, Kiefer M. Experiential grounding of abstract concepts: Processing of abstract mental state concepts engages brain regions involved in mentalizing, automatic speech, and lip movements. Neuroimage 2024; 288:120539. [PMID: 38342187 DOI: 10.1016/j.neuroimage.2024.120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024] Open
Abstract
concepts like mental state concepts lack a physical referent, which can be directly perceived. Classical theories therefore claim that abstract concepts require amodal representations detached from experiential brain systems. However, grounded cognition approaches suggest an involvement of modal experiential brain regions in the processing of abstract concepts. In the present functional magnetic resonance imaging study, we investigated the relation of the processing of abstract mental state concepts to modal experiential brain systems in a fine-grained fashion. Participants performed lexical decisions on abstract mental state as well as on verbal association concepts as control category. Experiential brain systems related to the processing of mental states, generating verbal associations, automatic speech as well as hand and lip movements were determined by corresponding localizer tasks. Processing of abstract mental state concepts neuroanatomically overlapped with activity patterns associated with processing of mental states, generating verbal associations, automatic speech and lip movements. Hence, mental state concepts activate the mentalizing brain network, complemented by perceptual-motor brain regions involved in simulation of visual or action features associated with social interactions, linguistic brain regions as well as face-motor brain regions recruited for articulation. The present results provide compelling evidence for the rich grounding of abstract mental state concepts in experiential brain systems related to mentalizing, verbal communication and mouth action.
Collapse
Affiliation(s)
- Natalie M Trumpp
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany.
| | - Martin Ulrich
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| | - Markus Kiefer
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| |
Collapse
|
14
|
Marko M, Michalko D, Kubinec A, Riečanský I. Measuring semantic memory using associative and dissociative retrieval tasks. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231208. [PMID: 38328566 PMCID: PMC10846956 DOI: 10.1098/rsos.231208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Recent theoretical advances highlighted the need for novel means of assessing semantic cognition. Here, we introduce the associative-dissociative retrieval task (ADT), positing a novel way to test inhibitory control over semantic memory retrieval by contrasting the efficacy of associative (automatic) and dissociative (controlled) retrieval on a standard set of verbal stimuli. All ADT measures achieved excellent reliability, homogeneity, and short-term temporal stability. Moreover, in-depth stimulus level analyses showed that the associative retrieval is easier for words evoking few but strong associates, yet such propensity hampers the inhibition. Finally, we provided critical support for the construct validity of the ADT measures, demonstrating reliable correlations with domain-specific measures of semantic memory functioning (semantic fluency and associative combination) but negligible correlations with domain-general capacities (processing speed and working memory). Together, we show that ADT provides simple yet potent and psychometrically sound measures of semantic memory retrieval and offers noteworthy advantages over the currently available assessment methods.
Collapse
Affiliation(s)
- Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava, 813 71, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F1, Bratislava, 842 48, Slovakia
| | - Drahomír Michalko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava, 813 71, Slovakia
| | - Adam Kubinec
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava, 813 71, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava, 813 71, Slovakia
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Limbova 12, Bratislava, 833 03, Slovakia
| |
Collapse
|
15
|
Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Neurocognitive correlates of semantic memory navigation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:15. [PMID: 38195756 PMCID: PMC10776628 DOI: 10.1038/s41531-024-00630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.
Collapse
Affiliation(s)
- Felipe Diego Toro-Hernández
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicolás Marchant
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Daniela Olivares
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Laboratorio de Neuropsicología y Neurociencias Clínicas, Universidad de Chile, Santiago, Chile
| | - Franco Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raúl González-Gómez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Cecilia González Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Gonzalo M Rojas-Costa
- Department of Radiology, Clínica las Condes, Santiago, Chile
- Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile
- Join Unit FISABIO-CIPF, Valencia, Spain
- School of Medicine, Finis Terrae University, Santiago, Chile
- Health Innovation Center, Clínica Las Condes, Santiago, Chile
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador & Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopatology Program - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
| | - Pedro Chaná Cuevas
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Sergio Chaigneau
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Cognition Research, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo M García
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile.
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina.
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland.
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Desai RH, Hackett CT, Johari K, Lai VT, Riccardi N. Spatiotemporal characteristics of the neural representation of event concepts. BRAIN AND LANGUAGE 2023; 246:105328. [PMID: 37847931 PMCID: PMC10873121 DOI: 10.1016/j.bandl.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Events are a fundamentally important part of our understanding of the world. How lexical concepts denoting events are represented in the brain remains controversial. We conducted two experiments using event and object nouns matched on a range of psycholinguistic variables, including concreteness, to examine spatial and temporal characteristics of event concepts. Both experiments used magnitude and valence tasks on event and object nouns. The fMRI experiment revealed a distributed set of regions for events, including the angular gyrus, anterior temporal lobe, and posterior cingulate across tasks. In the EEG experiment, events and objects differed in amplitude within the 300-500 ms window. Together these results shed light into the spatiotemporal characteristics of event concept representation and show that event concepts are represented in the putative hubs of the semantic system. While these hubs are typically associated with object semantics, they also represent events, and have a likely role in temporal integration.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, United States; Institute for Mind and Brain, University of South Carolina, United States.
| | | | - Karim Johari
- Department of Communication Sciences & Disorders, Louisiana State University, United States
| | - Vicky T Lai
- Department of Psychology, University of Arizona, United States
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, United States
| |
Collapse
|
17
|
Montefinese M, Gregori L, Ravelli AA, Varvara R, Radicioni DP. CONcreTEXT norms: Concreteness ratings for Italian and English words in context. PLoS One 2023; 18:e0293031. [PMID: 37862357 PMCID: PMC10588859 DOI: 10.1371/journal.pone.0293031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Concreteness is a fundamental dimension of word semantic representation that has attracted more and more interest to become one of the most studied variables in the psycholinguistic and cognitive neuroscience literature in the last decade. Concreteness effects have been found at both the brain and the behavioral levels, but they may vary depending on the constraints of the context and task demands. In this study, we collected concreteness norms for English and Italian words presented in different context sentences to allow better control and manipulation of concreteness in future psycholinguistic research. First, we observed high split-half correlations and Cronbach's alpha coefficients, suggesting that our ratings were highly reliable and can be used in Italian- and English-speaking populations. Second, our data indicate that the concreteness ratings are related to the lexical density and accessibility of the sentence in both English and Italian. We also found that the concreteness of words in isolation was highly correlated with that of words in context. Finally, we analyzed differences between nouns and verbs in concreteness ratings without significant effects. Our new concreteness norms of words in context are a valuable source of information for future research in both the English and Italian language. The complete database is available on the Open Science Framework (doi: 10.17605/OSF.IO/U3PC4).
