1
|
Hooks K, Kiani K, Fu Q. Cortical neural activity during responses to mechanical perturbation: Effects of hand preference and hand used. Neuroimage 2025; 310:121111. [PMID: 40043783 DOI: 10.1016/j.neuroimage.2025.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/12/2025] Open
Abstract
Handedness is an important feature of human behavioral lateralization that has often been associated with hemispheric specialization. Existing neuroimaging research on the effect of handedness during motor control has focused on well-practiced or predictable tasks, but not tasks that involve unpredictable perturbations. We examined the extent to which handedness (measured by self-reported hand preference) and whether the dominant hand is used or not influence the motor and neural response during unimanual voluntary corrective actions. The experimental task involved controlling a robotic manipulandum to move a cursor from a center start point to a target presented above or below the start. In some trials, a mechanical perturbation of the hand was randomly applied by the robot either consistent or against the target direction, while electroencephalography (EEG) was recorded. Fourteen left-handers and fourteen right-handers completed the experiment. Left-handed individuals had a greater negative peak in the frontal event-related potential (ERP) during the initial voluntary response stage (N140) than right-handed individuals. Furthermore, left-handed individuals showed more symmetrical ERP distributions between two hemispheres than right-handed individuals in the frontal and parietal regions during the late voluntary response stage (P380). To the best of our knowledge, this is the first evidence to demonstrate the differences in the cortical control of voluntary corrective actions between left-handers and right-handers.
Collapse
Affiliation(s)
- Kevin Hooks
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States.
| | - Kimia Kiani
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States.
| | - Qiushi Fu
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32827, United States; Biionix Cluster, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
2
|
Errante A, Ciullo G, Ziccarelli S, Piras A, Russo C, Fogassi L. Predicting imitative performance through cortico-cerebellar circuits: A multivariate and effective connectivity study. Neuroimage 2025; 308:121081. [PMID: 39929404 DOI: 10.1016/j.neuroimage.2025.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025] Open
Abstract
The ability to accurately imitate actions requires the contribution of the Mirror Neuron System (MNS) and of prefrontal and cerebellar regions. The present study aimed at investigating whether functional interaction between cortical areas and the cerebellum during the observation of complex bimanual actions can predict individual ability to imitate the same actions. Nineteen healthy participants underwent an fMRI task in which they observed complex bimanual action sequences (paper folding) and subsequently imitated the same sequences. Control conditions included passive observation of bimanual actions, observation of reaching movements, observation of actions without intent to imitate, and observation of natural landscapes. Participants' imitation performance was video-recorded and scored for accuracy. Univariate whole-brain regression, multivariate pattern recognition, and generalized psychophysiological interaction analyses were used to assess whether activation patterns during the observation phase could predict subsequent imitation performance. The results showed that: (i) observing actions during the imitation condition activated parietal, premotor, prefrontal cortex, and lateral cerebellum; (ii) activation levels in the left anterior intraparietal sulcus (aIPS), ventral premotor cortex (PMv), dorsolateral prefrontal cortex (DLPFC), and right lateral cerebellum (CB VI) predicted imitation accuracy; (iii) a bilateral distribution pattern involving aIPS, PMv, DLPFC, and CB VI better predicted imitation performance than a whole-brain approach; (iv) increased effective connectivity between the right CB VI, left aIPS, and left DLPFC during observation-to-imitate condition correlated with higher imitation accuracy. These findings underscore the role of the cerebellum within the MNS in simulating observed actions and enabling their accurate reproduction.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Ciullo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Economics and Management, University of Parma, Parma, Italy
| | - Alessandro Piras
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Russo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Baumard J, Laniepce A, Lesourd M, Guezouli L, Beaucousin V, Gehin M, Osiurak F, Bartolo A. The Neurocognitive Bases of Meaningful Intransitive Gestures: A Systematic Review and Meta-analysis of Neuropsychological Studies. Neuropsychol Rev 2025; 35:177-210. [PMID: 38448754 DOI: 10.1007/s11065-024-09634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 03/08/2024]
Abstract
Researchers and clinicians have long used meaningful intransitive (i.e., not tool-related; MFI) gestures to assess apraxia-a complex and frequent motor-cognitive disorder. Nevertheless, the neurocognitive bases of these gestures remain incompletely understood. Models of apraxia have assumed that meaningful intransitive gestures depend on either long-term memory (i.e., semantic memory and action lexicons) stored in the left hemisphere, or social cognition and the right hemisphere. This meta-analysis of 42 studies reports the performance of 2659 patients with either left or right hemisphere damage in tests of meaningful intransitive gestures, as compared to other gestures (i.e., MFT or meaningful transitive and MLI or meaningless intransitive) and cognitive tests. The key findings are as follows: (1) deficits of meaningful intransitive gestures are more frequent and severe after left than right hemisphere lesions, but they have been reported in both groups; (2) we found a transitivity effect in patients with lesions of the left hemisphere (i.e., meaningful transitive gestures more difficult than meaningful intransitive gestures) but a "reverse" transitivity effect in patients with lesions of the right hemisphere (i.e., meaningful transitive gestures easier than meaningful intransitive gestures); (3) there is a strong association between meaningful intransitive and transitive (but not meaningless) gestures; (4) isolated deficits of meaningful intransitive gestures are more frequent in cases with right than left hemisphere lesions; (5) these deficits may occur in the absence of language and semantic memory impairments; (6) meaningful intransitive gesture performance seems to vary according to the emotional content of gestures (i.e., body-centered gestures and emotional valence-intensity). These findings are partially consistent with the social cognition hypothesis. Methodological recommendations are given for future studies.
