1
|
Ganesan S, Misaki M, Zalesky A, Tsuchiyagaito A. Functional brain network dynamics of brooding in depression: Insights from real-time fMRI neurofeedback. J Affect Disord 2025; 380:191-202. [PMID: 40122254 DOI: 10.1016/j.jad.2025.03.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Brooding is a critical symptom and prognostic factor of major depressive disorder (MDD), which involves passively dwelling on self-referential dysphoria and related abstractions. The neurobiology of brooding remains under characterized. We aimed to elucidate neural dynamics underlying brooding, and explore their responses to neurofeedback intervention in MDD. METHODS We investigated functional MRI (fMRI) dynamic functional network connectivity (dFNC) in 36 MDD subjects and 26 healthy controls (HCs) during rest and brooding. Rest was measured before and after fMRI neurofeedback (MDD-active/sham: n = 18/18, HC-active/sham: n = 13/13). Baseline brooding severity was recorded using Ruminative Response Scale - Brooding subscale (RRS-B). RESULTS Four recurrent dFNC states were identified. Measures of time spent were not significantly different between MDD and HC for any of these states during brooding or rest. RRS-B scores in MDD showed significant negative correlation with measures of time spent in dFNC state 3 during brooding (r = -0.4, p = 0.002, FDR-significant). This state comprises strong connections spanning several brain systems involved in sensory, attentional and cognitive processing. Time spent in this anti-brooding dFNC state significantly increased following neurofeedback only in the MDD active group (z = -2.09, FWE-p = 0.034). LIMITATIONS The sample size was small and imbalanced between groups. Brooding condition was not examined post-neurofeedback. CONCLUSION We identified a densely connected anti-brooding dFNC brain state in MDD. MDD subjects spent significantly longer time in this state after active neurofeedback intervention, highlighting neurofeedback's potential for modulating dysfunctional brain dynamics to treat MDD.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of Psychiatry, Melbourne Medical School, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia; Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Medical School, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, USA; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Li Q, Yu S, Malo J, Pearlson GD, Wang YP, Calhoun VD. Beyond Pairwise Connections in Complex Systems: Insights into the Human Multiscale Psychotic Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643985. [PMID: 40166286 PMCID: PMC11956946 DOI: 10.1101/2025.03.18.643985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Complex biological systems, like the brain, exhibit intricate multiway and multiscale interactions that drive emergent behaviors. In psychiatry, neural processes extend beyond pairwise connectivity, involving higher-order interactions critical for understanding mental disorders. Conventional brain network studies focus on pairwise links, offering insights into basic connectivity but failing to capture the complexity of neural dysfunction in psychiatric conditions. This study aims to bridge this gap by applying a matrix-based entropy functional to estimate total correlation, a mathematical framework that incorporates multivariate information measures extending beyond pairwise interactions. We apply this framework to fMRI-ICA-derived multiscale brain networks, enabling the investigation of interactions beyond pairwise relationships in the human multiscale brain. Additionally, this approach holds promise for psychiatric studies, providing a new lens through which to explore beyond pairwise brain network interactions. By examining both triple interactions and the latent factors underlying the triadic relationships among intrinsic brain connectivity networks through tensor decomposition, our study presents a novel approach to understanding higher-order brain dynamics. This framework not only enhances our understanding of complex brain functions but also offers new opportunities for investigating pathophysiology, potentially informing more targeted diagnostic and therapeutic strategies. Moreover, the methodology of analyzing multiway interactions beyond pairwise connections can be applied to any signal analysis. In this study, we specifically explore its application to neural signals, demonstrating its power in uncovering complex multiway interaction patterns of brain activity, which provide a window to explore connectivity beyond pairwise interactions in the multiscale functionality of the brain.
Collapse
Affiliation(s)
- Qiang Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA,United States
| | - Shujian Yu
- Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Jesus Malo
- Image Processing Laboratory, University of Valencia, Valencia,Spain
| | - Godfrey D. Pearlson
- Departments of Psychiatry and Neurobiology, Yale University,New Haven, CT,United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University,New Orleans, LA, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA,United States
| |
Collapse
|
3
|
Ye L, Ba L, Yan D. A study of dynamic functional connectivity changes in flight trainees based on a triple network model. Sci Rep 2025; 15:7828. [PMID: 40050304 PMCID: PMC11885617 DOI: 10.1038/s41598-025-89023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The time-varying functional connectivity of the Central Executive Network (CEN), Default Mode Network (DMN), and Salience Network (SN) in flight trainees during a resting state was investigated using dynamic functional network connectivity (dFNC). The study included 39 flight trainees and 37 age- and sex-matched healthy controls. Resting-state fMRI data and behavioral test outcomes were obtained from both groups. Independent component analysis (ICA), sliding window, and K-means clustering approaches were utilized for evaluating functional network connectivity (FNC) and temporal metrics based on the triple networks. Correlation analyses were performed on the behavioral assessments and these metrics. The flight trainees demonstrated a significantly enhanced functional connection linking the CEN and DMN in state 2 (P < 0.05, FDR corrected). Additionally, flight trainees spent less time in state 5, while they exhibited a protracted mean dwell time and fractional windows in state 2, which were significantly correlated with accuracy on the Berg Card Sorting Test (BCST) and Change Detection Test (all P < 0.05). The improved connectivity of flight trainees between the CEN and DMN following the completion of rigorous flight training resulted in increased stability. This enhancement may be relevant to cognitive abilities such as decision-making, memory, and information integration. When multitasking, flight trainees displayed superior visual processing skills and enhanced cognitive flexibility. dFNC research provides a unique perspective on the sophisticated cognitive capabilities that are required in high-demand, high-stress occupations such as piloting, thereby providing significant insights into the intricate brain mechanisms that are inherent in these domains.
Collapse
Affiliation(s)
- Lu Ye
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Liya Ba
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Dongfeng Yan
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China.
| |
Collapse
|
4
|
Mirzaeian S, Faghiri A, Calhoun VD, Iraji A. A telescopic independent component analysis on functional magnetic resonance imaging dataset. Netw Neurosci 2025; 9:61-76. [PMID: 40161992 PMCID: PMC11949590 DOI: 10.1162/netn_a_00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/15/2024] [Indexed: 04/02/2025] Open
Abstract
Brain function can be modeled as dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive independent component analysis (ICA) strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on the DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of the DMN, VN, and RFPN. In addition, the TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
Collapse
Affiliation(s)
- Shiva Mirzaeian
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Rafi H, Samson JL, Rudloff JB, Poznyak E, Gauthey M, Perroud N, Debbané M. Attention and emotion in adolescents with ADHD; a time-varying functional connectivity study. J Affect Disord 2025; 372:86-95. [PMID: 39551190 DOI: 10.1016/j.jad.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND This study assessed adolescent brain-behavior relationships between large-scale dynamic functional network connectivity (FNC) and an integrated attention-deficit/hyperactivity disorder (ADHD) phenotype, including measures of inattention, impulsivity/hyperactivity and emotional dysregulation. Despite emotion dysregulation being a core clinical feature of ADHD, studies rarely assess its impact on large-scale FNC. METHODS We conducted resting-state functional magnetic resonance imaging in 78 adolescents (34 with ADHD) and obtained experimental and self-reported measures of inattention, impulsivity/hyperactivity, and emotional reactivity. We used multivariate analyses to evaluate group differences in dynamic FNC between the default mode, salience and central executive networks, meta-state functional connectivity and ADHD symptomology. RESULTS We present two significant group*behavior effects. Compared to controls, adolescents with ADHD had 1) diminished salience network-centered dynamic FNC that was driven by an integrated ADHD phenotype (p < .004, r = 0.57) and 2) more variable patterns of global connectivity, as measured through meta-state analysis, which were driven by heightened emotional reactivity (p < .002, r = 0.63). CONCLUSIONS Atypical patterns of dynamic FNC in adolescents with ADHD are associated with the affective and cognitive components of ADHD symptomology. Limitations include sample size and self-reported measures of emotional reactivity.
Collapse
Affiliation(s)
- Halima Rafi
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | - Jessica Lee Samson
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Juan Barrios Rudloff
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Elena Poznyak
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Melissa Gauthey
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Nader Perroud
- Service of psychiatric specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Martin Debbané
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland; Research Department of Clinical, Educational & Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Lewis N, Iraji A, Miller R, Agcaoglu O, Calhoun V. Topologically Optimized Intrinsic Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639110. [PMID: 40060448 PMCID: PMC11888185 DOI: 10.1101/2025.02.19.639110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The estimation of brain networks is instrumental in quantifying and evaluating brain function. Nevertheless, achieving precise estimations of subject-level networks has proven to be a formidable task. In response to this challenge, researchers have developed group-inference frameworks that leverage robust group-level estimations as a common reference point to infer corresponding subject-level networks. Generally, existing approaches either leverage the common reference as a strict, voxel-wise spatial constraint (i.e., strong constraints at the voxel level) or impose no constraints. Here, we propose a targeted approach that harnesses the topological information of group-level networks to encode a high-level representation of spatial properties to be used as constraints, which we refer to as Topologically Optimized Intrinsic Brain Networks (TOIBN). Consequently, our method inherits the significant advantages of constraint-based approaches, such as enhancing estimation efficacy in noisy data or small sample sizes. On the other hand, our method provides a softer constraint than voxel-wise penalties, which can result in the loss of individual variation, increased susceptibility to model biases, and potentially missing important subject-specific information. Our analyses show that the subject maps from our method are less noisy and true to the group networks while promoting subject variability that can be lost from strict constraints. We also find that the topological properties resulting from the TOIBN maps are more expressive of differences between individuals with schizophrenia and controls in the default mode, subcortical, and visual networks.