Collapse
Affiliation(s)
- Maria Montefinese
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Lorenzo Gregori
- Department of Literature and Philosophy, University of Florence, Florence, Italy
| | - Andrea Amelio Ravelli
- Department of Modern Languages, Literatures, and Cultures, University of Bologna, Bologna, Italy
| | - Rossella Varvara
- Department of French, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
18
|
Bechtold L, Cosper SH, Malyshevskaya A, Montefinese M, Morucci P, Niccolai V, Repetto C, Zappa A, Shtyrov Y. Brain Signatures of Embodied Semantics and Language: A Consensus Paper. J Cogn 2023; 6:61. [PMID: 37841669 PMCID: PMC10573703 DOI: 10.5334/joc.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/29/2022] [Indexed: 10/17/2023] Open
Abstract
According to embodied theories (including embodied, embedded, extended, enacted, situated, and grounded approaches to cognition), language representation is intrinsically linked to our interactions with the world around us, which is reflected in specific brain signatures during language processing and learning. Moving on from the original rivalry of embodied vs. amodal theories, this consensus paper addresses a series of carefully selected questions that aim at determining when and how rather than whether motor and perceptual processes are involved in language processes. We cover a wide range of research areas, from the neurophysiological signatures of embodied semantics, e.g., event-related potentials and fields as well as neural oscillations, to semantic processing and semantic priming effects on concrete and abstract words, to first and second language learning and, finally, the use of virtual reality for examining embodied semantics. Our common aim is to better understand the role of motor and perceptual processes in language representation as indexed by language comprehension and learning. We come to the consensus that, based on seminal research conducted in the field, future directions now call for enhancing the external validity of findings by acknowledging the multimodality, multidimensionality, flexibility and idiosyncrasy of embodied and situated language and semantic processes.
Collapse
Affiliation(s)
- Laura Bechtold
- Institute for Experimental Psychology, Department for Biological Psychology, Heinrich-Heine University Düsseldorf, Germany
| | - Samuel H. Cosper
- Institute of Cognitive Science, University of Osnabrück, Germany
| | - Anastasia Malyshevskaya
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Russian Federation
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Germany
| | | | | | - Valentina Niccolai
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Claudia Repetto
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Ana Zappa
- Laboratoire parole et langage, Aix-Marseille Université, Aix-en-Provence, France
| | - Yury Shtyrov
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Russian Federation
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
19
|
Dove G. Concepts require flexible grounding. BRAIN AND LANGUAGE 2023; 245:105322. [PMID: 37713771 DOI: 10.1016/j.bandl.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Research on semantic memory has a problem. On the one hand, a robust body of evidence implicates sensorimotor regions in conceptual processing. On the other hand, a different body of evidence implicates a modality independent semantic system. The standard solution to this tension is to posit a hub-and-spoke system with modality independent hubs and modality specific spokes. In this paper, I argue in support of an alternative view of grounding which remains committed to neural reenactment but emphasizes the multimodal and multilevel nature of the semantic system. This view is built upon the recognition that abstraction is a design feature of concepts. Semantic memory employs hierarchically structured representations to capture different degrees of abstraction. Grounding does not work the way that many embodied approaches have assumed.
Collapse
Affiliation(s)
- Guy Dove
- Department of Philosophy, University of Louisville, United States.
| |
Collapse
|
20
|
Vignali L, Xu Y, Turini J, Collignon O, Crepaldi D, Bottini R. Spatiotemporal dynamics of abstract and concrete semantic representations. BRAIN AND LANGUAGE 2023; 243:105298. [PMID: 37399687 DOI: 10.1016/j.bandl.2023.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Dual Coding Theories (DCT) suggest that meaning is represented in the brain by a double code: a language-derived code in the Anterior Temporal Lobe (ATL) and a sensory-derived code in perceptual and motor regions. Concrete concepts should activate both codes, while abstract ones rely solely on the linguistic code. To test these hypotheses, the present magnetoencephalography (MEG) experiment had participants judge whether visually presented words relate to the senses while we recorded brain responses to abstract and concrete semantic components obtained from 65 independently rated semantic features. Results evidenced early involvement of anterior-temporal and inferior-frontal brain areas in both abstract and concrete semantic information encoding. At later stages, occipital and occipito-temporal regions showed greater responses to concrete compared to abstract features. The present findings suggest that the concreteness of words is processed first with a transmodal/linguistic code, housed in frontotemporal brain systems, and only after with an imagistic/sensorimotor code in perceptual regions.
Collapse
Affiliation(s)
- Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy; International School for Advanced Studies (SISSA), Trieste, Italy
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy; International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy; Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), University of Louvain, Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Davide Crepaldi
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.
| |
Collapse
|
21
|
Thye M, Hoffman P, Mirman D. The words that little by little revealed everything: Neural response to lexical-semantic content during narrative comprehension. Neuroimage 2023; 276:120204. [PMID: 37257674 DOI: 10.1016/j.neuroimage.2023.120204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/19/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The ease with which narratives are understood belies the complexity of the information being conveyed and the cognitive processes that support comprehension. The meanings of the words must be rapidly accessed and integrated with the reader's mental representation of the overarching, unfolding scenario. A broad, bilateral brain network is engaged by this process, but it is not clear how words that vary on specific semantic dimensions, such as ambiguity, emotion, or socialness, engage the semantic, semantic control, or social cognition systems. In the present study, data from 48 participants who listened to The Little Prince audiobook during MRI scanning were selected from the Le Petit Prince dataset. The lexical and semantic content within the narrative was quantified from the transcript words with factor scores capturing Word Length, Semantic Flexibility, Emotional Strength, and Social Impact. These scores, along with word quantity variables, were used to investigate where these predictors co-vary with activation across the brain. In contrast to studies of isolated word processing, large networks were found to co-vary with the lexical and semantic content within the narrative. An increase in semantic content engaged the ventral portion of ventrolateral ATL, consistent with its role as a semantic hub. Decreased semantic content engaged temporal pole and inferior parietal lobule, which may reflect semantic integration. The semantic control network was engaged by words with low Semantic Flexibility, perhaps due to the demand required to process infrequent, less semantically diverse language. Activation in ATL co-varied with an increase in Social Impact, which is consistent with the claim that social knowledge is housed within the neural architecture of the semantic system. These results suggest that current models of language processing may present an impoverished estimate of the neural systems that coordinate to support narrative comprehension, and, by extension, real-world language processing.