Collapse
Affiliation(s)
| | | | - Mathieu Lesourd
- UMR INSERM 1322 LINC, Université Bourgogne Franche-Comté, Besancon, France
| | - Léna Guezouli
- Normandie Univ, UNIROUEN, CRFDP, 76000, Rouen, France
| | | | - Maureen Gehin
- Normandie Univ, UNIROUEN, CRFDP, 76000, Rouen, France
| | - François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs (UR 3082), Université Lyon 2, Bron, France
- Institut Universitaire de France (IUF), Paris, France
| | - Angela Bartolo
- Institut Universitaire de France (IUF), Paris, France
- CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Univ. Lille, F-59000, Lille, France
| |
Collapse
|
4
|
Hooks K, Kiani K, Fu Q. Cortical neural activity during responses to mechanical perturbation: Effects of hand preference and hand used. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625431. [PMID: 39651226 PMCID: PMC11623621 DOI: 10.1101/2024.11.26.625431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Handedness, as measured by self-reported hand preference, is an important feature of human behavioral lateralization that has often been associated with hemispheric specialization. We examined the extent to which hand preference and whether the dominant hand is used or not influence the motor and neural response during voluntary unimanual corrective actions. The experimental task involved controlling a robotic manipulandum to move a cursor from a center start point to a target presented above or below the start. In some trials, a mechanical perturbation of the hand was randomly applied by the robot either consistent or against the target direction, while electroencephalography (EEG) was recorded. Twelve left-handers and ten right-handers completed the experiment. Left-handed individuals had a greater negative peak in the frontal event-related potential (ERP) than right-handed participants during the initial response phase (N150) than right-handed individuals. Furthermore, left-handed individuals showed more symmetrical ERP distributions between two hemispheres than right-handed individuals in the frontal and parietal regions during the late voluntary response phase (P390). To the best of our knowledge, this is the first evidence that demonstrates the differences in the cortical control of voluntary corrective actions between left-handers and right-handers.
Collapse
|
5
|
Lesourd M, Martin J, Hague S, Laroze M, Clément G, Comte A, Medeiros de Bustos E, Fargeix G, Magnin E, Moulin T. Organization of conceptual tool knowledge following left and right brain lesions: Evidence from neuropsychological dissociations and multivariate disconnectome symptom mapping. Brain Cogn 2024; 181:106210. [PMID: 39217817 DOI: 10.1016/j.bandc.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The aim of this work was to better understand the organization of conceptual tool knowledge following stroke. We explored specifically the link between manipulation kinematics and manipulation hand posture; and the link between manipulation kinematics and function relations in left brain-damaged (n = 30) and right brain-damaged (n = 30) patients. We examined the performance of brain-damaged patients in conceptual tool tasks using neuropsychological dissociations and disconnectome symptom mapping. Our results suggest that manipulation kinematics is more impaired than function relations, following left or right brain lesions. We also observed that manipulation kinematics and manipulation hand posture are dissociable dimensions but are still highly interrelated, particularly in left brain-damaged patients. We also found that the corpus callosum and bilateral superior longitudinal fasciculus are involved in action and semantic tool knowledge following left brain lesions. Our results provide evidence that the right hemisphere contains conceptual tool representations. Further studies are needed to better understand the mechanisms supporting the cognitive recovery of conceptual tool knowledge. An emerging hypothesis is that the right hemisphere may support functional recovery through interhemispheric transfer following a left hemisphere stroke.
Collapse
Affiliation(s)
- Mathieu Lesourd
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Université de Franche-Comté, CNRS, UAR 3124 MSHE, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France.
| | - Julie Martin
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Sébastien Hague
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Margolise Laroze
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Gautier Clément
- Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Alexandre Comte
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France
| | | | - Guillaume Fargeix
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Eloi Magnin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Thierry Moulin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| |
Collapse
|
6
|
Chunowski P, Madetko-Alster N, Alster P. Asymmetry in Atypical Parkinsonian Syndromes-A Review. J Clin Med 2024; 13:5798. [PMID: 39407856 PMCID: PMC11477316 DOI: 10.3390/jcm13195798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson's disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB). These disorders are characterized by a combination of parkinsonian features and additional symptoms, such as autonomic dysfunction, supranuclear gaze palsy, and asymmetric motor symptoms. Many hypotheses attempt to explain the causes of neurodegeneration in APSs, including interactions between environmental toxins, tau or α-synuclein pathology, oxidative stress, microglial activation, and vascular factors. While extensive research has been conducted on APSs, there is a limited understanding of the symmetry in these diseases, particularly in MSA. Neuroimaging studies have revealed metabolic, structural, and functional abnormalities that contribute to the asymmetry in APSs. The asymmetry in CBS is possibly caused by a variable reduction in striatal D2 receptor binding, as demonstrated in single-photon emission computed tomography (SPECT) examinations, which may explain the disease's asymmetric manifestation and poor response to dopaminergic therapy. In PSP, clinical dysfunction correlates with white matter tract degeneration in the superior cerebellar peduncles and corpus callosum. MSA often involves atrophy in the pons, putamen, and cerebellum, with clinical symmetry potentially depending on the symmetry of the atrophy. The aim of this review is to present the study findings on potential symmetry as a tool for determining potential neuropsychological disturbances and properly diagnosing APSs to lessen the misdiagnosis rate. Methods: A comprehensive review of the academic literature was conducted using the medical literature available in PubMed. Appropriate studies were evaluated and examined based on patient characteristics and clinical and imaging examination outcomes in the context of potential asymmetry. Results: Among over 1000 patients whose data were collected, PSP-RS was symmetrical in approximately 84% ± 3% of cases, with S-CBD showing similar results. PSP-P was symmetrical in about 53-55% of cases, while PSP-CBS was symmetrical in fewer than half of the cases. MSA-C was symmetrical in around 40% of cases. It appears that MSA-P exhibits symmetry in about 15-35% of cases. CBS, according to the criteria, is a disease with an asymmetrical clinical presentation in 90-99% of cases. Similar results were obtained via imaging methods, but transcranial sonography produced different results. Conclusions: Determining neurodegeneration symmetry may help identify functional deficits and improve diagnostic accuracy. Patients with significant asymmetry in neurodegeneration may exhibit different neuropsychological symptoms based on their individual brain lateralization, impacting their cognitive functioning and quality of life.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| | | | | |
Collapse
|
7
|
Malatesta G, Marzoli D, Lucafò C, D'Anselmo A, Azzilonna T, Prete G, Tommasi L. Functional lateralization in social-emotional processing: The influence of sexual orientation and gender identity on cradling preferences. Early Hum Dev 2024; 194:106049. [PMID: 38781713 DOI: 10.1016/j.earlhumdev.2024.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The left-cradling bias (i.e., the motor asymmetry for cradling infants on the left side) has often been associated to the right-hemispheric social-emotional specialization, and it has often been reported to be stronger in females than in males. In this study we explored the effects of sexual orientation and gender identity on this lateral bias by means of a web-based investigation in a sample of adults (485 biological females and 196 biological males) recruited through LGBTQIA+ networks and general university forums. We exploited a cradling imagery task to assess participants' cradling-side preference, and standardized questionnaires to assess participants' homosexuality (Klein Sexual Orientation Grid) and gender nonconformity (Gender Identity/Gender Dysphoria Questionnaire for Adults and Adolescents). Results confirmed the expected left-cradling bias across all sexual orientation groups except for heterosexual males. Importantly, higher homosexuality scores were associated with higher proportions of left cradling in males. These results suggest that sexual orientation can influence cradling preference in males, indicating a complex interaction between biological and psychological factors in the laterality of social-emotional processing. Finally, the left-cradling bias seems to confirm its role as a behavioral proxy of social-emotional functional lateralization in humans.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy.