Collapse
Affiliation(s)
- Noah Lewis
- Georgia Institute of Technoloqy, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Robyn Miller
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Oktay Agcaoglu
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Vince Calhoun
- Georgia Institute of Technoloqy, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
- The Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
7
|
Li Q, Fu Z, Walum H, Seraji M, Bajracharya P, Calhoun V, Shultz S, Iraji A. Deciphering Multiway Multiscale Brain Network Connectivity: Insights from Birth to 6 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634772. [PMID: 39975042 PMCID: PMC11838216 DOI: 10.1101/2025.01.24.634772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Converging evidence suggests that understanding the human brain requires more than just examining pairwise functional brain interactions. The human brain is a complex, nonlinear system, and focusing solely on linear pairwise functional connectivity often overlooks important nonlinear and higher-order relationships. Infancy is a critical period marked by significant brain development that could contribute to future learning, health, and life success. Exploring higher-order functional relationships in the brain can provide insight into brain function and development. To the best of our knowledge, there is no existing research on multiway, multiscale brain network interactions in infants. In this study, we comprehensively investigate the interactions among brain intrinsic connectivity networks (ICNs), including both pairwise (pair-FNC) and triple relationships (tri-FNC). We focused on an infant dataset collected between birth and six months, a critical period for brain maturation. Our results revealed significant hierarchical, multiway, multiscale brain functional network interactions in the infant brain. These findings suggest that tri-FNC provide additional insights beyond what pairwise interactions reveal during early brain development. The tri-FNC predominantly involve the default mode, sensorimotor, visual, limbic, language, salience, and central executive domains. Notably, these triplet networks align with the classical triple network model of the human brain, which includes the default mode network, the salience network, and the central executive network. This suggests that the brain network system might already be initially established during the first six months of infancy. Interestingly, tri-FNC in the default mode and salience domains showed significantly stronger nonlinear interactions with age compared to pair-FNC. We also found that pair-FNC were less effective at detecting these networks. The present study suggests that exploring tri-FNC can offer additional insights beyond pair-FNC by capturing higher-order nonlinear interactions, potentially yielding more reliable biomarkers to characterize developmental trajectories.
Collapse
Affiliation(s)
- Qiang Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Masoud Seraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- School of Psychology, University of Texas at Austin, Austin, USA
| | - Prerana Bajracharya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- School of Psychology, University of Texas at Austin, Austin, USA
| | - Sarah Shultz
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Ajith M, Calhoun VD. Conditional Denoising Diffusion Probabilistic Models with Attention for Subject-Specific Brain Network Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631503. [PMID: 39829795 PMCID: PMC11741255 DOI: 10.1101/2025.01.06.631503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of diffusion models, such as Glide, DALLE 2, Imagen, and Stable Diffusion, marks a significant advancement in generative AI for image synthesis. In this paper, we introduce a novel framework for synthesizing intrinsic connectivity networks (ICNs) by utilizing the nonlinear capabilities of denoising diffusion probabilistic models (DDPMs). This approach builds upon and extends traditional linear methods, such as independent component analysis (ICA), which are commonly used in neuroimaging studies. A central contribution of our work is the integration of attention mechanisms into conditional DDPMs, enabling the generation of subject-specific 3D ICNs. Conditioning the resting-state fMRI (rs-fMRI) data on the corresponding ICNs enables the extraction of individualized brain connectivity patterns, effectively capturing within-subject and between-subject variability. Unlike prior models limited to 2D visualization, this framework generates 3D representations, providing a more comprehensive depiction of ICNs. The model's performance is validated on an external dataset to prevent over-fitting and for overall generalizability. Furthermore, comparative evaluations also demonstrate that the proposed DDPM-based approach outperforms state-of-the-art generative models in producing more detailed and accurate ICNs, as validated through qualitative assessments.
Collapse
|
9
|
Basile GA, Nozais V, Quartarone A, Giustiniani A, Ielo A, Cerasa A, Milardi D, Abdallah M, Thiebaut de Schotten M, Forkel SJ, Cacciola A. Functional anatomy and topographical organization of the frontotemporal arcuate fasciculus. Commun Biol 2024; 7:1655. [PMID: 39702403 DOI: 10.1038/s42003-024-07274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Traditionally, the frontotemporal arcuate fasciculus (AF) is viewed as a single entity in anatomo-clinical models. However, it is unclear if distinct cortical origin and termination patterns within this bundle correspond to specific language functions. We use track-weighted dynamic functional connectivity, a hybrid imaging technique, to study the AF structure and function in two distinct datasets of healthy subjects. Here we show that the AF can be subdivided based on dynamic changes in functional connectivity at the streamline endpoints. An unsupervised parcellation algorithm reveals spatially segregated subunits, which are then functionally quantified through meta-analysis. This approach identifies three distinct clusters within the AF - ventral, middle, and dorsal frontotemporal AF - each linked to different frontal and temporal termination regions and likely involved in various language production and comprehension aspects. Our findings may have relevant implications for the understanding of the functional anatomy of the AF as well as its contribution to linguistic and non-linguistic functions.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | | | - Augusto Ielo
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Complex Biological Systems (IBSBC CNR), Milan, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Majd Abdallah
- Bordeaux Bioinformatics Center (CBiB), IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
10
|
Fouladivanda M, Iraji A, Wu L, van Erp TGM, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. Netw Neurosci 2024; 8:1212-1242. [PMID: 39735500 PMCID: PMC11674407 DOI: 10.1162/netn_a_00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/28/2024] [Indexed: 12/31/2024] Open
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. The brain connectivity of different modalities provides an insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multimodal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multiobjective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multimodal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared with the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Chen K, Ma Y, Yang R, Li F, Li W, Chen J, Shao H, He C, Chen M, Luo Y, Cheng B, Wang J. Shared and disorder-specific large-scale intrinsic and effective functional network connectivities in postpartum depression with and without anxiety. Cereb Cortex 2024; 34:bhae478. [PMID: 39668426 DOI: 10.1093/cercor/bhae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
Postpartum depression and postpartum depression with anxiety, which are highly prevalent and debilitating disorders, become a growing public concern. The high overlap on the symptomatic and neurobiological levels led to ongoing debates about their diagnostic and neurobiological uniqueness. Delineating the shared and disorder-specific intrinsic functional connectivities and their causal interactions is fundamental to precision diagnosis and treatment. In this study, we recruited 138 participants including 45 postpartum depression, 31 postpartum depression comorbid with anxiety patients, and 62 healthy postnatal women with age ranging from 23 to 40 years. We combined independent component analysis, resting-state functional connectivity, and Granger causality analysis to reveal the abnormal intrinsic functional couplings and their causal interactions in postpartum depression and postpartum depression comorbid with anxiety from a large-scale brain network perspective. We found that they exhibited widespread abnormalities in intrinsic and effective functional network connectivities. Importantly, the intrinsic and effective functional network connectivities within or between the fronto-parietal network, default model network, ventral and dorsal attention network, sensorimotor network, and visual network, especially the functional imbalances between primary and association cortices could serve as effective neural markers to differentiate postpartum depression, postpartum depression comorbid with anxiety, and healthy controls. Our findings provide the initial evidence for shared and disorder-specific intrinsic and effective functional network connectivities for postpartum depression and postpartum depression comorbid with anxiety, which provide an underlying neuropathological basis for postpartum depression or postpartum depression comorbid with anxiety to facilitate precision diagnosis and therapy in future studies.
Collapse
Affiliation(s)
- Kexuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Rui Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Fang Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Wei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Heng Shao
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming 650500, China
| | - Chongjun He
- People's Hospital of Lijiang, The Affiliated Hospital of Kunming University of Science and Technology, No. 526, Fuhui Road, Gucheng District, Lijiang 674100, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming 650500, China
| | - Yuejia Luo
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen 518061, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, No. 20, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
12
|
Quan S, Wang C, Huang J, Wang S, Jia T, Liang J, Zhao L, Liu J. Abnormal thalamocortical network dynamics in patients with migraine and its relationship with electroacupuncture treatment response. Brain Imaging Behav 2024; 18:1467-1479. [PMID: 39340626 DOI: 10.1007/s11682-024-00938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Acupuncture is an effective and safe alternative treatment to prevent and treat migraine, but its central analgesic mechanism remains poorly understood. It is believed that the dysfunction of the thalamocortical connectivity network is an important contributor to migraine pathophysiology. This study aimed to investigate the abnormal thalamocortical network dynamics in patients with migraine without aura (MWoA) before and after an 8-week electroacupuncture treatment. A total of 143 patients with MWoA and 100 healthy controls (HC) were included, and resting-state functional magnetic resonance imaging (fMRI) data were acquired. Dynamic functional network connectivity (dFNC) was calculated for each subject. The modulation effect of electroacupuncture on clinical outcomes of migraine, dFNC, and their association were investigated. In our results, dFNC matrices were classified into two clusters (brain states). As compared with the HC, patients with MWoA had a higher proportion of brain states with a strong thalamocortical between-network connection, implying an abnormal balance of the network organization across dFNC brain states. Correlation analysis showed that this abnormality was associated with summarized clinical measurements of migraine. A total of 60 patients were willing to receive an 8-week electroacupuncture treatment, and 24 responders had 50% changes in headache frequency. In electroacupuncture responders, electroacupuncture could change the abnormal thalamocortical connectivities towards a pattern more similar to that of HC. Our findings suggested that electroacupuncture could relieve the symptoms of migraine and has the potential capacity to regulate the abnormal function of the thalamocortical circuits.
Collapse
Affiliation(s)
- Shilan Quan
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Chenxi Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jia Huang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Shujun Wang
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Tianzhe Jia
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jixin Liu
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| |
Collapse
|
13
|
Vu T, Laport F, Yang H, Calhoun VD, Adal T. Constrained Independent Vector Analysis With Reference for Multi-Subject fMRI Analysis. IEEE Trans Biomed Eng 2024; 71:3531-3542. [PMID: 39042541 PMCID: PMC11754528 DOI: 10.1109/tbme.2024.3432273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.
Collapse
|
14
|
Marchitelli R, Paillère Martinot ML, Trouvé A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Garavan H, Gowland P, Heinz A, Brühl R, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Holz N, Vaidya N, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Martinot JL, Artiges E. Coupled changes between ruminating thoughts and resting-state brain networks during the transition into adulthood. Mol Psychiatry 2024; 29:3769-3778. [PMID: 38956372 DOI: 10.1038/s41380-024-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people's ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles' psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.