Collapse
Affiliation(s)
- Melissa Thye
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
22
|
Yan J, Li W, Zhang T, Zhang J, Jin Z, Li L. Structural and functional neural substrates underlying the concreteness effect. Brain Struct Funct 2023; 228:1493-1510. [PMID: 37389616 DOI: 10.1007/s00429-023-02668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The concreteness effect refers to the advantage in speed and accuracy of processing concrete words over abstract words. Previous studies have shown that the processing of the two types of words is mediated by distinct neural mechanisms, but these studies were mainly conducted with task-based functional magnetic resonance imaging. This study investigates the associations between the concreteness effect and grey matter volume (GMV) of brain regions as well as resting-state functional connectivity (rsFC) of these identified regions. The results show that the GMV of left inferior frontal gyrus (IFG), right middle temporal gyrus (MTG), right supplementary motor area and right anterior cingulate cortex (ACC) negatively correlates with the concreteness effect. The rsFC of the left IFG, the right MTG and the right ACC with the nodes, mainly in default mode network, frontoparietal network and dorsal attention network positively correlates with the concreteness effect. The GMV and rsFC jointly and respectively predict the concreteness effect in individuals. In conclusion, stronger connectivity amongst functional networks and higher coherent engagement of the right hemisphere predict a greater difference in the verbal memory of abstract and concrete words.
Collapse
Affiliation(s)
- Jing Yan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- School of Foreign Languages, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenjuan Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tingting Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Cheng J, Li J, Wang A, Zhang M. Semantic Bimodal Presentation Differentially Slows Working Memory Retrieval. Brain Sci 2023; 13:brainsci13050811. [PMID: 37239283 DOI: 10.3390/brainsci13050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Although evidence has shown that working memory (WM) can be differentially affected by the multisensory congruency of different visual and auditory stimuli, it remains unclear whether different multisensory congruency about concrete and abstract words could impact further WM retrieval. By manipulating the attention focus toward different matching conditions of visual and auditory word characteristics in a 2-back paradigm, the present study revealed that for the characteristically incongruent condition under the auditory retrieval condition, the response to abstract words was faster than that to concrete words, indicating that auditory abstract words are not affected by visual representation, while auditory concrete words are. Alternatively, for concrete words under the visual retrieval condition, WM retrieval was faster in the characteristically incongruent condition than in the characteristically congruent condition, indicating that visual representation formed by auditory concrete words may interfere with WM retrieval of visual concrete words. The present findings demonstrated that concrete words in multisensory conditions may be too aggressively encoded with other visual representations, which would inadvertently slow WM retrieval. However, abstract words seem to suppress interference better, showing better WM performance than concrete words in the multisensory condition.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Li
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Ming Zhang
- Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0082, Japan
| |
Collapse
|
24
|
Ding J, Liang P, Guo X, Yang Y. The influence of conceptual concreteness on the reading acquisition and integration of novel words into semantic memory via thematic relations. Front Psychol 2023; 14:1132039. [PMID: 37251046 PMCID: PMC10211391 DOI: 10.3389/fpsyg.2023.1132039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Plenty of studies have been conducted to reveal neurocognitive underpinnings of conceptual representation. Compared with that of concrete concepts, the neurocognitive correlates of abstract concepts remain elusive. The current study aimed to investigate the influence of conceptual concreteness on the reading acquisition and integration of novel words into semantic memory. We constructed two-sentence contexts in which two-character pseudowords were embedded as novel words. Participants read the contexts to infer the meaning of novel words which were either concrete or abstract, and then performed a lexical decision task and a cued-recall memory task. In lexical decision task, primed by the learned novel words, their corresponding concepts, thematically related or unrelated words as well as unlearned pseudowords were judged whether they were words or not. In memory task, participants were presented with the novel words and asked to write down their meaning. The contextual reading and memory test can demonstrate the modulation of conceptual concreteness on novel word learning and the lexical decision task can reveal whether concrete and abstract novel words are integrated into semantic memory similarly or not. During contextual reading, abstract novel words presented for the first time elicited a larger N400 than concrete ones. In memory task, the meaning of concrete novel words was recollected better than abstract novel words. These results indicate that abstract novel words are more difficult to acquire during contextual reading, and to retain afterwards. For lexical decision task behavioral and ERPs were graded, with the longest reaction time, the lowest accuracy and the largest N400s for the unrelated words, then the thematically related words and finally the corresponding concepts of the novel words, regardless of conceptual concreteness. The results suggest that both concrete and abstract novel words can be integrated into semantic memory via thematic relations. These findings are discussed in terms of differential representational framework which posits that concrete words connect with each other via semantic similarities, and abstract ones via thematic relations.
Collapse
Affiliation(s)
- Jinfeng Ding
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Panpan Liang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Guo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Mancano M, Papagno C. Concrete and Abstract Concepts in Primary Progressive Aphasia and Alzheimer's Disease: A Scoping Review. Brain Sci 2023; 13:765. [PMID: 37239237 PMCID: PMC10216362 DOI: 10.3390/brainsci13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The concreteness effect (CE), namely a better performance with concrete compared to abstract concepts, is a constant feature in healthy people, and it usually increases in persons with aphasia (PWA). However, a reversal of the CE has been reported in patients affected by the semantic variant of Primary Progressive Aphasia (svPPA), a neurodegenerative disease characterized by anterior temporal lobe (ATL) atrophy. The present scoping review aims at identifying the extent of evidence regarding the abstract/concrete contrast in Alzheimer's disease (AD) and svPPA and associated brain atrophy. Five online databases were searched up to January 2023 to identify papers where both concrete and abstract concepts were investigated. Thirty-one papers were selected and showed that while in patients with AD, concrete words were better processes than abstract ones, in most svPPA patients, there was a reversal of the CE, with five studies correlating the size of this effect with ATL atrophy. Furthermore, the reversal of CE was associated with category-specific impairments (living things) and with a selective deficit of social words. Future work is needed to disentangle the role of specific portions of the ATL in concept representation.
Collapse
Affiliation(s)
- Martina Mancano
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy;
- CISMed Interdepartmental Center for Medical Sciences, University of Trento, 38122 Trento, Italy
| |
Collapse
|
26
|
Hadar B, Katzir M, Pumpian S, Karelitz T, Liberman N. Psychological proximity improves reasoning in academic aptitude tests. NPJ SCIENCE OF LEARNING 2023; 8:10. [PMID: 37120420 PMCID: PMC10148871 DOI: 10.1038/s41539-023-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Performance on standardized academic aptitude tests (AAT) can determine important life outcomes. However, it is not clear whether and which aspects of the content of test questions affect performance. We examined the effect of psychological distance embedded in test questions. In Study 1 (N = 41,209), we classified the content of existing AAT questions as invoking proximal versus distal details. We found better performance with proximal compared to distal questions, especially for low-achieving examinees. Studies 2 and 3 manipulated the distance of questions adapted from AATs and examined three moderators: overall AAT score, working-memory capacity, and presence of irrelevant information. In Study 2 (N = 129), proximity (versus distance) improved the performance of low-achieving participants. In Study 3 (N = 1744), a field study, among low-achieving examinees, proximity improved performance on questions that included irrelevant information. Together, these results suggest that the psychological distance that is invoked by the content of test questions has important consequences for performance in real-life high-stakes tests.