| | - Daniele Marzoli
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| | - Anita D'Anselmo
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy; Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| | - Teresiana Azzilonna
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
8
|
Karlsson EM, Carey DP. Hemispheric asymmetry of hand and tool perception in left- and right-handers with known language dominance. Neuropsychologia 2024; 196:108837. [PMID: 38428518 DOI: 10.1016/j.neuropsychologia.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Regions in the brain that are selective for images of hands and tools have been suggested to be lateralised to the left hemisphere of right-handed individuals. In left-handers, many functions related to tool use or tool pantomime may also depend more on the left hemisphere. This result seems surprising, given that the dominant hand of these individuals is controlled by the right hemisphere. One explanation is that the left hemisphere is dominant for speech and language in the majority of left-handers, suggesting a supraordinate control system for complex motor sequencing that is required for skilled tool use, as well as for speech. In the present study, we examine if this left-hemispheric specialisation extends to perception of hands and tools in left- and right-handed individuals. We, crucially, also include a group of left-handers with right-hemispheric language dominance to examine their asymmetry biases. The results suggest that tools lateralise to the left hemisphere in most right-handed individuals with left-hemispheric language dominance. Tools also lateralise to the language dominant hemisphere in right-hemispheric language dominant left-handers, but the result for left-hemispheric language dominant left-handers are more varied, and no clear bias towards one hemisphere is found. Hands did not show a group-level asymmetry pattern in any of the groups. These results suggest a more complex picture regarding hemispheric overlap of hand and tool representations, and that visual appearance of tools may be driven in part by both language dominance and the hemisphere which controls the motor-dominant hand.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK
| |
Collapse
|
9
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Cano LA, Albarracín AL, Pizá AG, García-Cena CE, Fernández-Jover E, Farfán FD. Assessing Cognitive Workload in Motor Decision-Making through Functional Connectivity Analysis: Towards Early Detection and Monitoring of Neurodegenerative Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1089. [PMID: 38400247 PMCID: PMC10893317 DOI: 10.3390/s24041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and frontotemporal dementia, among others, are increasingly prevalent in the global population. The clinical diagnosis of these NDs is based on the detection and characterization of motor and non-motor symptoms. However, when these diagnoses are made, the subjects are often in advanced stages where neuromuscular alterations are frequently irreversible. In this context, we propose a methodology to evaluate the cognitive workload (CWL) of motor tasks involving decision-making processes. CWL is a concept widely used to address the balance between task demand and the subject's available resources to complete that task. In this study, multiple models for motor planning during a motor decision-making task were developed by recording EEG and EMG signals in n=17 healthy volunteers (9 males, 8 females, age 28.66±8.8 years). In the proposed test, volunteers have to make decisions about which hand should be moved based on the onset of a visual stimulus. We computed functional connectivity between the cortex and muscles, as well as among muscles using both corticomuscular and intermuscular coherence. Despite three models being generated, just one of them had strong performance. The results showed two types of motor decision-making processes depending on the hand to move. Moreover, the central processing of decision-making for the left hand movement can be accurately estimated using behavioral measures such as planning time combined with peripheral recordings like EMG signals. The models provided in this study could be considered as a methodological foundation to detect neuromuscular alterations in asymptomatic patients, as well as to monitor the process of a degenerative disease.
Collapse
Affiliation(s)
- Leonardo Ariel Cano
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Ana Lía Albarracín
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Alvaro Gabriel Pizá
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Cecilia Elisabet García-Cena
- ETSIDI-Center for Automation and Robotics, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Eduardo Fernández-Jover
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, 03202 Elche, Spain
- Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fernando Daniel Farfán
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, 03202 Elche, Spain
- Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Yang 杨炀 Y, Li 李君君 J, Zhao 赵恺 K, Tam F, Graham SJ, Xu 徐敏 M, Zhou 周可 K. Lateralized Functional Connectivity of the Sensorimotor Cortex and its Variations During Complex Visuomotor Tasks. J Neurosci 2024; 44:e0723232023. [PMID: 38050101 PMCID: PMC10860583 DOI: 10.1523/jneurosci.0723-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.