Collapse
Affiliation(s)
- Rocco Marchitelli
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Alain Trouvé
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CHU Sainte-Justine Research Center, Population Neuroscience Laboratory, University of Montreal, Montreal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, and German Center for Mental Health (DZPG) partner site Mannheim-Heidelberg-Ulm, Heidelberg University, Mannheim, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI Fudan University, Shanghai, China
- Department of Psychiatry and Neuroscience, Charité University Medicine, Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France.
- Department of Psychiatry, Lab-D-PSY, EPS Barthélémy Durand, Etampes, France.
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, University Paris-Saclay, University Paris-City, INSERM U1299 "Developmental Trajectories & Psychiatry, Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- Department of Psychiatry, Lab-D-PSY, EPS Barthélémy Durand, Etampes, France
| |
Collapse
|
15
|
Zhang W, Zeng W, Chen H, Liu J, Yan H, Zhang K, Tao R, Siok WT, Wang N. STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data. Tomography 2024; 10:1895-1914. [PMID: 39728900 DOI: 10.3390/tomography10120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Early diagnosis of depression is crucial for effective treatment and suicide prevention. Traditional methods rely on self-report questionnaires and clinical assessments, lacking objective biomarkers. Combining functional magnetic resonance imaging (fMRI) with artificial intelligence can enhance depression diagnosis using neuroimaging indicators, but depression-specific fMRI datasets are often small and imbalanced, posing challenges for classification models. New Method: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating convolutional neural networks (CNN) and recurrent neural networks (RNN) to capture both temporal and spatial features of brain activity. STANet comprises the following steps: (1) Aggregate spatio-temporal information via independent component analysis (ICA). (2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using the synthetic minority over-sampling technique (SMOTE) to generate new samples for minority classes. (4) Employ the attention-Fourier gate recurrent unit (AFGRU) classifier to capture long-term dependencies, with an adaptive weight assignment mechanism to enhance model generalization. Results: STANet achieves superior depression diagnostic performance, with 82.38% accuracy and a 90.72% AUC. The Spatio-Temporal Feature Aggregation module enhances classification by capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and a stacked Gated Recurrent Unit (GRU), attains higher accuracy and AUC. SMOTE outperforms other oversampling methods. Additionally, spatio-temporal aggregated features achieve better performance compared to using only temporal or spatial features. Comparison with existing methods: STANet significantly outperforms traditional classifiers, deep learning classifiers, and functional connectivity-based classifiers. Conclusions: The successful performance of STANet contributes to enhancing the diagnosis and treatment assessment of depression in clinical settings on imbalanced and small fMRI.
Collapse
Affiliation(s)
- Wei Zhang
- Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Hongyu Chen
- Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Jie Liu
- Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, China
| | - Kaile Zhang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai Ting Siok
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
16
|
Kinsey S, Kazimierczak K, Camazón PA, Chen J, Adali T, Kochunov P, Adhikari BM, Ford J, van Erp TGM, Dhamala M, Calhoun VD, Iraji A. Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls. NATURE. MENTAL HEALTH 2024; 2:1464-1475. [PMID: 39650801 PMCID: PMC11621020 DOI: 10.1038/s44220-024-00341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/24/2024] [Indexed: 12/11/2024]
Abstract
Schizophrenia is a chronic brain disorder associated with widespread alterations in functional brain connectivity. Although data-driven approaches such as independent component analysis are often used to study how schizophrenia impacts linearly connected networks, alterations within the underlying nonlinear functional connectivity structure remain largely unknown. Here we report the analysis of networks from explicitly nonlinear functional magnetic resonance imaging connectivity in a case-control dataset. We found systematic spatial variation, with higher nonlinear weight within core regions, suggesting that linear analyses underestimate functional connectivity within network centers. We also found that a unique nonlinear network incorporating default-mode, cingulo-opercular and central executive regions exhibits hypoconnectivity in schizophrenia, indicating that typically hidden connectivity patterns may reflect inefficient network integration in psychosis. Moreover, nonlinear networks including those previously implicated in auditory, linguistic and self-referential cognition exhibit heightened statistical sensitivity to schizophrenia diagnosis, collectively underscoring the potential of our methodology to resolve complex brain phenomena and transform clinical connectivity analysis.
Collapse
Affiliation(s)
- Spencer Kinsey
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
| | | | - Pablo Andrés Camazón
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, liSGM, CIBERSAM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD USA
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Bhim M. Adhikari
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Judith Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA USA
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA USA
| | - Mukesh Dhamala
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Computer Science, Georgia State University, Atlanta, GA USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA
- Neuroscience Institute, Georgia State University, Atlanta, GA USA
- Department of Computer Science, Georgia State University, Atlanta, GA USA
| |
Collapse
|
17
|
Shen B, Yao Q, Zhang Y, Jiang Y, Wang Y, Jiang X, Zhao Y, Zhang H, Dong S, Li D, Chen Y, Pan Y, Yan J, Han F, Li S, Zhu Q, Zhang D, Zhang L, Wu Y. Static and Dynamic Functional Network Connectivity in Parkinson's Disease Patients With Postural Instability and Gait Disorder. CNS Neurosci Ther 2024; 30:e70115. [PMID: 39523453 PMCID: PMC11551039 DOI: 10.1111/cns.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS The exact cause of the parkinsonism gait remains uncertain. We first focus on understanding the underlying neurological reasons for these symptoms through the examination of both static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC). METHODS We recruited 64 postural instability and gait disorder-dominated Parkinson's disease (PIGD-PD) patients, 31 non-PIGD-PD (nPIGD-PD) patients, and 54 healthy controls (HC) from Nanjing Brain Hospital. The GIFT software identified five distinct independent components: the basal ganglia (BG), cerebellum (CB), sensory networks (SMN), default mode network (DMN), and central executive network (CEN). We conducted a comparison between the SFNC and DFNC of the five networks and analyzed their correlations with postural instability and gait disorder (PIGD) symptoms. RESULTS Compared with nPIGD-PD patients, the PIGD-PD patients demonstrated reduced connectivity between CEN and DMN while spending less mean dwell time (MDT) in state 4. This is characterized by strong connections. Compared with HC, PIGD-PD patients exhibited enhanced connectivity in the SFNC between CB and CEN, as well as the network between CB and DMN. Patients with PIGD-PD spent more MDT in state 1, which is characterized by few connections, and less MDT in state 4. In state 3, there was an increase in the functional connectivity between the CB and DMN in patients with PIGD-PD. The nPIGD patients showed increased SFNC connectivity between CB and DMN compared to HC. These patients spent more MDT in state 1 and less in state 4. The MDT and fractional windows of state 2 showed a positive link with PIGD scores. CONCLUSION Patients with PIGD-PD exhibit a higher likelihood of experiencing reduced brain connectivity and impaired information processing. The enhanced connection between the cerebellum and DMN networks is considered a type of dynamic compensation.
Collapse
Affiliation(s)
- Bo Shen
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- Department of NeurologyShanghai General Hospital of Nanjing Medical UniversityShanghaiChina
| | - Qun Yao
- Department of NeurologyAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yixuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular DiseasesMinistry of EducationChina
- International Joint Laboratory for Drug Target of Critical Illnesses, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Yinyin Jiang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaxi Wang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xu Jiang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Zhao
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Haiying Zhang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuangshuang Dong
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Dongfeng Li
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaning Chen
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Pan
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jun Yan
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Feng Han
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- International Joint Laboratory for Drug Target of Critical Illnesses, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Shengrong Li
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Qi Zhu
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Daoqiang Zhang
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Li Zhang
- Department of GeriatricsAffiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yun‐cheng Wu
- Department of NeurologyShanghai General Hospital of Nanjing Medical UniversityShanghaiChina
| |
Collapse
|
18
|
Boehm I, Mennigen E, Geisler D, Poller NW, Gramatke K, Calhoun VD, Roessner V, King JA, Ehrlich S. Dynamic functional connectivity in anorexia nervosa: alterations in states of low connectivity and state transitions. J Child Psychol Psychiatry 2024; 65:1299-1310. [PMID: 38480007 DOI: 10.1111/jcpp.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The onset of anorexia nervosa (AN) frequently occurs during adolescence and is associated with preoccupation with body weight and shape and extreme underweight. Altered resting state functional connectivity in the brain has been described in individuals with AN, but only from a static perspective. The current study investigated the temporal dynamics of functional connectivity in adolescents with AN and how it relates to clinical features. METHOD 99 female patients acutely ill with AN and 99 pairwise age-matched female healthy control (HC) participants were included in the study. Using resting-state functional MRI data and an established sliding-window analytic approach, we identified dynamic resting-state functional connectivity states and extracted dynamic indices such as dwell time (the duration spent in a state), fraction time (the proportion of the total time occupied by a state), and number of transitions (number of switches) from one state to another, to test for group differences. RESULTS Individuals with AN had relatively reduced fraction time in a mildly connected state with pronounced connectivity within the default mode network (DMN) and an overall reduced number of transitions between states. CONCLUSIONS These findings revealed by a dynamic, but not static analytic approach might hint towards a more "rigid" connectivity, a phenomenon commonly observed in internalizing mental disorders, and in AN possibly related to a reduction in energetic costs as a result of nutritional deprivation.
Collapse
Affiliation(s)
- Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Eva Mennigen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico W Poller
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Katrin Gramatke
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Mirzaeian S, Faghiri A, Calhoun VD, Iraji A. A Telescopic Independent Component Analysis on Functional Magnetic Resonance Imaging Data Set. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581086. [PMID: 39386484 PMCID: PMC11463639 DOI: 10.1101/2024.02.19.581086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brain function can be modeled as the dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed "telescopic independent component analysis (TICA)," designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive ICA strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of DMN, VS, and RFPN. In addition, TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.