Collapse
Affiliation(s)
- Britt Hadar
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| | | | - Sephi Pumpian
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzur Karelitz
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nira Liberman
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
27
|
Halpern DJ, Tubridy S, Davachi L, Gureckis TM. Identifying causal subsequent memory effects. Proc Natl Acad Sci U S A 2023; 120:e2120288120. [PMID: 36952384 PMCID: PMC10068819 DOI: 10.1073/pnas.2120288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/12/2022] [Indexed: 03/24/2023] Open
Abstract
Over 40 y of accumulated research has detailed associations between neuroimaging signals measured during a memory encoding task and later memory performance, across a variety of brain regions, measurement tools, statistical approaches, and behavioral tasks. But the interpretation of these subsequent memory effects (SMEs) remains unclear: if the identified signals reflect cognitive and neural mechanisms of memory encoding, then the underlying neural activity must be causally related to future memory. However, almost all previous SME analyses do not control for potential confounders of this causal interpretation, such as serial position and item effects. We collect a large fMRI dataset and use an experimental design and analysis approach that allows us to statistically adjust for nearly all known exogenous confounding variables. We find that, using standard approaches without adjustment, we replicate several univariate and multivariate subsequent memory effects and are able to predict memory performance across people. However, we are unable to identify any signal that reliably predicts subsequent memory after adjusting for confounding variables, bringing into doubt the causal status of these effects. We apply the same approach to subjects' judgments of learning collected following an encoding period and show that these behavioral measures of mnemonic status do predict memory after adjustments, suggesting that it is possible to measure signals near the time of encoding that reflect causal mechanisms but that existing neuroimaging measures, at least in our data, may not have the precision and specificity to do so.
Collapse
Affiliation(s)
- David J. Halpern
- Department of Psychology, New York University, New York, NY10003
| | - Shannon Tubridy
- Department of Psychology, New York University, New York, NY10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
| | - Todd M. Gureckis
- Department of Psychology, New York University, New York, NY10003
| |
Collapse
|
28
|
Sugimoto H, Abe MS, Otake-Matsuura M. Word-producing brain: Contribution of the left anterior middle temporal gyrus to word production patterns in spoken language. BRAIN AND LANGUAGE 2023; 238:105233. [PMID: 36842390 DOI: 10.1016/j.bandl.2023.105233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Vocabulary is based on semantic knowledge. The anterior temporal lobe (ATL) has been considered an essential region for processing semantic knowledge; nonetheless, the association between word production patterns and the structural and functional characteristics of the ATL remains unclear. To examine this, we analyzed over one million words from group conversations among community-dwelling older adults and their multimodal magnetic resonance imaging data. A quantitative index for the word production patterns, namely the exponent β of Heaps' law, positively correlated with the left anterior middle temporal gyrus volume. Moreover, β negatively correlated with its resting-state functional connectivity with the precuneus. There was no significant correlation with the diffusion tensor imaging metrics in any fiber. These findings suggest that the vocabulary richness in spoken language depends on the brain status characterized by the semantic knowledge-related brain structure and its activation dissimilarity with the precuneus, a core region of the default mode network.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Masato S Abe
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Faculty of Culture and Information Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan.
| | - Mihoko Otake-Matsuura
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| |
Collapse
|
29
|
Roelofs A. Word production and comprehension in frontotemporal degeneration: A neurocognitive computational Pickian account. Cortex 2023; 163:42-56. [PMID: 37058880 DOI: 10.1016/j.cortex.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Over a century ago, Arnold Pick reported deterioration of word production and comprehension in frontotemporal degeneration, now a common finding. Individuals with semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD) present with word retrieval difficulty, while their comprehension is less affected. Computational models have illuminated naming and comprehension in poststroke and progressive aphasias, including SD, but there are no simulations for bvFTD. Here, the WEAVER++/ARC model, previously applied to poststroke and progressive aphasias, is extended to bvFTD. Simulations tested the hypothesis of a loss of activation capacity in semantic memory in SD and bvFTD, caused by network atrophy (Pick, 1908a). The outcomes revealed that capacity loss explains 97% of the variance in naming and comprehension of 100 individual patients. Moreover, capacity loss correlates with individual ratings of atrophy in the left anterior temporal lobe. These results support a unified account of word production and comprehension in SD and bvFTD.
Collapse
|
30
|
Jung J, Lambon Ralph MA. Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex 2023; 33:2021-2036. [PMID: 35595542 PMCID: PMC9977382 DOI: 10.1093/cercor/bhac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge, CB2 7EF United Kingdom
| |
Collapse
|
31
|
Dove GO. Rethinking the role of language in embodied cognition. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210375. [PMID: 36571130 PMCID: PMC9791473 DOI: 10.1098/rstb.2021.0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/26/2022] [Indexed: 12/27/2022] Open
Abstract
There has been a lot of recent interest in the way that language might enhance embodied cognition. This interest is driven in large part by a growing body of evidence implicating the language system in various aspects of semantic memory-including, but not limited to, its apparent contribution to abstract concepts. In this essay, I develop and defend a novel account of the cognitive role played by language in our concepts. This account relies on the embodied nature of the language system itself, diverges in significant ways from traditional accounts, and is part of a flexible, multimodal and multilevel view of our conceptual system. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Guy O. Dove
- Department of Philosophy, University of Louisville, 313 Humanities Building, Louisville, KY 40292, USA
| |
Collapse
|
32
|
Fu Z, Wang X, Wang X, Yang H, Wang J, Wei T, Liao X, Liu Z, Chen H, Bi Y. Different computational relations in language are captured by distinct brain systems. Cereb Cortex 2023; 33:997-1013. [PMID: 35332914 DOI: 10.1093/cercor/bhac117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
A critical way for humans to acquire information is through language, yet whether and how language experience drives specific neural semantic representations is still poorly understood. We considered statistical properties captured by 3 different computational principles of language (simple co-occurrence, network-(graph)-topological relations, and neural-network-vector-embedding relations) and tested the extent to which they can explain the neural patterns of semantic representations, measured by 2 functional magnetic resonance imaging experiments that shared common semantic processes. Distinct graph-topological word relations, and not simple co-occurrence or neural-network-vector-embedding relations, had unique explanatory power for the neural patterns in the anterior temporal lobe (capturing graph-common-neighbors), inferior frontal gyrus, and posterior middle/inferior temporal gyrus (capturing graph-shortest-path). These results were relatively specific to language: they were not explained by sensory-motor similarities and the same computational relations of visual objects (based on visual image database) showed effects in the visual cortex in the picture naming experiment. That is, different topological properties within language and the same topological computations (common-neighbors) for language and visual inputs are captured by different brain regions. These findings reveal the specific neural semantic representations along graph-topological properties of language, highlighting the information type-specific and statistical property-specific manner of semantic representations in the human brain.