Collapse
Affiliation(s)
- Yang Yang 杨炀
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Li 李君君
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao 赵恺
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300300, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Min Xu 徐敏
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Ke Zhou 周可
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Dai Z, Song L, Luo C, Liu D, Li M, Han Z. Hemispheric lateralization of language processing: insights from network-based symptom mapping and patient subgroups. Cereb Cortex 2024; 34:bhad437. [PMID: 38031356 DOI: 10.1093/cercor/bhad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres. Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
Collapse
Affiliation(s)
- Zhiyun Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Chongjing Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Yao ZF, Hsieh S, Yang MH. Exercise habits and mental health: Exploring the significance of multimodal imaging markers. PROGRESS IN BRAIN RESEARCH 2023; 286:179-209. [PMID: 38876575 DOI: 10.1016/bs.pbr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Engaging in regular physical activity and establishing exercise habits is known to have multifaceted benefits extending beyond physical health to cognitive and mental well-being. This study explores the intricate relationship between exercise habits, brain imaging markers, and mental health outcomes. While extensive evidence supports the positive impact of exercise on cognitive functions and mental health, recent advancements in multimodal imaging techniques provide a new dimension to this exploration. By using a cross-sectional multimodal brain-behavior statistic in participants with different exercise habits, we aim to unveil the intricate mechanisms underlying exercise's influence on cognition and mental health, including the status of depression, anxiety, and quality of life. This integration of exercise science and imaging promises to substantiate cognitive benefits on mental health and uncover functional and structural changes underpinning these effects. This study embarks on a journey to explore the significance of multimodal imaging metrics (i.e., structural and functional metrics) in deciphering the intricate interplay between exercise habits and mental health, enhancing the comprehension of how exercise profoundly shapes psychological well-being. Our analysis of group comparisons uncovered a strong association between regular exercise habits and improved mental well-being, encompassing factors such as depression, anxiety levels, and overall life satisfaction. Additionally, individuals who engaged in exercise displayed enhanced brain metrics across different modalities. These metrics encompassed greater gray matter volume within the left frontal regions and hippocampus, improved white matter integrity in the frontal-occipital fasciculus, as well as more robust functional network configurations in the anterior segments of the default mode network. The interplay between exercise habits, brain adaptations, and mental health outcomes underscores the pivotal role of an active lifestyle in nurturing a resilient and high-functioning brain, thus paving the way for tailored interventions and improved well-being.
Collapse
Affiliation(s)
- Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu City, Taiwan; Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan; Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu City, Taiwan; Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan.
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan; Department of Psychology, National Cheng Kung University, Tainan City, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Tainan City, Taiwan; Department of Public Health, National Cheng Kung University, Tainan City, Taiwan.
| | - Meng-Heng Yang
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
14
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
15
|
Li G, Jiang S, Meng J, Wu Z, Jiang H, Fan Z, Hu J, Sheng X, Zhang D, Schalk G, Chen L, Zhu X. Spatio-temporal evolution of human neural activity during visually cued hand movements. Cereb Cortex 2023; 33:9764-9777. [PMID: 37464883 DOI: 10.1093/cercor/bhad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Making hand movements in response to visual cues is common in daily life. It has been well known that this process activates multiple areas in the brain, but how these neural activations progress across space and time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely distributed across the human brain both within and on the surface of the brain, and focused specifically on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally, we evaluated the degree to which the timing of activity within these regions was related to sensory or motor function. The findings of this study promote the understanding of task-related neural processing of the human brain, and may provide important insights for translational applications.
Collapse
Affiliation(s)
- Guangye Li
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shize Jiang
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianjun Meng
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehan Wu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haiteng Jiang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Hu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinjun Sheng
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Gerwin Schalk
- Chen Frontier Lab for Applied Neurotechnology, Tianqiao and Chrissy Chen Institute, Shanghai 200052, China
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyang Zhu
- Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Watanabe A, Sawamura D, Nakazono H, Tokikuni Y, Miura H, Sugawara K, Fuyama K, Tohyama H, Yoshida S, Sakai S. Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. J Transl Med 2023; 21:143. [PMID: 36823635 PMCID: PMC9951449 DOI: 10.1186/s12967-023-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The left dorsolateral prefrontal cortex (DLPFC) is involved in early-phase manual dexterity skill acquisition when cognitive control processes, such as integration and complexity demands, are required. However, the effectiveness of left DLPFC transcranial direct current stimulation (tDCS) on early-phase motor learning and whether its effectiveness depends on the cognitive demand of the target task are unclear. This study aimed to investigate whether tDCS over the left DLPFC improves non-dominant hand dexterity performance and determine if its efficacy depends on the cognitive demand of the target task. METHODS In this randomized, double-blind, sham-controlled trial, 70 healthy, right-handed, young adult participants were recruited. They were randomly allocated to the active tDCS (2 mA for 20 min) or sham groups and repeatedly performed the Purdue Pegboard Test (PPT) left-handed peg task and left-handed assembly task three times: pre-tDCS, during tDCS, and post tDCS. RESULTS The final sample comprised 66 healthy young adults (mean age, 22.73 ± 1.57 years). There were significant interactions between group and time in both PPT tasks, indicating significantly higher performance of those in the active tDCS group than those in the sham group post tDCS (p < 0.001). Moreover, a greater benefit was observed in the left-handed assembly task performance than in the peg task performance (p < 0.001). No significant correlation between baseline performance and benefits from tDCS was observed in either task. CONCLUSIONS These results demonstrated that prefrontal tDCS significantly improved early-phase manual dexterity skill acquisition, and its benefits were greater for the task with high cognitive demands. These findings contribute to a deeper understanding of the underlying neurophysiological mechanisms of the left DLPFC in the modulation of early-phase dexterity skill acquisition. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000046868), Registered February 8, 2022 https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053467.