Collapse
Affiliation(s)
- Shiva Mirzaeian
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
20
|
Liddell BJ, Das P, Malhi GS, Jobson L, Lau W, Felmingham KL, Nickerson A, Askovic M, Aroche J, Coello M, Bryant RA. Self-construal modulates default mode network connectivity in refugees with PTSD. J Affect Disord 2024; 361:268-276. [PMID: 38866252 DOI: 10.1016/j.jad.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND While self-construal and posttraumatic stress disorder (PTSD) are independently associated with altered self-referential processes and underlying default mode network (DMN) functioning, no study has examined how self-construal affects DMN connectivity in PTSD. METHODS A final sample of 93 refugee participants (48 with DSM-5 PTSD or sub-syndromal PTSD and 45 matched trauma-exposed controls) completed a 5-minute resting state fMRI scan to enable the observation of connectivity in the DMN and other core networks. A self-construal index was calculated by substracting scores on the collectivistic and individualistic sub-scales of the Self Construal Scale. RESULTS Independent components analysis identified 9 active networks-of-interest, and functional network connectivity was determined. A significant interaction effect between PTSD and self-construal index was observed in the anterior ventromedial DMN, with spatial maps localizing this to the left ventromedial prefrontal cortex (vmPFC), extending to the ventral anterior cingulate cortex. This effect revealed that connectivity in the vMPFC showed greater reductions in those with PTSD with higher levels of collectivistic self-construal. LIMITATIONS This is an observational study and causality cannot be assumed. The specialized sample of refugees means that the findings may not generalize to other trauma-exposed populations. CONCLUSIONS Such a finding indicates that self-construal may shape the core neural architecture of PTSD, given that functional disruptions to the vmPFC underpin the core mechanisms of extinction learning, emotion dysregulation and self-referential processing in PTSD. Results have important implications for understanding the universality of neural disturbances in PTSD, and suggest that self-construal could be an important consideration in the assessment and treatment of post-traumatic stress reactions.
Collapse
Affiliation(s)
- Belinda J Liddell
- School of Psychological Sciences, University of Newcastle, Australia; School of Psychology, UNSW Sydney, Australia.
| | - Pritha Das
- School of Psychological Sciences, University of Newcastle, Australia; Academic Department of Psychiatry, Northern Sydney Local Health District, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - Gin S Malhi
- Academic Department of Psychiatry, Northern Sydney Local Health District, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia.; Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Winnie Lau
- Phoenix Australia, University of Melbourne, Australia
| | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | | | - Mirjana Askovic
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors (STARTTS), Sydney, Australia
| | - Jorge Aroche
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors (STARTTS), Sydney, Australia
| | - Mariano Coello
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors (STARTTS), Sydney, Australia
| | | |
Collapse
|
21
|
Xie B, Ni H, Wang Y, Yao J, Xu Z, Zhu K, Bian S, Song P, Wu Y, Yu Y, Dong F. Dynamic Functional Network Connectivity in Acute Incomplete Cervical Cord Injury Patients and Its Associations With Sensorimotor Dysfunction Measures. World Neurosurg 2024:S1878-8750(24)01529-8. [PMID: 39243971 DOI: 10.1016/j.wneu.2024.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Dynamic functional network connectivity (dFNC) captures temporal variations in functional connectivity during magnetic resonance imaging acquisition. However, the neural mechanisms driving dFNC alterations in the brain networks of patients with acute incomplete cervical cord injury (AICCI) remain unclear. METHODS This study included 16 AICCI patients and 16 healthy controls. Initially, independent component analysis was employed to extract whole-brain independent components from resting-state functional magnetic resonance imaging data. Subsequently, a sliding time window approach, combined with k-means clustering, was used to estimate dFNC states for each participant. Finally, a correlation analysis was conducted to examine the association between sensorimotor dysfunction scores in AICCI patients and the temporal characteristics of dFNC. RESULTS Independent component analysis was employed to extract 26 whole-brain independent components. Subsequent dynamic analysis identified 4 distinct connectivity states across the entire cohort. Notably, AICCI patients demonstrated a significant preference for State 3 compared to healthy controls, as evidenced by a higher frequency and longer duration spent in this state. Conversely, State 4 exhibited a reduced frequency and shorter dwell time in AICCI patients. Moreover, correlation analysis revealed a positive association between sensorimotor dysfunction and both the mean dwell time and the fraction of time spent in State 3. CONCLUSIONS Patients with AICCI demonstrate abnormal connectivity within dFNC states, and the temporal characteristics of dFNC are associated with sensorimotor dysfunction scores. These findings highlight the potential of dFNC as a sensitive biomarker for detecting network functional changes in AICCI patients, providing valuable insights into the dynamic alterations in brain connectivity related to sensorimotor dysfunction in this population.
Collapse
Affiliation(s)
- Bingyong Xie
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Ni
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiyuan Yao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhibin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sicheng Bian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Li WX, Lin QH, Zhang CY, Han Y, Li HJ, Calhoun VD. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data. J Neurosci Methods 2024; 409:110207. [PMID: 38944128 DOI: 10.1016/j.jneumeth.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Real-valued mutual information (MI) has been used in spatial functional network connectivity (FNC) to measure high-order and nonlinear dependence between spatial maps extracted from magnitude-only functional magnetic resonance imaging (fMRI). However, real-valued MI cannot fully capture the group differences in spatial FNC from complex-valued fMRI data with magnitude and phase dependence. METHODS We propose a complete complex-valued MI method according to the chain rule of MI. We fully exploit the dependence among magnitudes and phases of two complex-valued signals using second and fourth-order joint entropies, and propose to use a Gaussian copula transformation with a lower bound property to avoid inaccurate estimation of joint probability density function when computing the joint entropies. RESULTS The proposed method achieves more accurate MI estimates than the two histogram-based (normal and symbolic approaches) and kernel density estimation methods for simulated signals, and enhances group differences in spatial functional network connectivity for experimental complex-valued fMRI data. COMPARISON WITH EXISTING METHODS Compared with the simplified complex-valued MI and real-valued MI, the proposed method yields higher MI estimation accuracy, leading to 17.4 % and 145.5 % wider MI ranges, and more significant connectivity differences between healthy controls and schizophrenia patients. A unique connection between executive control network (EC) and right frontal parietal areas, and three additional connections mainly related to EC are detected than the simplified complex-valued MI. CONCLUSIONS With capability in quantifying MI fully and accurately, the proposed complex-valued MI is promising in providing qualified FNC biomarkers for identifying mental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Wei-Xing Li
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Hua Lin
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chao-Ying Zhang
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Han
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan-Jie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
23
|
Gong X, Wang L, Guo Y, Ma Y, Li W, Zhang J, Chen M, Wang J, Meng Q, Chen K, Tian Y. Abnormal large-scale resting-state functional networks in anti-N-methyl-D-aspartate receptor encephalitis. Front Neurosci 2024; 18:1455131. [PMID: 39224578 PMCID: PMC11366611 DOI: 10.3389/fnins.2024.1455131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis often experience severe symptoms. Resting-state functional MRI (rs-fMRI) has revealed widespread impairment of functional networks in patients. However, the changes in information flow remain unclear. This study aims to investigate the intrinsic functional connectivity (FC) both within and between resting-state networks (RSNs), as well as the alterations in effective connectivity (EC) between these networks. Methods Resting-state functional MRI (rs-fMRI) data were collected from 25 patients with anti-NMDAR encephalitis and 30 healthy controls (HCs) matched for age, sex, and educational level. Changes in the intrinsic functional connectivity (FC) within and between RSNs were analyzed using independent component analysis (ICA). The functional interaction between RSNs was identified by granger causality analysis (GCA). Results Compared to HCs, patients with anti-NMDAR encephalitis exhibited lower performance on the Wisconsin Card Sorting Test (WCST), both in terms of correct numbers and correct categories. Additionally, these patients demonstrated decreased scores on the Montreal Cognitive Assessment (MoCA). Neuroimaging studies revealed abnormal intra-FC within the default mode network (DMN), increased intra-FC within the visual network (VN) and dorsal attention network (DAN), as well as increased inter-FC between VN and the frontoparietal network (FPN). Furthermore, aberrant effective connectivity (EC) was observed among the DMN, DAN, FPN, VN, and somatomotor network (SMN). Conclusion Patients with anti-NMDAR encephalitis displayed noticeable deficits in both memory and executive function. Notably, these patients exhibited widespread impairments in intra-FC, inter-FC, and EC. These results may help to explain the pathophysiological mechanism of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Libo Wang
- The Second People’s Hospital of Yuxi, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Wei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Correction to "Comparison of multi-subject ICA methods for analysis of fMRI data". Hum Brain Mapp 2024; 45:e70006. [PMID: 39183477 PMCID: PMC11345440 DOI: 10.1002/hbm.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
|
25
|
Wang Z, Gaynanova I, Aravkin A, Risk BB. Sparse Independent Component Analysis with an Application to Cortical Surface fMRI Data in Autism. J Am Stat Assoc 2024; 119:2508-2520. [PMID: 39949839 PMCID: PMC11824601 DOI: 10.1080/01621459.2024.2370593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 02/16/2025]
Abstract
Independent component analysis (ICA) is widely used to estimate spatial resting-state networks and their time courses in neuroimaging studies. It is thought that independent components correspond to sparse patterns of co-activating brain locations. Previous approaches for introducing sparsity to ICA replace the non-smooth objective function with smooth approximations, resulting in components that do not achieve exact zeros. We propose a novel Sparse ICA method that enables sparse estimation of independent source components by solving a non-smooth non-convex optimization problem via the relax-and-split framework. The proposed Sparse ICA method balances statistical independence and sparsity simultaneously and is computationally fast. In simulations, we demonstrate improved estimation accuracy of both source signals and signal time courses compared to existing approaches. We apply our Sparse ICA to cortical surface resting-state fMRI in school-aged autistic children. Our analysis reveals differences in brain activity between certain regions in autistic children compared to children without autism. Sparse ICA selects coactivating locations, which we argue is more interpretable than dense components from popular approaches. Sparse ICA is fast and easy to apply to big data.