Collapse
Affiliation(s)
- Ze Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Huichao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jiahuan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Tao Wei
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zhiyuan Liu
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Huimin Chen
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
33
|
Burleigh L, Greening SG. Fear in the mind's eye: the neural correlates of differential fear acquisition to imagined conditioned stimuli. Soc Cogn Affect Neurosci 2023; 18:6984812. [PMID: 36629508 PMCID: PMC10036874 DOI: 10.1093/scan/nsac063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Mental imagery is involved in both the expression and treatment of fear-related disorders such as anxiety and post-traumatic stress disorder. However, the neural correlates associated with the acquisition and generalization of differential fear conditioning to imagined conditioned stimuli are relatively unknown. In this study, healthy human participants (n = 27) acquired differential fear conditioning to imagined conditioned stimuli paired with a physical unconditioned stimulus (i.e. mild shock), as measured via self-reported fear, the skin conductance response and significant right anterior insula (aIn) activation. Multivoxel pattern analysis cross-classification also demonstrated that the pattern of activity in the right aIn during imagery acquisition was quantifiably similar to the pattern produced by standard visual acquisition. Additionally, mental imagery was associated with significant differential fear generalization. Fear conditioning acquired to imagined stimuli generalized to viewing those same stimuli as measured with self-reported fear and right aIn activity, and likewise fear conditioning to visual stimuli was associated with significant generalized differential self-reported fear and right aIn activity when imagining those stimuli. Together, the study provides a novel understanding of the neural mechanisms associated with the acquisition of differential fear conditioning to imagined stimuli and that of the relationship between imagery and emotion more generally.
Collapse
Affiliation(s)
- Lauryn Burleigh
- Department of Psychology, Cognitive and Brain Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven G Greening
- Department of Psychology, Cognitive and Brain Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Psychology, Brain and Cognitive Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
34
|
Xiong Z, Tian Y, Wang X, Wei K, Bi Y. Gravity matters for the neural representations of action semantics. Cereb Cortex 2023:6995384. [PMID: 36682884 DOI: 10.1093/cercor/bhad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
The dynamic relationship between the neural representation of action word semantics and specific sensorimotor experience remains controversial. Here, we temporarily altered human subjects' sensorimotor experience in a 15-day head-down tilt bed rest setting, a ground-based analog of microgravity that disproportionally affects sensorimotor experiences of the lower limbs, and examined whether such effector-dependent activity deprivation specifically affected the neural processes of comprehending verbs of lower-limb actions (e.g. to kick) relative to upper-limb ones (e.g. to pinch). Using functional magnetic resonance imaging, we compared the multivoxel neural patterns for such action words prior to and after bed rest. We found an effector-specific (lower vs. upper limb) experience modulation in subcortical sensorimotor-related and anterior temporal regions. The neural action semantic representations in other effector-specific verb semantic regions (e.g. left lateral posterior temporal cortex) and motor execution regions were robust against such experience alterations. These effector-specific, sensorimotor-experience-sensitive and experience-independent patterns of verb neural representation highlight the multidimensional and dynamic nature of semantic neural representation, and the broad influence of microgravity (hence gravity) environment on cognition.
Collapse
Affiliation(s)
- Ziyi Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Yu Tian
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China.,School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
35
|
Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct Funct 2023; 228:255-271. [PMID: 36326934 DOI: 10.1007/s00429-022-02590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG. To systematically test for correspondence between patterns of neural activation and phonological, orthographic, and semantic representations, we re-analyze a functional magnetic resonance imaging data set of participants reading aloud 465 words. Using representational similarity analysis, we test the hypothesis that within cytoarchitecture-defined subregions of the IPL, phonological representations are primarily associated with the SMG, while semantic representations are primarily associated with the AG. To the extent that orthographic representations can be de-correlated from phonological representations, they will be associated with cortex peripheral to the IPL, such as the intraparietal sulcus. Results largely confirmed these hypotheses, with some nuanced exceptions, which we discuss in terms of neurally inspired computational cognitive models of reading that learn mappings among distributed representations for orthography, phonology, and semantics. De-correlating constituent representations making up complex cognitive processes, such as reading, by careful selection of stimuli, representational formats, and analysis techniques, are promising approaches for bringing additional clarity to brain structure-function relationships.
Collapse
|
36
|
Ulrich M, Harpaintner M, Trumpp NM, Berger A, Kiefer M. Academic training increases grounding of scientific concepts in experiential brain systems. Cereb Cortex 2022; 33:5646-5657. [PMID: 36514124 DOI: 10.1093/cercor/bhac449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Scientific concepts typically transcendent our sensory experiences. Traditional approaches to science education therefore assume a shift towards amodal or verbal knowledge representations during academic training. Grounded cognition approaches, in contrast, predict a maintenance of grounding of the concepts in experiential brain networks or even an increase. To test these competing approaches, the present study investigated the semantic content of scientific psychological concepts and identified the corresponding neural circuits using functional magnetic resonance imaging (fMRI) in undergraduate psychology students (beginners) and in graduated psychologists (advanced learners). During fMRI scanning, participants were presented with words denoting scientific psychological concepts within a lexical decision task (e.g. "conditioning", "habituation"). The individual semantic property content of each concept was related to brain activity during abstract concept processing. In both beginners and advanced learners, visual and motor properties activated brain regions also involved in perception and action, while mental state properties increased activity in brain regions also recruited by emotional-social scene observation. Only in advanced learners, social constellation properties elicited brain activity overlapping with emotional-social scene observation. In line with grounded cognition approaches, the present results highlight the importance of experiential information for constituting the meaning of abstract scientific concepts during the course of academic training.
Collapse
Affiliation(s)
- Martin Ulrich
- Department of Psychiatry, Ulm University, Leimgrubenweg 12, Ulm 89075, Germany
| | - Marcel Harpaintner
- Department of Psychiatry, Ulm University, Leimgrubenweg 12, Ulm 89075, Germany
| | - Natalie M Trumpp
- Department of Psychiatry, Ulm University, Leimgrubenweg 12, Ulm 89075, Germany
| | - Alexander Berger
- Department of Psychiatry, Ulm University, Leimgrubenweg 12, Ulm 89075, Germany
| | - Markus Kiefer
- Department of Psychiatry, Ulm University, Leimgrubenweg 12, Ulm 89075, Germany
| |
Collapse
|
37
|
Borghi AM, Shaki S, Fischer MH. Abstract concepts: external influences, internal constraints, and methodological issues. PSYCHOLOGICAL RESEARCH 2022; 86:2370-2388. [PMID: 35788903 PMCID: PMC9674746 DOI: 10.1007/s00426-022-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a longstanding and widely held misconception about the relative remoteness of abstract concepts from concrete experiences. This review examines the current evidence for external influences and internal constraints on the processing, representation, and use of abstract concepts, like truth, friendship, and number. We highlight the theoretical benefit of distinguishing between grounded and embodied cognition and then ask which roles do perception, action, language, and social interaction play in acquiring, representing and using abstract concepts. By reviewing several studies, we show that they are, against the accepted definition, not detached from perception and action. Focussing on magnitude-related concepts, we also discuss evidence for cultural influences on abstract knowledge and explore how internal processes such as inner speech, metacognition, and inner bodily signals (interoception) influence the acquisition and retrieval of abstract knowledge. Finally, we discuss some methodological developments. Specifically, we focus on the importance of studies that investigate the time course of conceptual processing and we argue that, because of the paramount role of sociality for abstract concepts, new methods are necessary to study concepts in interactive situations. We conclude that bodily, linguistic, and social constraints provide important theoretical limitations for our theories of conceptual knowledge.