Collapse
Affiliation(s)
- Akihiro Watanabe
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Hisato Nakazono
- grid.443459.b0000 0004 0374 9105Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001 Japan
| | - Yukina Tokikuni
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Hiroshi Miura
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Kazuhiro Sugawara
- grid.263171.00000 0001 0691 0855Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556 Japan
| | - Kanako Fuyama
- grid.412167.70000 0004 0378 6088Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648 Japan
| | - Harukazu Tohyama
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| | - Susumu Yoshida
- grid.412021.40000 0004 1769 5590Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293 Japan
| | - Shinya Sakai
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
17
|
Rajchert J, Zajenkowska A, Nowakowska I, Bodecka-Zych M, Abramiuk A. Hostility bias or sadness bias in excluded individuals: does anodal transcranial direct current stimulation of right VLPFC vs. left DLPFC have a mitigating effect? COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1063-1077. [PMID: 35474567 DOI: 10.3758/s13415-022-01008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Exclusion has multiple adverse effects on individual's well-being. It induces anger and hostile cognitions leading to aggressive behavior. The purpose of this study was to test whether exclusion would affect recognition of anger on ambivalent faces of the excluders. We hypothesized that exclusion would elicit more anger encoding (hostility bias) than inclusion, but this effect would be mitigated by anodal tDCS of right VLPFC or left DLPFC-regions engaged in negative affect regulation. Participants (N = 96) were recognizing emotions (anger, sadness, happiness) on ambiguous faces of individuals who-as they were told-liked them or not. Results showed that exclusion induced more sadness bias. tDCS to VLPFC decreased anger and increased sadness recognition on excluders' faces compared with includers' faces, expressing a mixture of these two emotions. Additionally, stimulation to VLPFC and DLPFC decreased latencies for faces expressing sadness (sad-angry and happy-sad) but increased for happy-angry faces. Stimulation to VLPFC also increased reaction time to excluders faces while stimulation of DLPFC decreased reaction latency to includers faces. Results were discussed with the reference to the form of exclusion, motivational mechanism affected by disliking but also to lateralization (valence vs. arousal theory) and cortical regions engaged in encoding sadness after a threat to belonging.
Collapse
|
18
|
The pantomime of mental rotation: Left-handers are less lateralized. Neuropsychologia 2022; 176:108385. [PMID: 36183801 DOI: 10.1016/j.neuropsychologia.2022.108385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The conceptualization of skilled hand movements (praxis) may be grounded in hemispherically specialized functions. However, a left-hemispherical advantage of (tool-use) pantomime gestures and a right-hemispherical advantage of spatial gestures may be more prominent in right-handed than left-handed individuals. We therefore investigated the hypothesis that right-handed but not left-handed individuals show a superiority of the left hemisphere (/right-hand preference) for the execution of pantomime (rotation of an object) gestures as well as a right-hemispherical superiority (/left-hand preference) for gestures that depict spatial information (/positioning of an object). METHODS 20 right- and 20 left-handed participants were asked in two experiments to demonstrate with their two hands how to move tachistoscopically (in the left (LVF) or right visual hemifields (RVF)) presented geometric objects of different rotations into an identical final position. Two independent blind raters evaluated the videotaped hand gestures employing the Neuropsychological Gesture (NEUROGES) Coding System. RESULTS In contrast to left-handed individuals, right-handed individuals present increased pantomime - rotation gestures with the right hand and pantomime - position gestures with the left hand during stimuli presentation in either visual field. Left-handers showed significantly increased left-hand pantomime - rotation gestures during stimulus presentation within the LVF (only). DISCUSSION Right-handed individuals increase their pantomime - rotation gestures with the right hand to depict motion but use their left hand for pantomime - position gestures to describe spatial relations of the objects. Left-handers do not show a clear lateralization of the right and left hand with regards to either handedness or hemispherically lateralized motor functions. The hemispherical lateralization of praxis functions is therefore more pronounced in right-handed than left-handed individuals.
Collapse
|
19
|
Interfinger Synchronization Capability of Paired Fingers in Discrete Fine-Force Control Tasks. Motor Control 2022; 26:608-629. [PMID: 35902076 DOI: 10.1123/mc.2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
This study examined whether within-a-hand and between-hands finger pairings would exhibit different interfinger synchronization capabilities in discrete fine-force control tasks. Participants were required to perform the designed force control tasks using finger pairings of index and middle fingers on one or two hands. Results demonstrated that the delayed reaction time and the timing difference of paired fingers showed a significant difference among finger pairings. In particular, paired fingers exhibited less delayed reaction time and timing difference in between-hands finger pairings than in within-a-hand finger pairings. Such bimanual advantage of the pairings with two symmetric fingers was evident only in the task types with relatively high amplitudes. However, for a given finger pairing, the asymmetric amplitude configuration, assigning a relatively higher amplitude to either left or right finger of paired fingers, has no significant effect on the interfinger synchronization. Therefore, paired fingers on both hands showed a bimanual advantage in the relatively high force, especially for the pairing of symmetrical fingers, whereas asymmetric amplitude configuration for a finger pairing was able to suppress the bimanual advantage. These findings would enrich the understanding of the interfinger synchronization capability of paired fingers and be referential for interactive engineering applications when leveraging the interfinger synchronization capability in discrete fine-force control tasks.