Collapse
Affiliation(s)
- Zihang Wang
- Department of Biostatistics and Bioinformatics, Emory
University
| | | | | | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Emory
University
| |
Collapse
|
26
|
Zhang C, Ruan F, Yan H, Liang J, Li X, Liang W, Ou Y, Xu C, Xie G, Guo W. Potential correlations between abnormal homogeneity of default mode network and personality or lipid level in major depressive disorder. Brain Behav 2024; 14:e3622. [PMID: 39021241 PMCID: PMC11255032 DOI: 10.1002/brb3.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Default mode network (DMN) is one of the most recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD remains incompletely explored. Therefore, this study aims to determine whether there is abnormal network homogeneity (NH) of the DMN in MDD patients. At the same time, correlations between clinical variables and brain functional connectivity are examined. METHODS We enrolled 42 patients diagnosed with MDD and 42 HCs. A variety of clinical variables were collected, and data analysis was conducted using the NH and independent component analysis methods. RESULTS The study shows that MDD patients have higher NH values in the left superior medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC) compared to HCs. Additionally, there is a positive correlation between NH values of the left superior MPFC and Eysenck Personality Questionnaire values. NH values of the left PCC are positively linked to CHOL levels, LDL levels, and utilization scores. However, these correlations lose significance after the Bonferroni correction. CONCLUSION Our findings indicate the presence of abnormal DMN homogeneity in MDD, underscoring the significance of DMN in the pathophysiology of MDD. Simultaneously, the study provides preliminary evidence for the correlation between clinical variables and brain functional connectivity.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Feichao Ruan
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Haohao Yan
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiaquan Liang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Xiaoling Li
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wenting Liang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Yangpan Ou
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Caixia Xu
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Guojun Xie
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wenbin Guo
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
27
|
Ibrahim Khalilullah KM, Agcaoglu O, Duda M, Calhoun VD. Parallel Multilink Joint ICA for Multimodal Fusion of Gray Matter and Multiple Resting fMRI Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039683 DOI: 10.1109/embc53108.2024.10782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this study, we present a multimodal fusion approach, combining gray matter (GM) and multiple resting functional magnetic resonance imaging (fMRI) networks via a novel approach called parallel multilink joint independent component analysis (jICA) which combines 4D fMRI with 3D sMRI data. We focus on network-specific reconstruction and estimating joint relationship from differently distributed data by relaxing jICA assumption. Our methodology facilitates a detailed examination of altered connectivity patterns associated with Alzheimer's disease (AD). The study compares healthy controls (HC) and individuals with AD, employing two-sample t-tests with false discovery rate (FDR) correction to rigorously assess group differences. Network-specific correlation analysis reveals the joint relationships between different brain functions, allowing for a comprehensive exploration of AD pathology. Our approach also finds joint independent sources of altered activation patterns in key regions, such as the precuneus of the DMN, paracentral lobule of the sensorimotor domain, and cerebellum. This provides localized insights into the impact of AD on specific brain regions.
Collapse
|
28
|
Khalilullah KMI, Agcaoglu O, Sui J, Duda M, Adali T, Calhoun VD. Parallel Multilink Group Joint ICA: Fusion of 3D Structural and 4D Functional Data Across Multiple Resting fMRI Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586091. [PMID: 38585901 PMCID: PMC10996497 DOI: 10.1101/2024.03.21.586091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer's individuals.
Collapse
Affiliation(s)
- K M Ibrahim Khalilullah
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jing Sui
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Marlena Duda
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Electrical and Computer Engineering, University of Maryland, Baltimore, Maryland, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Batta I, Abrol A, Calhoun VD. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data. J Neurosci Methods 2024; 406:110109. [PMID: 38494061 PMCID: PMC11100582 DOI: 10.1016/j.jneumeth.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND For successful biomarker discovery, it is essential to develop computational frameworks that summarize high-dimensional neuroimaging data in terms of involved sub-systems of the brain, while also revealing underlying heterogeneous functional and structural changes covarying with specific cognitive and biological traits. However, unsupervised decompositions do not inculcate clinical assessment information, while supervised approaches extract only individual feature importance, thereby impeding qualitative interpretation at the level of subspaces. NEW METHOD We present a novel framework to extract robust multimodal brain subspaces associated with changes in a given cognitive or biological trait. Our approach involves active subspace learning on the gradients of a trained machine learning model followed by clustering to extract and summarize the most salient and consistent subspaces associated with the target variable. RESULTS Through a rigorous cross-validation procedure on an Alzheimer's disease (AD) dataset, our framework successfully extracts multimodal subspaces specific to a given clinical assessment (e.g., memory and other cognitive skills), and also retains predictive performance in standard machine learning algorithms. We also show that the salient active subspace directions occur consistently across randomly sub-sampled repetitions of the analysis. COMPARISON WITH EXISTING METHOD(S) Compared to existing unsupervised decompositions based on principle component analysis, the subspace components in our framework retain higher predictive information. CONCLUSIONS As an important step towards biomarker discovery, our framework not only uncovers AD-related brain regions in the associated brain subspaces, but also enables automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and proficiency in cognitive skills related to brain disorders like AD.
Collapse
Affiliation(s)
- Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
30
|
Chen F, Chen Q, Zhu Y, Long C, Lu J, Jiang Y, Zhang X, Zhang B. Alterations in Dynamic Functional Connectivity in Patients with Cerebral Small Vessel Disease. Transl Stroke Res 2024; 15:580-590. [PMID: 36967436 PMCID: PMC11106163 DOI: 10.1007/s12975-023-01148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Cerebral small vessel disease (CSVD) is a common disease that seriously endangers people's health, and is easily overlooked by both patients and clinicians due to its near-silent onset. Dynamic functional connectivity (DFC) is a new concept focusing on the dynamic features and patterns of brain networks that represents a powerful tool for gaining novel insight into neurological diseases. To assess alterations in DFC in CSVD patients, and the correlation of DFC with cognitive function. We enrolled 35 CSVD patients and 31 normal control subjects (NC). Resting-state functional MRI (rs-fMRI) with a sliding-window approach and k-means clustering based on independent component analysis (ICA) was used to evaluate DFC. The temporal properties of fractional windows and the mean dwell time in each state, as well as the number of transitions between each pair of DFC states, were calculated. Additionally, we assessed the functional connectivity (FC) strength of the dynamic states and the associations of altered neuroimaging measures with cognitive performance. A dynamic analysis of all included subjects suggested four distinct functional connectivity states. Compared with the NC group, the CSVD group had more fractional windows and longer mean dwell times in state 4 characterized by sparse FC both inter-network and intra-networks. Additionally, the CSVD group had a reduced number of windows and shorter mean dwell times compared to the NC group in state 3 characterized by highly positive FC between the somatomotor and visual networks, and negative FC in the basal ganglia and somatomotor and visual networks. The number of transitions between state 2 and state 3 and between state 3 and state 4 was significantly reduced in the CSVD group compared to the NC group. Moreover, there was a significant difference in the FC strength between the two groups, and the altered temporal properties of DFC were significantly related to cognitive performance. Our study indicated that CSVD is characterized by altered temporal properties in DFC that may be sensitive neuroimaging biomarkers for early disease identification. Further study of DFC alterations could help us to better understand the progressive dysfunction of networks in CSVD patients.
Collapse
Affiliation(s)
- Futao Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Qian Chen
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yajing Zhu
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Cong Long
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Yaoxian Jiang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China.
- Institute of Brain Science, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Fouladivanda M, Iraji A, Wu L, van Erp TG, Belger A, Hawamdeh F, Pearlson GD, Calhoun VD. A spatially constrained independent component analysis jointly informed by structural and functional network connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.13.553101. [PMID: 38853973 PMCID: PMC11160563 DOI: 10.1101/2023.08.13.553101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| | - Lei Wu
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Theodorus G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior School of Medicine, University of California, Irvine, CA, USA
| | - Aysenil Belger
- Department of Psychiatry Director, Neuroimaging Research in Psychiatry Director, Clinical Translational Core, UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Faris Hawamdeh
- Center for Disaster Informatics and Computational Epidemiology (DICE), Georgia State University, Atlanta, GA, USA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Department of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Vince D. Calhoun
- Tri-institute Translational Research in Neuroimaging and Data Science (TReNDS Center), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
32
|
Yang D, Luo X, Sun S, Zhang X, Zhang F, Zhao X, Zhou J. Abnormal dynamic functional connectivity in young nondisabling intracerebral hemorrhage patients. Ann Clin Transl Neurol 2024; 11:1567-1578. [PMID: 38725138 PMCID: PMC11187952 DOI: 10.1002/acn3.52074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Previous resting-state functional magnetic resonance imaging studies on intracerebral hemorrhage patients have focused more on the static characteristics of brain activity, while the time-varying effects during scanning have received less attention. Therefore, the current study aimed to explore the dynamic functional network connectivity changes of intracerebral hemorrhage patients. METHODS Using independent component analysis, the sliding window approach, and the k-means clustering analysis method, different dynamic functional network connectivity states were detected from resting-state functional magnetic resonance imaging data of 37 intracerebral hemorrhage patients and 44 healthy controls. The inter-group differences in dynamic functional network connectivity patterns and temporal properties were investigated, followed by correlation analyses between clinical scales and abnormal functional indexes. RESULTS Ten resting-state networks were identified, and the dynamic functional network connectivity matrices were clustered into four different states. The transition numbers were decreased in the intracerebral hemorrhage patients compared with healthy controls, which was associated with trail making test scores in patients. The cerebellar network and executive control network connectivity in State 1 was reduced in patients, and this abnormal dynamic functional connectivity was positively correlated with the animal fluency test scores of patients. INTERPRETATION The current study demonstrated the characteristics of dynamic functional network connectivity in intracerebral hemorrhage patients and revealed that abnormal temporal properties and functional connectivity may be related to the performance of different cognitive domains after ictus. These results may provide new insights into exploring the neurocognitive mechanisms of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Xiangqi Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing100875China