Collapse
Affiliation(s)
- Anna M Borghi
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, 00185, Rome, Italy.
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, 00185, Rome, Italy.
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, 44837, Ariel, Israel
| | | |
Collapse
|
38
|
Abstract
concepts can potentially be represented using metaphorical mappings to concrete domains. This view predicts that when linguistic metaphors are processed, they will invoke sensory-motor simulations. Here, I examine evidence from neuroimaging and lesion studies that addresses whether metaphors in language are embodied in this manner. Given the controversy in this area, I first outline some criteria by which the quality of neuroimaging and lesion studies might be evaluated. I then review studies of metaphors in various sensory-motor domains, such as action, motion, texture, taste, and time, and examine their strengths and weaknesses. Studies of idioms are evaluated next. I also address some neuroimaging studies that can speak to the question of metaphoric conceptual organization without explicit use of linguistic metaphors. I conclude that the weight of the evidence suggests that metaphors are indeed grounded in sensory-motor systems. The case of idioms is less clear, and I suggest that they might be grounded in a qualitatively different manner than metaphors at higher levels of the action hierarchy. While metaphors are unlikely to explain all aspects of abstract concept representation, for some specific abstract concepts, there is also nonlinguistic neural evidence for metaphoric conceptual organization.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Discovery I Building, Rm 227, 915 Greene St, Columbia, SC, 29208, USA.
| |
Collapse
|
39
|
Utsumi A. A test of indirect grounding of abstract concepts using multimodal distributional semantics. Front Psychol 2022; 13:906181. [PMID: 36267060 PMCID: PMC9577286 DOI: 10.3389/fpsyg.2022.906181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
How are abstract concepts grounded in perceptual experiences for shaping human conceptual knowledge? Recent studies on abstract concepts emphasizing the role of language have argued that abstract concepts are grounded indirectly in perceptual experiences and language (or words) functions as a bridge between abstract concepts and perceptual experiences. However, this “indirect grounding” view remains largely speculative and has hardly been supported directly by empirical evidence. In this paper, therefore, we test the indirect grounding view by means of multimodal distributional semantics, in which the meaning of a word (i.e., a concept) is represented as the combination of textual and visual vectors. The newly devised multimodal distributional semantic model incorporates the indirect grounding view by computing the visual vector of an abstract word through the visual vectors of concrete words semantically related to that abstract word. An evaluation experiment is conducted in which conceptual representation is predicted from multimodal vectors using a multilayer feed-forward neural network. The analysis of prediction performance demonstrates that the indirect grounding model achieves significantly better performance in predicting human conceptual representation of abstract words than other models that mimic competing views on abstract concepts, especially than the direct grounding model in which the visual vectors of abstract words are computed directly from the images of abstract concepts. This result lends some plausibility to the indirect grounding view as a cognitive mechanism of grounding abstract concepts.
Collapse
|
40
|
Zhang Y, Lemarchand R, Asyraff A, Hoffman P. Representation of motion concepts in occipitotemporal cortex: fMRI activation, decoding and connectivity analyses. Neuroimage 2022; 259:119450. [PMID: 35798252 DOI: 10.1016/j.neuroimage.2022.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
Embodied theories of semantic cognition predict that brain regions involved in motion perception are engaged when people comprehend motion concepts expressed in language. Left lateral occipitotemporal cortex (LOTC) is implicated in both motion perception and motion concept processing but prior studies have produced mixed findings on which parts of this region are engaged by motion language. We scanned participants performing semantic judgements about sentences describing motion events and static events. We performed univariate analyses, multivariate pattern analyses (MVPA) and psychophysiological interaction (PPI) analyses to investigate the effect of motion on activity and connectivity in different parts of LOTC. In multivariate analyses that decoded whether a sentence described motion or not, the middle and posterior parts of LOTC showed above-chance level performance, with performance exceeding that of other brain regions. Univariate ROI analyses found the middle part of LOTC was more active for motion events than static ones. Finally, PPI analyses found that when processing motion events, the middle and posterior parts of LOTC (overlapping with motion perception regions), increased their connectivity with cognitive control regions. Taken together, these results indicate that the more posterior parts of LOTC, including motion perception cortex, respond differently to motion vs. static events. These findings are consistent with embodiment accounts of semantic processing, and suggest that understanding verbal descriptions of motion engages areas of the occipitotemporal cortex involved in perceiving motion.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Rafael Lemarchand
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Aliff Asyraff
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
41
|
Gao Z, Zheng L, Krieger-Redwood K, Halai A, Margulies DS, Smallwood J, Jefferies E. Flexing the principal gradient of the cerebral cortex to suit changing semantic task demands. eLife 2022; 11:e80368. [PMID: 36169281 PMCID: PMC9555860 DOI: 10.7554/elife.80368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how thought emerges from the topographical structure of the cerebral cortex is a primary goal of cognitive neuroscience. Recent work has revealed a principal gradient of intrinsic connectivity capturing the separation of sensory-motor cortex from transmodal regions of the default mode network (DMN); this is thought to facilitate memory-guided cognition. However, studies have not explored how this dimension of connectivity changes when conceptual retrieval is controlled to suit the context. We used gradient decomposition of informational connectivity in a semantic association task to establish how the similarity in connectivity across brain regions changes during familiar and more original patterns of retrieval. Multivoxel activation patterns at opposite ends of the principal gradient were more divergent when participants retrieved stronger associations; therefore, when long-term semantic information is sufficient for ongoing cognition, regions supporting heteromodal memory are functionally separated from sensory-motor experience. In contrast, when less related concepts were linked, this dimension of connectivity was reduced in strength as semantic control regions separated from the DMN to generate more flexible and original responses. We also observed fewer dimensions within the neural response towards the apex of the principal gradient when strong associations were retrieved, reflecting less complex or varied neural coding across trials and participants. In this way, the principal gradient explains how semantic cognition is organised in the human cerebral cortex: the separation of DMN from sensory-motor systems is a hallmark of the retrieval of strong conceptual links that are culturally shared.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of YorkNew YorkUnited Kingdom
| | - Li Zheng
- Department of Psychology, University of ArizonaTucsonUnited States
| | | | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche ScientifiqueParisFrance
| | | | | |
Collapse
|
42
|
Martini M, Wasmeier JR, Talamini F, Huber SE, Sachse P. Wakeful resting and listening to music contrast their effects on verbal long-term memory in dependence on word concreteness. Cogn Res Princ Implic 2022; 7:80. [PMID: 36057696 PMCID: PMC9440969 DOI: 10.1186/s41235-022-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractWakeful resting and listening to music are powerful means to modulate memory. How these activities affect memory when directly compared has not been tested so far. In two experiments, participants encoded and immediately recalled two word lists followed by either 6 min wakefully resting or 6 min listening to music. The results of Experiment 1 show that both post-encoding conditions have a similar effect on memory after 1 day. In Experiment 2, we explored the possibility that less concrete words, i.e. lower in imageability than in Experiment 1, are differently affected by the two post-encoding conditions. The results of Experiment 2 show that, when words are less concrete, more words are retained after 1 day when encoding is followed by wakeful resting rather than listening to music. These findings indicate that the effects of wakeful resting and listening to music on memory consolidation are moderated by the concreteness of the encoded material.