Collapse
|
20
|
Cao N, Pi Y, Qiu F, Wang Y, Xia X, Liu Y, Zhang J. Plasticity changes in dorsolateral prefrontal cortex associated with procedural sequence learning are hemisphere-specific. Neuroimage 2022; 259:119406. [PMID: 35752417 DOI: 10.1016/j.neuroimage.2022.119406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Corticocortical neuroplastic changes from higher-order cortices to primary motor cortex (M1) have been described for procedural sequence learning. The dorsolateral prefrontal cortex (DLPFC) plays critical roles in cognition, including in motor learning and memory. However, neuroplastic changes in the DLPFC and their influence on M1 and on motor learning are not well understood. The present study examined bilateral DLPFC-M1 changes in plasticity induced by procedural motor sequence learning in a serial reaction time task. DLPFC plasticity induced by procedural sequence learning was examined by comparing before vs. after training assessments of ipsilateral/contralateral DLPFC-M1 interactions between sequence order and random order trials performed using either the left or right hand. Intra-hemispheric (inter-stimulus interval [ISI] = 10 ms) and inter-hemispheric (ISI = 10 or 50 ms) DLPFC-M1 interactions and single-pulse motor-evoked potentials (MEPs) were measured with transcranial magnetic stimulation (TMS). The reaction times of participants measured during motor training were faster for sequence learning than for random learning with either hand. Paired-pulse TMS induced DLPFC-M1 interactions that were disinhibited after motor sequence learning, especially for left DLPFC-left M1 interactions with right hand task performance and for left DLPFC-right M1 interactions with left hand task performance. These findings indicate that motor sequence learning induces neuroplastic changes to enhance DLPFC-M1 interactions. This manifestation of plasticity showed hemispheric specificity, favoring the left DLPFC. DLPFC plasticity may be a useful index of DLPFC function and may be a treatment target for enhancing DLPFC function and motor learning.
Collapse
Affiliation(s)
- Na Cao
- School of Psychology, Shanghai University of Sport, Shanghai, China; Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yanling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yanqiu Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
21
|
Merrick CM, Dixon TC, Breska A, Lin J, Chang EF, King-Stephens D, Laxer KD, Weber PB, Carmena J, Thomas Knight R, Ivry RB. Left hemisphere dominance for bilateral kinematic encoding in the human brain. eLife 2022; 11:e69977. [PMID: 35227374 PMCID: PMC8887902 DOI: 10.7554/elife.69977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were centered over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.
Collapse
Affiliation(s)
- Christina M Merrick
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Tanner C Dixon
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Assaf Breska
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Jack Lin
- Department of Neurology, University of California at IrvineIrvineUnited States
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Jose Carmena
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Robert Thomas Knight
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
22
|
Kuderer S, Voracek M, Kirchengast S, Rotter CE. The Handedness Index Practical Task (HI 20): An economic behavioural measure for assessing manual preference. Laterality 2021; 27:273-307. [PMID: 34758712 DOI: 10.1080/1357650x.2021.1990312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ABSTRACTBecause self-report hand preference measures are limited to investigating cognitive aspects of manual laterality, valid, easy-to-administer and economic behavioural methods are needed for capturing the motoric component of handedness. Therefore, this study introduces the Handedness Index Practical Task (HI20) and tests it in a sample of 206 students (Mage = 23.79 years, SDage = 3.01 years), half of whom were self-specified left-handers. After confirming good reliabilities at the subscale and total scale levels, k-means cluster analysis allowed an empirically based partitioning of test subjects into left- (n = 72), mixed- (n = 23) and right-handers (n = 111). To validate this categorization and the HI20 index, data were compared with the Edinburgh Handedness Inventory (EHI), EHI-short, HI22 and hand grip strength. The congruency between the HI20 clusters and alternative categorizations ranged from 95.6% to 84.0%, while the clusters explained large portions of variance in grip strength differences. The HI20 sub- and total scores showed strong correlations with other measures of lateral preference. Altogether, the freely available HI20 emerges as a reliable and valid alternative for behavioural handedness assessment, whose power lies in explaining differential hand use patterns and enabling fine-grained examinations of handedness.
Collapse
Affiliation(s)
- Sonja Kuderer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Sylvia Kirchengast
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Christoph E Rotter
- Department of English and American Studies, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
24
|
Xu M, Chen Y, Wang D, Wang Y, Zhang L, Wei X. Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs. J Neural Eng 2021; 18. [PMID: 34030144 DOI: 10.1088/1741-2552/ac0489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Achieving high precision rapid serial visual presentation (RSVP) task often requires many electrode channels to obtain more information. However, the more channels may contain more redundant information and also lead to its limited practical applications. Therefore, it is necessary to reduce the number of channels to enhance the classification performance and users experience. Furthermore, cross-subject generalization has always been one of major challenges in electroencephalography channel reduction, especially in the RSVP paradigm. Most search-based channel selection method presented in the literature are single-objective methods, the classification accuracy (ACC) is usually chosen as the only criterion.Approach.In this article, the idea of multi-objective optimization was introduced into the RSVP channel selection to minimize two objectives: classification error and the number of channels. By combining a multi-objective evolutionary algorithm for solving large-scale sparse problems and hierarchical discriminant component analysis (HDCA), a novel channel selection method for RSVP was proposed. After that, the cross-subject generalization validation through the proposed channel selection method.Main results.The proposed method achieved an average ACC of 95.41% in a public dataset, which is 3.49% higher than HDCA. The ACC was increased by 2.73% and 2.52%, respectively. Besides, the cross-subject generalization models in channel selection, namely special-16 and special-32, on untrained subjects show that the classification performance is better than the Hoffmann empirical channels.Significance.The proposed channel selection method could reduce the calibration time in the experimental preparation phase and obtain a better accuracy, which is promising application in the RSVP scenario that requires low-density electrodes.