| | - Shengjun Sun
- Department of NeuroradiologyBeijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical UniversityBeijing100070China
| | - Xue Zhang
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Fengxia Zhang
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Jian Zhou
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| |
Collapse
|
33
|
Wang Y, Shu Y, Cai G, Guo Y, Gao J, Chen Y, Lv L, Zeng X. Altered static and dynamic functional network connectivity in primary angle-closure glaucoma patients. Sci Rep 2024; 14:11682. [PMID: 38778225 PMCID: PMC11111766 DOI: 10.1038/s41598-024-62635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
To explore altered patterns of static and dynamic functional brain network connectivity (sFNC and dFNC) in Primary angle-closure glaucoma (PACG) patients. Clinically confirmed 34 PACG patients and 33 age- and gender-matched healthy controls (HCs) underwent evaluation using T1 anatomical and functional MRI on a 3 T scanner. Independent component analysis, sliding window, and the K-means clustering method were employed to investigate the functional network connectivity (FNC) and temporal metrics based on eight resting-state networks. Differences in FNC and temporal metrics were identified and subsequently correlated with clinical variables. For sFNC, compared with HCs, PACG patients showed three decreased interactions, including SMN-AN, SMN-VN and VN-AN pairs. For dFNC, we derived four highly structured states of FC that occurred repeatedly between individual scans and subjects, and the results are highly congruent with sFNC. In addition, PACG patients had a decreased fraction of time in state 3 and negatively correlated with IOP (p < 0.05). PACG patients exhibit abnormalities in both sFNC and dFNC. The high degree of overlap between static and dynamic results suggests the stability of functional connectivity networks in PACG patients, which provide a new perspective to understand the neuropathological mechanisms of optic nerve damage in PACG patients.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoqian Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junwei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianjiang Lv
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
34
|
Ganesan S, Misaki M, Zalesky A, Tsuchiyagaito A. Functional brain network dynamics of brooding in depression: insights from real-time fMRI neurofeedback. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.05.24306889. [PMID: 38766116 PMCID: PMC11100839 DOI: 10.1101/2024.05.05.24306889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Brooding is a critical symptom and prognostic factor of major depressive disorder (MDD), which involves passively dwelling on self-referential dysphoria and related abstractions. The neurobiology of brooding remains under characterized. We aimed to elucidate neural dynamics underlying brooding, and explore their responses to neurofeedback intervention in MDD. Methods We investigated functional MRI (fMRI) dynamic functional network connectivity (dFNC) in 36 MDD subjects and 26 healthy controls (HCs) during rest and brooding. Rest was measured before and after fMRI neurofeedback (MDD-active/sham: n=18/18, HC-active/sham: n=13/13). Baseline brooding severity was recorded using Ruminative Response Scale - Brooding subscale (RRS-B). Results Four recurrent dFNC states were identified. Measures of time spent were not significantly different between MDD and HC for any of these states during brooding or rest. RRS-B scores in MDD showed significant negative correlation with measures of time spent in dFNC state 3 during brooding (r=-0.5, p= 1.7E-3, FDR-significant). This state comprises strong connections spanning several brain systems involved in sensory, attentional and cognitive processing. Time spent in this anti-brooding dFNC state significantly increased following neurofeedback only in the MDD active group (z=-2.09, p=0.037). Limitations The sample size was small and imbalanced between groups. Brooding condition was not examined post-neurofeedback. Conclusion We identified a densely connected anti-brooding dFNC brain state in MDD. MDD subjects spent significantly longer time in this state after active neurofeedback intervention, highlighting neurofeedback's potential for modulating dysfunctional brain dynamics to treat MDD.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of Psychiatry, Melbourne Medical School, Carlton, Victoria 3053, Australia
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia
- Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Medical School, Carlton, Victoria 3053, Australia
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, USA
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| |
Collapse
|
35
|
Kemik K, Ada E, Çavuşoğlu B, Aykaç C, Savaş DDE, Yener G. Detecting language network alterations in mild cognitive impairment using task-based fMRI and resting-state fMRI: A comparative study. Brain Behav 2024; 14:e3518. [PMID: 38698619 PMCID: PMC11066416 DOI: 10.1002/brb3.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the functional changes associated with mild cognitive impairment (MCI) using independent component analysis (ICA) with the word generation task functional magnetic resonance imaging (fMRI) and resting-state fMRI. METHODS In this study 17 patients with MCI and age and education-matched 17 healthy individuals as control group are investigated. All participants underwent resting-state fMRI and task-based fMRI while performing the word generation task. ICA was used to identify the appropriate independent components (ICs) and their associated networks. The Dice Coefficient method was used to determine the relevance of the ICs to the networks of interest. RESULTS IC-14 was found relevant to language network in both resting-state and task-based fMRI, IC-4 to visual, and IC-28 to dorsal attention network (DAN) in word generation task-based fMRI by Sorento-Dice Coefficient. ICA showed increased activation in language network, which had a larger voxel size in resting-state functional MRI than word generation task-based fMRI in the bilateral lingual gyrus. Right temporo-occipital fusiform cortex, right hippocampus, and right thalamus were also activated in the task-based fMRI. Decreased activation was found in DAN and visual network MCI patients in word generation task-based fMRI. CONCLUSION Task-based fMRI and ICA are more sophisticated and reliable tools in evaluation cognitive impairments in language processing. Our findings support the neural mechanisms of the cognitive impairments in MCI.
Collapse
Affiliation(s)
- Kerem Kemik
- Department of Neuroscience, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
| | - Emel Ada
- Department of RadiologyDokuz Eylül University Medicine FacultyIzmirTurkey
| | - Berrin Çavuşoğlu
- Department of Medical Physics, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
| | - Cansu Aykaç
- Department of Neuroscience, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
| | | | - Görsev Yener
- Department of Neurology, Faculty of MedicineIzmir University of EconomicsİzmirTurkey
| |
Collapse
|
36
|
Spencer APC, Goodfellow M, Chakkarapani E, Brooks JCW. Resting-state functional connectivity in children cooled for neonatal encephalopathy. Brain Commun 2024; 6:fcae154. [PMID: 38741661 PMCID: PMC11089421 DOI: 10.1093/braincomms/fcae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/21/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Therapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic encephalopathy, reducing cases of death and severe disability such as cerebral palsy compared with normothermia management. However, when cooled children reach early school-age, they have cognitive and motor impairments which are associated with underlying alterations to brain structure and white matter connectivity. It is unknown whether these differences in structural connectivity are associated with differences in functional connectivity between cooled children and healthy controls. Resting-state functional MRI has been used to characterize static and dynamic functional connectivity in children, both with typical development and those with neurodevelopmental disorders. Previous studies of resting-state brain networks in children with hypoxic-ischaemic encephalopathy have focussed on the neonatal period. In this study, we used resting-state fMRI to investigate static and dynamic functional connectivity in children aged 6-8 years who were cooled for neonatal hypoxic-ischaemic without cerebral palsy [n = 22, median age (interquartile range) 7.08 (6.85-7.52) years] and healthy controls matched for age, sex and socioeconomic status [n = 20, median age (interquartile range) 6.75 (6.48-7.25) years]. Using group independent component analysis, we identified 31 intrinsic functional connectivity networks consistent with those previously reported in children and adults. We found no case-control differences in the spatial maps of these intrinsic connectivity networks. We constructed subject-specific static functional connectivity networks by measuring pairwise Pearson correlations between component time courses and found no case-control differences in functional connectivity after false discovery rate correction. To study the time-varying organization of resting-state networks, we used sliding window correlations and deep clustering to investigate dynamic functional connectivity characteristics. We found k = 4 repetitively occurring functional connectivity states, which exhibited no case-control differences in dwell time, fractional occupancy or state functional connectivity matrices. In this small cohort, the spatiotemporal characteristics of resting-state brain networks in cooled children without severe disability were too subtle to be differentiated from healthy controls at early school-age, despite underlying differences in brain structure and white matter connectivity, possibly reflecting a level of recovery of healthy resting-state brain function. To our knowledge, this is the first study to investigate resting-state functional connectivity in children with hypoxic-ischaemic encephalopathy beyond the neonatal period and the first to investigate dynamic functional connectivity in any children with hypoxic-ischaemic encephalopathy.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol BS2 8DX, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
- Department of Radiology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, UK
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
- Neonatal Intensive Care Unit, St Michaels Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol BS2 8DX, UK
- University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
37
|
Cheng S, Zeng F, Zhou J, Dong X, Yang W, Yin T, Huang K, Liang F, Li Z. Altered static and dynamic functional brain network in knee osteoarthritis: A resting-state functional magnetic resonance imaging study: Static and dynamic FNC in KOA. Neuroimage 2024; 292:120599. [PMID: 38608799 DOI: 10.1016/j.neuroimage.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.
Collapse
Affiliation(s)
- Shirui Cheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Jun Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali 671000, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| | - Zhengjie Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
38
|
Novakova L, Gajdos M, Barton M, Brabenec L, Zeleznikova Z, Moravkova I, Rektorova I. Striato-cortical functional connectivity changes in mild cognitive impairment with Lewy bodies. Parkinsonism Relat Disord 2024; 121:106031. [PMID: 38364623 DOI: 10.1016/j.parkreldis.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Functional connectivity changes in clinically overt neurodegenerative diseases such as dementia with Lewy bodies have been described, but studies on connectivity changes in the pre-dementia phase are scarce. OBJECTIVES We concentrated on evaluating striato-cortical functional connectivity differences between patients with Mild Cognitive Impairment with Lewy bodies and healthy controls and on assessing the relation to cognition. METHODS Altogether, we enrolled 77 participants (47 patients, of which 35 met all the inclusion criteria for the final analysis, and 30 age- and gender-matched healthy controls, of which 28 met all the inclusion criteria for the final analysis) to study the seed-based connectivity of the dorsal, middle, and ventral striatum. We assessed correlations between functional connectivity in the regions of between-group differences and neuropsychological scores of interest (visuospatial and executive domains z-scores). RESULTS Subjects with Mild Cognitive Impairment with Lewy Bodies, as compared to healthy controls, showed increased connectivity from the dorsal part of the striatum particularly to the bilateral anterior part of the temporal cortex with an association with executive functions. CONCLUSIONS We were able to capture early abnormal connectivity within cholinergic and noradrenergic pathways that correlated with cognitive functions known to be linked to cholinergic/noradrenergic deficits. The knowledge of specific alterations may improve our understanding of early neural changes in pre-dementia stages and enhance research of disease modifying therapy.