Collapse
|
43
|
Wu W, Morales M, Patel T, Pickering MJ, Hoffman P. Modulation of brain activity by psycholinguistic information during naturalistic speech comprehension and production. Cortex 2022; 155:287-306. [DOI: 10.1016/j.cortex.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
|
44
|
Urquiza-Haas EG, Kotrschal K. Human-Animal Similarity and the Imageability of Mental State Concepts for Mentalizing Animals. JOURNAL OF COGNITION AND CULTURE 2022. [DOI: 10.1163/15685373-12340133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The attribution of mental states (MS) to other species typically follows a scala naturae pattern. However, “simple” mental states, including emotions, sensing, and feelings are attributed to a wider range of animals as compared to the so-called “higher” cognitive abilities. We propose that such attributions are based on the perceptual quality (i.e. imageability) of mental representations related to MS concepts. We hypothesized that the attribution of highly imaginable MS is more dependent on the familiarity of participants with animals when compared to the attribution of MS low in imageability. In addition, we also assessed how animal agreeableness, familiarity with animals, and the type of human-animal interaction related to the judged similarity of animals to humans. Sixty-one participants (19 females, 42 males) with a rural (n = 20) and urban (n = 41) background rated twenty-six wild and domestic animals for their perceived similarity with humans and ability to experience a set of MS: (1) Highly imageable MS: joy, anger, and fear, and (2) MS low in imageability: capacity to plan and deceive. Results show that more agreeable and familiar animals were considered more human-like. Primates, followed by carnivores, suines, ungulates, and rodents were rated more human-like than xenarthrans, birds, arthropods, and reptiles. Higher MS ratings were given to more similar animals and more so if the MS attributed were high in imageability. Familiarity with animals was only relevant for the attribution of the MS high in imageability.
Collapse
Affiliation(s)
- Esmeralda G. Urquiza-Haas
- PhD candidate, Department of Cognitive Biology and Department of Behavioural Biology, University of Vienna Vienna Austria
| | - Kurt Kotrschal
- Retired Professor, Department of Behavioural Biology, University of Vienna Vienna Austria
| |
Collapse
|
45
|
Buccino G, Colagè I. Grounding abstract concepts and beliefs into experience: The embodied perspective. Front Psychol 2022; 13:943765. [PMID: 35941951 PMCID: PMC9356303 DOI: 10.3389/fpsyg.2022.943765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giovanni Buccino
- Divisione di Neuroscienze, IRCCS San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
- *Correspondence: Giovanni Buccino
| | - Ivan Colagè
- Faculty of Philosophy, Pontifical University Antonianum, Rome, Italy
- DISF Research Center, Pontifical University of the Holy Cross, Rome, Italy
| |
Collapse
|
46
|
Quaranta D, Di Tella S, Marra C, Gaudino S, L’Abbate F, Silveri MC. Neuroanatomical Correlates of Semantic Features of Narrative Speech in Semantic and Logopenic Variants of Primary Progressive Aphasia. Brain Sci 2022; 12:brainsci12070910. [PMID: 35884717 PMCID: PMC9320086 DOI: 10.3390/brainsci12070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
The semantic variant of a primary progressive aphasia (svPPA) is characterized by progressive disruption of semantic knowledge. This study aimed to compare the semantic features of words produced during a narrative speech in svPPA and the logopenic variant of PPA (lvPPA) and to explore their neuroanatomical correlates. Six patients with svPPA and sixteen with lvPPA underwent narrative speech tasks. For all the content words, a semantic depth index (SDI) was determined based on the taxonomic structure of a large lexical database. Study participants underwent an MRI examination. Cortical thickness measures were extracted according to the Desikan atlas. Correlations were computed between SDI and the thickness of cortical regions. Mean SDI was lower for svPPA than for lvPPA. Correlation analyses showed a positive association between the SDI and the cortical thickness of the bilateral temporal pole, parahippocampal and entorhinal cortices, and left middle and superior temporal cortices. Disruption of semantic knowledge observed in svPPA leads to the production of generic terms in narrative speech, and the SDI may be useful for quantifying the level of semantic impairment. The measure was associated with the cortical thickness of brain regions associated with semantic memory.
Collapse
Affiliation(s)
- Davide Quaranta
- Neurology Unit, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCSS, 00168 Rome, Italy; (C.M.); (F.L.)
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (S.D.T.); (M.C.S.)
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-30154303
| | - Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (S.D.T.); (M.C.S.)
| | - Camillo Marra
- Neurology Unit, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCSS, 00168 Rome, Italy; (C.M.); (F.L.)
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (S.D.T.); (M.C.S.)
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Gaudino
- Radiology and Neuroradiology Unit, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCSS, 00168 Rome, Italy;
| | - Federica L’Abbate
- Neurology Unit, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCSS, 00168 Rome, Italy; (C.M.); (F.L.)
| | - Maria Caterina Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (S.D.T.); (M.C.S.)