Collapse
Affiliation(s)
- Meng Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China
| | - Yuanfang Chen
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| | - Dan Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lijian Zhang
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| | - Xiaoqian Wei
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| |
Collapse
|
25
|
Examination and Comparison of Theta Band Connectivity in Left- and Right-Hand Dominant Individuals throughout a Motor Skill Acquisition. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The majority of the population identifies as right-hand dominant, with a minority 10.6% identifying as left-hand dominant. Social factors may partially skew the distribution, but it remains that left-hand dominant individuals make up approximately 40 million people in the United States alone and yet, remain underrepresented in the motor control literature. Recent research has revealed behavioral and neurological differences between populations, therein overturning assumptions of a simple hemispheric flip in motor-related activations. The present work showed differentially adaptable motor programs between populations and found fundamental differences in methods of skill acquisition highlighting underlying neural strategies unique to each population. Difference maps and descriptive metrics of coherent activation patterns showed differences in how theta oscillations were utilized. The right-hand group relied on occipital parietal lobe connectivity for visual information integration necessary to inform the motor task, while the left-hand group relied on a more frontal lobe localized cognitive based approach. The findings provide insight into potential alternative methods of information integration and emphasize the importance for inclusion of the left-hand dominant population in the growing conceptualization of the brain promoting the generation of a more complete, stable, and accurate understanding of our complex biology.
Collapse
|
26
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
27
|
Mustile M, Giocondo F, Caligiore D, Borghi AM, Kourtis D. Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-dependent Aversive Affordances. J Cogn Neurosci 2021; 33:826-839. [PMID: 33571078 DOI: 10.1162/jocn_a_01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous work suggests that perception of an object automatically facilitates actions related to object grasping and manipulation. Recently, the notion of automaticity has been challenged by behavioral studies suggesting that dangerous objects elicit aversive affordances that interfere with encoding of an object's motor properties; however, related EEG studies have provided little support for these claims. We sought EEG evidence that would support the operation of an inhibitory mechanism that interferes with the motor encoding of dangerous objects, and we investigated whether such mechanism would be modulated by the perceived distance of an object and the goal of a given task. EEGs were recorded by 24 participants who passively perceived dangerous and neutral objects in their peripersonal, boundary, or extrapersonal space and performed either a reachability judgment task or a categorization task. Our results showed that greater attention, reflected in the visual P1 potential, was drawn by dangerous and reachable objects. Crucially, a frontal N2 potential, associated with motor inhibition, was larger for dangerous objects only when participants performed a reachability judgment task. Furthermore, a larger parietal P3b potential for dangerous objects indicated the greater difficulty in linking a dangerous object to the appropriate response, especially when it was located in the participants' extrapersonal space. Taken together, our results show that perception of dangerous objects elicits aversive affordances in a task-dependent way and provides evidence for the operation of a neural mechanism that does not code affordances of dangerous objects automatically, but rather on the basis of contextual information.
Collapse
Affiliation(s)
| | | | | | - Anna M Borghi
- National Research Council, Rome, Italy.,Sapienza University of Rome, Italy
| | | |
Collapse
|
28
|
Sawamura D, Sakuraba S, Yoshida K, Hasegawa N, Suzuki Y, Yoshida S, Honke T, Sakai S. Chopstick operation training with the left non-dominant hand. Transl Neurosci 2021; 12:385-395. [PMID: 34721894 PMCID: PMC8536892 DOI: 10.1515/tnsci-2020-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background Training a non-dominant hand is important for rehabilitating people who are required to change handedness. However, improving the dexterity in using chopsticks with a non-dominant hand through training remains unclear. This study is aimed to measure whether chopstick training improves non-dominant hand chopstick operation skills and leads to acquisition of skill levels similar to those of the dominant hand. Methods This single-blinded randomized controlled trial enrolled 34 healthy young right-handed subjects who scored >70 points on the Edinburgh Handedness Questionnaire Inventory. They were randomly allocated to training or control groups. The training group participated in a 6-week chopstick training program with the non-dominant left hand, while the control group did not. Asymmetry of chopstick operation skill, perceived psychological stress, and oxygen-hemoglobin concentration as a brain activity measure in each hemisphere were measured before and after training. Results Participants in the training group had significantly lower asymmetry than those in the control group during the post-training assessment (F[1,30] ≥ 5.54, p ≤ 0.03, partial η2 ≥ 0.156). Only perceived psychological stress had a significantly higher asymmetry during the post-training assessment (t[15] = 3.81, p < 0.01). Conclusion Six weeks of chopstick training improved non-dominant chopstick operation skills, and a performance level similar to that of the dominant hand was acquired.
Collapse
Affiliation(s)
- Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Satoshi Sakuraba
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Kazuki Yoshida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Naoya Hasegawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Yumi Suzuki
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, 990-2212, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Toshihiro Honke
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari-Gun, 061-0293, Japan
| | - Shinya Sakai
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
29
|
Using tools effectively despite defective hand posture: A single-case study. Cortex 2020; 129:406-422. [DOI: 10.1016/j.cortex.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022]
|
30
|
Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A 2020; 117:14057-14065. [PMID: 32513702 DOI: 10.1073/pnas.2002981117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans demonstrate a prototypical hemispheric functional segregation pattern, with language and praxis lateralizing to the left hemisphere and spatial attention, face recognition, and emotional prosody to the right hemisphere. In this study, we used fMRI to determine laterality for all five functions in each participant. Crucially, we recruited a sample of left-handers preselected for atypical (right) language dominance (n = 24), which allowed us to characterize hemispheric asymmetry of the other functions and compare their functional segregation pattern with that of left-handers showing typical language dominance (n = 39). Our results revealed that most participants with left language dominance display the prototypical pattern of functional hemispheric segregation (44%) or deviate from this pattern in only one function (35%). Similarly, the vast majority of right language dominant participants demonstrated a completely mirrored brain organization (50%) or a reversal for all but one cognitive function (32%). Participants deviating by more than one function from the standard segregation pattern showed poorer cognitive performance, in line with an oft-presumed biological advantage of hemispheric functional segregation.