Collapse
Affiliation(s)
- Lubomira Novakova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Martin Gajdos
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Marek Barton
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Lubos Brabenec
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic
| | - Zaneta Zeleznikova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivona Moravkova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Irena Rektorova
- Brain and Mind Research Program, CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
39
|
Wylie KP, Vu T, Legget KT, Tregellas JR. Hierarchical Principal Components for Data-Driven Multiresolution fMRI Analyses. Brain Sci 2024; 14:325. [PMID: 38671978 PMCID: PMC11048444 DOI: 10.3390/brainsci14040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the organization of neural processing is a fundamental goal of neuroscience. Recent work suggests that these systems are organized as a multiscale hierarchy, with increasingly specialized subsystems nested inside general processing systems. Current neuroimaging methods, such as independent component analysis (ICA), cannot fully capture this hierarchy since they are limited to a single spatial scale. In this manuscript, we introduce multiresolution hierarchical principal components analysis (hPCA) and compare it to ICA using simulated fMRI datasets. Furthermore, we describe a parametric statistical filtering method developed to focus analyses on biologically relevant features. Lastly, we apply hPCA to the Human Connectome Project (HCP) to demonstrate its ability to estimate a hierarchy from real fMRI data. hPCA accurately estimated spatial maps and time series from networks with diverse hierarchical structures. Simulated hierarchies varied in the degree of branching, such as two-way or three-way subdivisions, and the total number of levels, with varying equal or unequal subdivision sizes at each branch. In each case, as well as in the HCP, hPCA was able to reconstruct a known hierarchy of networks. Our results suggest that hPCA can facilitate more detailed and comprehensive analyses of the brain's network of networks and the multiscale regional specializations underlying neural processing and cognition.
Collapse
Affiliation(s)
- Korey P. Wylie
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristina T. Legget
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Jason R. Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
40
|
Weidler C, Gramegna C, Müller D, Schrickel M, Habel U. Resting-state functional connectivity and structural differences between smokers and healthy non-smokers. Sci Rep 2024; 14:6878. [PMID: 38519565 PMCID: PMC10960011 DOI: 10.1038/s41598-024-57510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Previous studies have shown an association between cigarette use and altered resting-state functional connectivity (rsFC) in many large-scale networks, sometimes complemented by measures of cortical atrophy. In this study, we aimed to further explore the neural differences between smokers and healthy non-smokers through the integration of functional and structural analyses. Imaging data of fifty-two smokers and forty-five non-smokers were analyzed through an independent component analysis for group differences in rsFC. Smokers showed lower rsFC within the dorsal attention network (DAN) in the left superior and middle frontal gyrus and left superior division of the lateral occipital cortex compared to non-smokers; moreover, cigarette use was found to be associated with reduced grey matter volume in the left superior and middle frontal gyrus and right orbitofrontal cortex, partly overlapping with functional findings. Within smokers, daily cigarette consumption was positively associated with increased rsFC within the cerebellar network and the default mode network and decreased rsFC within the visual network and the salience network, while carbon monoxide level showed a positive association with increased rsFC within the sensorimotor network. Our results suggest that smoking negatively impacts rsFC within the DAN and that changes within this network might serve as a circuit-based biomarker for structural deficits.
Collapse
Affiliation(s)
- Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Chiara Gramegna
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
| | - Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Maike Schrickel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
41
|
Chen Z, Cai Y, Xiao L, Wei XE, Liu Y, Lin C, Liu D, Liu H, Rong L. Increased functional connectivity between default mode network and visual network potentially correlates with duration of residual dizziness in patients with benign paroxysmal positional vertigo. Front Neurol 2024; 15:1363869. [PMID: 38500812 PMCID: PMC10944895 DOI: 10.3389/fneur.2024.1363869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Objective To assess changes in static and dynamic functional network connectivity (sFNC and dFNC) and explore their correlations with clinical features in benign paroxysmal positional vertigo (BPPV) patients with residual dizziness (RD) after successful canalith repositioning maneuvers (CRM) using resting-state fMRI. Methods We studied resting-state fMRI data from 39 BPPV patients with RD compared to 38 BPPV patients without RD after successful CRM. Independent component analysis and methods of sliding window and k-means clustering were adopted to investigate the changes in dFNC and sFNC between the two groups. Additionally, temporal features and meta-states were compared between the two groups. Furthermore, the associations between fMRI results and clinical characteristics were analyzed using Pearson's partial correlation analysis. Results Compared with BPPV patients without RD, patients with RD had longer duration of BPPV and higher scores of dizziness handicap inventory (DHI) before successful CRM. BPPV patients with RD displayed no obvious abnormal sFNC compared to patients without RD. In the dFNC analysis, patients with RD showed increased FNC between default mode network (DMN) and visual network (VN) in state 4, the FNC between DMN and VN was positively correlated with the duration of RD. Furthermore, we found increased mean dwell time (MDT) and fractional windows (FW) in state 1 but decreased MDT and FW in state 3 in BPPV patients with RD. The FW of state 1 was positively correlated with DHI score before CRM, the MDT and FW of state 3 were negatively correlated with the duration of BPPV before CRM in patients with RD. Additionally, compared with patients without RD, patients with RD showed decreased number of states and state span. Conclusion The occurrence of RD might be associated with increased FNC between DMN and VN, and the increased FNC between DMN and VN might potentially correlate with the duration of RD symptoms. In addition, we found BPPV patients with RD showed altered global meta-states and temporal features. These findings are helpful for us to better understand the underlying neural mechanisms of RD and potentially contribute to intervention development for BPPV patients with RD.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaxian Cai
- Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-E Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
42
|
Yao W, Zhou H, Zhang X, Chen H, Bai F. Inflammation affects dynamic functional network connectivity pattern changes via plasma NFL in cognitive impairment patients. CNS Neurosci Ther 2024; 30:e14391. [PMID: 37545369 PMCID: PMC10848064 DOI: 10.1111/cns.14391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Plasma neurofilament light chain (NFL) is a biomarker of inflammation and neurodegenerative diseases such as Alzheimer's disease (AD). However, the underlying neural mechanisms by which NFL affects cognitive function remain unclear. In this study, we investigated the effects of inflammation on cognitive integrity in patients with cognitive impairment through the functional interaction of plasma NFL with large-scale brain networks. METHODS This study included 29 cognitively normal, 55 LowNFL patients, and 55 HighNFL patients. Group independent component analysis (ICA) was applied to the resting-state fMRI data, and 40 independent components (IC) were extracted for the whole brain. Next, the dynamic functional network connectivity (dFNC) of each subject was estimated using the sliding-window method and k-means clustering, and five dynamic functional states were identified. Finally, we applied mediation analysis to investigate the relationship between plasma NFL and dFNC indicators and cognitive scales. RESULTS The present study explored the dynamics of whole-brain FNC in controls and LowNFL and HighNFL patients and highlighted the temporal properties of dFNC states in relation to psychological scales. A potential mechanism for the association between dFNC indicators and NFL levels in cognitively impaired patients. CONCLUSIONS Our findings suggested the decreased ability of information processing and communication in the HighNFL group, which helps us to understand their abnormal cognitive functions clinically. Characteristic changes in the inflammation-coupled dynamic brain network may provide alternative biomarkers for the assessment of disease severity in cognitive impairment patients.
Collapse
Affiliation(s)
- Weina Yao
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Geriatric Medicine CenterTaikang Xianlin Drum Tower Hospital Clinical College of Wuhan UniversityNanjingChina
| | - Huijuan Zhou
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiao Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Feng Bai
- Geriatric Medicine CenterTaikang Xianlin Drum Tower Hospital Clinical College of Wuhan UniversityNanjingChina
- Geriatric Medicine CenterTaikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | | |
Collapse
|
43
|
Kemik K, Ada E, Çavuşoğlu B, Aykaç C, Emek‐Savaş DD, Yener G. Functional magnetic resonance imaging study during resting state and visual oddball task in mild cognitive impairment. CNS Neurosci Ther 2024; 30:e14371. [PMID: 37475197 PMCID: PMC10848090 DOI: 10.1111/cns.14371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is a transitional state between normal aging and dementia, and identifying early biomarkers is crucial for disease detection and intervention. Functional magnetic resonance imaging (fMRI) has the potential to identify changes in neural activity in MCI. METHODS We investigated neural activity changes in the visual network of the aMCI patients (n:20) and healthy persons (n:17) using resting-state fMRI and visual oddball task fMRI. We used independent component analysis to identify regions of interest and compared the activity between groups using a false discovery rate correction. RESULTS Resting-state fMRI revealed increased activity in the areas that have functional connectivity with the visual network, including the right superior and inferior lateral occipital cortex, the right angular gyrus and the temporo-occipital part of the right middle temporal gyrus (p-FDR = 0.008) and decreased activity in the bilateral thalamus and caudate nuclei, which are part of the frontoparietal network in the aMCI group (p-FDR = 0.002). In the visual oddball task fMRI, decreased activity was found in the right frontal pole, the right frontal orbital cortex, the left superior parietal lobule, the right postcentral gyrus, the right posterior part of the supramarginal gyrus, the right superior part of the lateral occipital cortex, and the right angular gyrus in the aMCI group. CONCLUSION Our results suggest the alterations in the visual network are present in aMCI patients, both during resting-state and task-based fMRI. These changes may represent early biomarkers of aMCI and highlight the importance of assessing visual processing in cognitive impairment. However, future studies with larger sample sizes and longitudinal designs are needed to confirm these findings.