- Centre for the Medicine of the Aging, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCSS, 00168 Rome, Italy
| |
Collapse
|
47
|
Qi CX, Wen Z, Huang X. Reduction of Interhemispheric Homotopic Connectivity in Cognitive and Visual Information Processing Pathways in Patients With Thyroid-Associated Ophthalmopathy. Front Hum Neurosci 2022; 16:882114. [PMID: 35865354 PMCID: PMC9295451 DOI: 10.3389/fnhum.2022.882114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Thyroid-associated ophthalmopathy (TAO) is a vision threatening autoimmune and inflammatory orbital disease, and has been reported to be associated with a wide range of structural and functional abnormalities of bilateral hemispheres. However, whether the interhemisphere functional connectivity (FC) of TAO patients is altered still remain unclear. A new technique called voxel-mirrored homotopic connectivity (VMHC) combined with support vector machine (SVM) method was used in the present study to explore interhemispheric homotopic functional connectivity alterations in patients with TAO. Methods A total of 21 TAO patients (14 males and 7 females) and 21 wellmatched healthy controls (HCs, 14 males and 7 females), respectively, underwent functional magnetic resonance imaging (fMRI) scanning in the resting state. We evaluated alterations in the resting state functional connectivity between hemispheres by applying VMHC method and then selected these abnormal brain regions as seed areas for subsequent study using FC method. Furthermore, the observed changes of regions in the VMHC analysis were chosen as classification features to differentiate patients with TAO from HCs through support vector machine (SVM) method. Results The results showed that compared with HCs, TAO patients showed significantly lower VMHC values in the bilateral postcentral gyrus, lingual gyrus, calcarine, middle temporal gyrus, middle occipital gyrus and angular. Moreover, significantly decreased FC values were found between the right postcentral gyrus/lingual gyrus/calcarine and left lingual gyrus/cuneus/superior occipital gyrus, left postcentral gyrus/lingual gyrus/calcarine and right lingual gyrus/ middle temporal gyrus, right middle temporal gyrus and left cerebellum-8/lingual gyrus/middle occipital gyrus/supplementary motor area, left middle temporal gyrus and right middle occipital gyrus, right middle occipital gyrus/angular and left middle temporal pole (voxel-level p < 0.01, Gaussian random field correction, cluster-level p < 0.05). The SVM classification model achieved good performance in differentiating TAO patients from HCs (total accuracy: 73.81%; area under the curve: 0.79). Conclusion The present study revealed that the altered interhemisphere interaction and integration of information involved in cognitive and visual information processing pathways including the postcentral gyrus, cuneus, cerebellum, angular, widespread visual cortex and temporal cortex in patients with TAO relative to HC group. VMHC variability had potential value for accurately and specifically distinguishing patients with TAO from HCs. The new findings may provide novel insights into the neurological mechanisms underlying visual and cognitive disorders in patients with TAO.
Collapse
Affiliation(s)
- Chen-Xing Qi
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang University, Nanchang, China
- *Correspondence: Xin Huang
| |
Collapse
|
48
|
Zhu X. Proximal language predicts crowdfunding success: Behavioral and experimental evidence. COMPUTERS IN HUMAN BEHAVIOR 2022. [DOI: 10.1016/j.chb.2022.107213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Merchant JS, Alkire D, Redcay E. Neural similarity between mentalizing and live social interaction during the transition to adolescence. Hum Brain Mapp 2022; 43:4074-4090. [PMID: 35545954 PMCID: PMC9374881 DOI: 10.1002/hbm.25903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Social interactions are essential for human development, yet little neuroimaging research has examined their underlying neurocognitive mechanisms using socially interactive paradigms during childhood and adolescence. Recent neuroimaging research has revealed activity in the mentalizing network when children engage with a live social partner, even when mentalizing is not required. While this finding suggests that social‐interactive contexts may spontaneously engage mentalizing, it is not a direct test of how similarly the brain responds to these two contexts. The current study used representational similarity analysis on data from 8‐ to 14‐year‐olds who made mental and nonmental judgments about an abstract character and a live interaction partner during fMRI. A within‐subject, 2 (Mental/Nonmental) × 2 (Peer/Character) design enabled us to examine response pattern similarity between conditions, and estimate fit to three conceptual models of how the two contexts relate: (1) social interaction and mentalizing about an abstract character are represented similarly; (2) interactive peers and abstract characters are represented differently regardless of the evaluation type; and (3) mental and nonmental states are represented dissimilarly regardless of target. We found that the temporal poles represent mentalizing and peer interactions similarly (Model 1), suggesting a neurocognitive link between the two in these regions. Much of the rest of the social brain exhibits different representations of interactive peers and abstract characters (Model 2). Our findings highlight the importance of studying social‐cognitive processes using interactive approaches, and the utility of pattern‐based analyses for understanding how social‐cognitive processes relate to each other.
Collapse
Affiliation(s)
- Junaid S Merchant
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Diana Alkire
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.,Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
50
|
Tynterova A, Perepelitsa S, Golubev A. Personalized Neurophysiological and Neuropsychological Assessment of Patients with Left and Right Hemispheric Damage in Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12050554. [PMID: 35624940 PMCID: PMC9139366 DOI: 10.3390/brainsci12050554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
The leading factors of post-stroke disability are motor disorders and cognitive dysfunctions. The aim of the study was to identify and provide a rationale for the variable early cognitive dysfunction in right and left hemispheric damage in patients with acute stroke. The study included 80 patients diagnosed with ischemic stroke. All patients were assessed for cognitive status, depression, fatigue and anxiety. For objectification, the method of evoked potentials (P300) and neuroimaging were used. Our findings revealed distinguishing features of cognitive dysfunction and identified a combination of the most informative markers characteristic of right and left hemispheric damage in patients with acute ischemic stroke. In patients with damage to the left hemisphere, a predominance of dysregulation syndrome (decrease in executive function and attention) was revealed, accompanied by various disorders such as severe anxiety and fatigue. The causes of this cognitive dysfunction may be directly related to stroke (damage to subcortical structures), as well as to a preexisting reduction in higher mental functions associated with age and vascular conditions. Cognitive impairments in patients with lesions of the right hemisphere were characterized by polymorphism and observed in the mental praxis, speech (with predominant semantic component) and abstract thinking domains. They are closely linked to each other and are more related to the lateralization of the lesion and preexisting neurodegeneration than to the localization of the ischemic lesion. The study of P300-evoked potentials is a good tool for confirming cognitive dysfunction. The latent period of the P300 wave is more sensitive to neurodegeneration, while the amplitude factor characterizes vascular pathology to a greater extent. The results of the study provide a rationale for a comprehensive assessment of lateralization, stroke localization, underlying diseases, neurophysiological parameters and identified cognitive impairments when developing a plan of rehabilitation and neuropsychological measures aimed at cognitive and emotional recovery of patients both in the acute phase of ischemic stroke and when selecting further personalized rehabilitation programs.
Collapse
Affiliation(s)
- Anastasia Tynterova
- Immanuel Kant Baltic Federal University, 14 Alexander Nevsky St., 236041 Kaliningrad, Kaliningrad Oblast, Russia;
- Correspondence:
| | - Svetlana Perepelitsa
- Immanuel Kant Baltic Federal University, 14 Alexander Nevsky St., 236041 Kaliningrad, Kaliningrad Oblast, Russia;
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., Build. 2, 107031 Moscow, Moskovskaya Oblast, Russia;
| | - Arкady Golubev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., Build. 2, 107031 Moscow, Moskovskaya Oblast, Russia;
| |
Collapse
|