Collapse
Affiliation(s)
- Kerem Kemik
- Department of NeuroscienceInstitute of Health Sciences, Dokuz Eylül UniversityIzmirTurkey
| | - Emel Ada
- Department of RadiologyDokuz Eylül University Medicine FacultyIzmirTurkey
| | - Berrin Çavuşoğlu
- Department of Medical PhysicsInstitute of Health Sciences, Dokuz Eylül UniversityIzmirTurkey
| | - Cansu Aykaç
- Department of NeuroscienceInstitute of Health Sciences, Dokuz Eylül UniversityIzmirTurkey
| | | | - Görsev Yener
- Department of Neurology, Faculty of MedicineIzmir Economy UniversityİzmirTurkey
| |
Collapse
|
44
|
Wei HL, Wei C, Yu YS, Yu X, Chen Y, Li J, Zhang H, Chen X. Dysfunction of the triple-network model is associated with cognitive impairment in patients with cerebral small vessel disease. Heliyon 2024; 10:e24701. [PMID: 38298689 PMCID: PMC10828708 DOI: 10.1016/j.heliyon.2024.e24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Purpose This study aimed to demonstrate the correlations between the altered functional connectivity patterns in the triple-network model and cognitive impairment in patients with cerebral small vascular disease (CSVD). Methods Resting-state functional magnetic resonance imaging data were obtained from 22 patients with CSVD and 20 healthy controls. The resting-state data were analyzed using independent component analysis and functional network connectivity (FNC) analysis to explore the functional alterations in the intrinsic triple-network model including the salience network (SN), default mode network (DMN), and central executive network (CEN), and their correlations with the cognitive deficits and clinical observations in the patients with CSVD. Results Compared to the healthy controls, the patients with CSVD exhibited increased connectivity patterns in the CEN-DMN and decreased connectivity patterns in the DMN-SN, CEN-SN, intra-SN, and intra-DMN. Significant negative correlations were detected between the intra-DMN connectivity pattern and the Montreal Cognitive Assessment (MoCA) total scores (r = -0.460, p = 0.048) and MoCA abstraction scores (r = -0.565, p = 0.012), and a positive correlation was determined between the intra-SN connectivity pattern and the MoCA abstraction scores (r = 0.491, p = 0.033). Conclusions Our study findings suggest that the functional alterations in the triple-network model are associated with the cognitive deficits in patients with CSVD and shed light on the importance of the triple-network model in the pathogenesis of CSVD.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Cunsheng Wei
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Xiaorong Yu
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Yuan Chen
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| | - Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu, PR China
| |
Collapse
|
45
|
Ersözlü E, Rauchmann BS. Analysis of Resting-State Functional Magnetic Resonance Imaging in Alzheimer's Disease. Methods Mol Biol 2024; 2785:89-104. [PMID: 38427190 DOI: 10.1007/978-1-0716-3774-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) has been characterized by widespread network disconnection among brain regions, widely overlapping with the hallmarks of the disease. Functional connectivity has been studied with an upward trend in the last two decades, predominantly in AD among other neuropsychiatric disorders, and presents a potential biomarker with various features that might provide unique contributions to foster our understanding of neural mechanisms of AD. The resting-state functional MRI (rs-fMRI) is usually used to measure the blood-oxygen-level-dependent signals that reflect the brain's functional connectivity. Nevertheless, the rs-fMRI is still underutilized, which might be due to the fairly complex acquisition and analytic methodology. In this chapter, we presented the common methods that have been applied in rs-fMRI literature, focusing on the studies on individuals in the continuum of AD. The key methodological aspects will be addressed that comprise acquiring, processing, and interpreting rs-fMRI data. More, we discussed the current and potential implications of rs-fMRI in AD.
Collapse
Affiliation(s)
- Ersin Ersözlü
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Geriatric Psychiatry and Developmental Disorders, kbo-Isar-Amper-Klinikum Munich East, Academic Teaching Hospital of LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
Chen Z, Chen K, Li Y, Geng D, Li X, Liang X, Lu H, Ding S, Xiao Z, Ma X, Zheng L, Ding D, Zhao Q, Yang L. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI. Hum Brain Mapp 2024; 45:e26529. [PMID: 37991144 PMCID: PMC10789213 DOI: 10.1002/hbm.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models. A total of 218 MCI patients with 3-year follow-up outcome were selected from two independent cohorts: Shanghai Memory Study cohort for internal cross-validation, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort for external validation. In comparison with MCI_NC, MCI_C were mainly characterized by atrophy, regional hyperactivity and inter-network hypo-connectivity, and dynamic alterations characterized by regional and connectional instability, involving medial temporal lobe (MTL), posterior parietal cortex (PPC), and occipital cortex. All imaging-based prediction models achieved an area under the curve (AUC) > 0.7 in both cohorts, with the multi-modality MRI models as the best with excellent performances of AUC > 0.85. Notably, the combination of static and dynamic fMRI resulted in overall better performance as relative to static or dynamic fMRI solely, supporting the contribution of dynamic features. This inter-cohort validation study provides a new insight into the mechanisms of MCI conversion involving brain dynamics, and paves a way for clinical use of structural and functional MRI biomarkers in future.
Collapse
Affiliation(s)
- Zhihan Chen
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxin Li
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Daoying Geng
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Xiantao Li
- Department of Critical Care MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaoniu Liang
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Huimeng Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Saineng Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaoxi Ma
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Li Zheng
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Ding Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Liqin Yang
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | | |
Collapse
|
47
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
48
|
Thomas SA, Ryan SK, Gilman J. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study. Neuropsychologia 2023; 191:108708. [PMID: 37898357 PMCID: PMC10842068 DOI: 10.1016/j.neuropsychologia.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cognitive flexibility is an executive functioning skill that develops in childhood, and when impaired, has transdiagnostic implications for psychiatric disorders. To identify how intrinsic neural architecture at rest is linked to cognitive flexibility performance, we used the data-driven method of independent component analysis (ICA) to investigate resting state networks (RSNs) and their whole-brain connectivity associated with levels of cognitive flexibility performance in children. We hypothesized differences by cognitive flexibility performance in RSN connectivity strength in cortico-striatal circuitry, which would manifest via the executive control network, right and left frontoparietal networks (FPN), salience network, default mode network (DMN), and basal ganglia network. We selected participants from the Adolescent Brain Cognitive Development (ABCD) Study who scored at the 25th, ("CF-Low"), 50th ("CF-Average"), or 75th percentiles ("CF-High") on a cognitive flexibility task, were early to middle puberty, and did not exhibit significant psychopathology (n = 967, 47.9% female; ages 9-10). We conducted whole-brain ICA, identifying 14 well-characterized RSNs. Groups differed in connectivity strength in the right FPN, anterior DMN, and posterior DMN. Planned comparisons indicated CF-High had stronger connectivity between right FPN and supplementary motor/anterior cingulate than CF-Low. CF-High had more anti-correlated connectivity between anterior DMN and precuneus than CF-Average. CF-Low had stronger connectivity between posterior DMN and supplementary motor/anterior cingulate than CF-Average. Post-hoc correlations with reaction time by trial type demonstrated significant associations with connectivity. In sum, our results suggest childhood cognitive flexibility performance is associated with DMN and FPN connectivity strength at rest, and that there may be optimal levels of connectivity associated with task performance that vary by network.
Collapse
Affiliation(s)
- Sarah A Thomas
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Box 1901, 164 Angell St., 4th Floor, Providence, RI, 02912, USA.
| | - Sarah K Ryan
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA.
| | - Jodi Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Iraji A, Fu Z, Faghiri A, Duda M, Chen J, Rachakonda S, DeRamus T, Kochunov P, Adhikari BM, Belger A, Ford JM, Mathalon DH, Pearlson GD, Potkin SG, Preda A, Turner JA, van Erp TGM, Bustillo JR, Yang K, Ishizuka K, Faria A, Sawa A, Hutchison K, Osuch EA, Theberge J, Abbott C, Mueller BA, Zhi D, Zhuo C, Liu S, Xu Y, Salman M, Liu J, Du Y, Sui J, Adali T, Calhoun VD. Identifying canonical and replicable multi-scale intrinsic connectivity networks in 100k+ resting-state fMRI datasets. Hum Brain Mapp 2023; 44:5729-5748. [PMID: 37787573 PMCID: PMC10619392 DOI: 10.1002/hbm.26472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 10/04/2023] Open
Abstract
Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.
Collapse
Affiliation(s)
- A. Iraji
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Z. Fu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - A. Faghiri
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - M. Duda
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - J. Chen
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - S. Rachakonda
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - T. DeRamus
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| | - P. Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - B. M. Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, School of MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - A. Belger
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - J. M. Ford
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - D. H. Mathalon
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - G. D. Pearlson
- Departments of Psychiatry and Neuroscience, School of MedicineYale UniversityNew HavenConnecticutUSA
| | - S. G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - A. Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - J. A. Turner
- Department of Psychiatry and Behavioral HealthOhio State University Medical Center in ColumbusColumbusOhioUSA
| | - T. G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - J. R. Bustillo
- Department of Psychiatry and Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - K. Yang
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - K. Ishizuka
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - A. Faria
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - A. Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, and Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Mental HealthJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - K. Hutchison
- Department of PsychologyUniversity of ColoradoBoulderColoradoUSA
| | - E. A. Osuch
- Department of Psychiatry, Schulich School of Medicine and DentistryLondon Health Sciences Centre, Lawson Health Research InstituteLondonCanada
| | - J. Theberge
- Department of Psychiatry, Schulich School of Medicine and DentistryLondon Health Sciences Centre, Lawson Health Research InstituteLondonCanada
| | - C. Abbott
- Department of Psychiatry (CCA)University of New MexicoAlbuquerqueNew MexicoUSA
| | - B. A. Mueller
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - D. Zhi
- The State Key Lab of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - C. Zhuo
- Tianjin Mental Health CenterNankai University Affiliated Anding HospitalTianjinChina
| | - S. Liu
- The Department of PsychiatryFirst Clinical Medical College/First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Y. Xu
- The Department of PsychiatryFirst Clinical Medical College/First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - M. Salman
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - J. Liu
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Y. Du
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- School of Computer and Information TechnologyShanxi UniversityTaiyuanChina
| | - J. Sui
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- The State Key Lab of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - T. Adali
- Department of CSEEUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - V. D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State UniversityGeorgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
- Department of Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
- Department of Psychiatry, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
50
|
Lyu W, Wu Y, Huang H, Chen Y, Tan X, Liang Y, Ma X, Feng Y, Wu J, Kang S, Qiu S, Yap PT. Aberrant dynamic functional network connectivity in type 2 diabetes mellitus individuals. Cogn Neurodyn 2023; 17:1525-1539. [PMID: 37969945 PMCID: PMC10640562 DOI: 10.1007/s11571-022-09899-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Radiology, Jingzhou First People’s Hospital of Hubei Province, Jingzhou, Hubei China
| | - Yue Feng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Jinjian Wu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shangyu Kang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|