Collapse
|
31
|
Chikara RK, Lo WC, Ko LW. Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence. SENSORS 2020; 20:s20061722. [PMID: 32204504 PMCID: PMC7147711 DOI: 10.3390/s20061722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022]
Abstract
Inhibitory control is a cognitive process that inhibits a response. It is used in everyday activities, such as driving a motorcycle, driving a car and playing a game. The effect of this process can be compared to the red traffic light in the real world. In this study, we investigated brain connectivity under human inhibitory control using the phase lag index and inter-trial coherence (ITC). The human brain connectivity gives a more accurate representation of the functional neural network. Results of electroencephalography (EEG), the data sets were generated from twelve healthy subjects during left and right hand inhibitions using the auditory stop-signal task, showed that the inter-trial coherence in delta (1-4 Hz) and theta (4-7 Hz) band powers increased over the frontal and temporal lobe of the brain. These EEG delta and theta band activities neural markers have been related to human inhibition in the frontal lobe. In addition, inter-trial coherence in the delta-theta and alpha (8-12 Hz) band powers increased at the occipital lobe through visual stimulation. Moreover, the highest brain connectivity was observed under inhibitory control in the frontal lobe between F3-F4 channels compared to temporal and occipital lobes. The greater EEG coherence and phase lag index in the frontal lobe is associated with the human response inhibition. These findings revealed new insights to understand the neural network of brain connectivity and underlying mechanisms during human response inhibition.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Cheng Lo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (W.-C.L.); (L.-W.K.)
| | - Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- The Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (W.-C.L.); (L.-W.K.)
| |
Collapse
|
32
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep 2019; 9:20397. [PMID: 31892724 PMCID: PMC6938489 DOI: 10.1038/s41598-019-56956-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Despite their common use as eating utensils in East Asia, chopsticks require complex fine motor-skills for adequate operation and are thus most frequently used with the dominant hand; however, the effect of training time on the proficiency of using chopsticks with the non-dominant hand, as well as the brain activity underlying changes in skill, remain unclear. This study characterised the effect of time spent training in chopstick operation with the non-dominant hand on chopstick-use proficiency and the related brain activity to obtain data that may help individuals who are obliged to change handedness due to neurological disease to learn to use their non-dominant hand in performing daily activities. Thirty-two healthy right-handed students were randomly allocated to training (n = 16) or control (n = 16) groups; the former received 6 weeks of training in chopstick use with their non-dominant (left) hand, and the latter received none. After training, significant improvements in the execution speed and smoothness of upper extremity joints were observed in the training group. Moreover, left dorsolateral prefrontal cortex activity significantly decreased, and bilateral premotor cortex activity significantly increased across training. These results indicated that 6 weeks of chopstick training with the non-dominant hand effectively improved chopstick operation.
Collapse
|
34
|
Vingerhoets G. Phenotypes in hemispheric functional segregation? Perspectives and challenges. Phys Life Rev 2019; 30:1-18. [DOI: 10.1016/j.plrev.2019.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
|
35
|
Chikara RK, Ko LW. Modulation of the Visual to Auditory Human Inhibitory Brain Network: An EEG Dipole Source Localization Study. Brain Sci 2019; 9:E216. [PMID: 31461954 PMCID: PMC6770157 DOI: 10.3390/brainsci9090216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Auditory alarms are used to direct people's attention to critical events in complicated environments. The capacity for identifying the auditory alarms in order to take the right action in our daily life is critical. In this work, we investigate how auditory alarms affect the neural networks of human inhibition. We used a famous stop-signal or go/no-go task to measure the effect of visual stimuli and auditory alarms on the human brain. In this experiment, go-trials used visual stimulation, via a square or circle symbol, and stop trials used auditory stimulation, via an auditory alarm. Electroencephalography (EEG) signals from twelve subjects were acquired and analyzed using an advanced EEG dipole source localization method via independent component analysis (ICA) and EEG-coherence analysis. Behaviorally, the visual stimulus elicited a significantly higher accuracy rate (96.35%) than the auditory stimulus (57.07%) during inhibitory control. EEG theta and beta band power increases in the right middle frontal gyrus (rMFG) were associated with human inhibitory control. In addition, delta, theta, alpha, and beta band increases in the right cingulate gyrus (rCG) and delta band increases in both right superior temporal gyrus (rSTG) and left superior temporal gyrus (lSTG) were associated with the network changes induced by auditory alarms. We further observed that theta-alpha and beta bands between lSTG-rMFG and lSTG-rSTG pathways had higher connectivity magnitudes in the brain network when performing the visual tasks changed to receiving the auditory alarms. These findings could be useful for further understanding the human brain in realistic environments.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
36
|
The neurophysiological correlates of handedness: Insights from the lateralized readiness potential. Behav Brain Res 2019; 364:114-122. [DOI: 10.1016/j.bbr.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
|
37
|
Vingerhoets G, Gerrits R, Bogaert S. Atypical brain functional segregation is more frequent in situs inversus totalis. Cortex 2018; 106:12-25. [DOI: 10.1016/j.cortex.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
|
38
|
Concurrent Cortical Representations of Function- and Size-Related Object Affordances: An fMRI Study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:1221-1232. [PMID: 30155848 PMCID: PMC6244719 DOI: 10.3758/s13415-018-0633-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous work has shown that the perception of a graspable object may automatically potentiate actions that are tailored to specific action-related features of the object (e.g., its size) and may be related to its immediate grasping as well as to its long-term, functional use. We investigated the neural correlates of function- and size-related object affordances that may be concurrently potentiated by a graspable object. Participants were lying in a MR scanner holding a large switch in one hand and a small switch in the other hand. They passively attended a large or a small object with clearly separated functional and graspable end that was displayed centrally at an average angle of 45 degrees. Participants responded to the direction of an arrow that was overlaid on the object after a mean period of 1,000 ms after object onset and was pointing to the left or to the right with equal probability. Response times were shorter when the arrow pointed to the functional end of the object and when the responses were made with the switch that was congruent to the size of the perceived object. A clear distinction was found in the representation of function- and size-related affordances; the former was represented in the posterior parietal cortex and the latter in prefrontal, premotor, and primary sensorimotor cortices. We conclude that different aspects of object-directed actions may be automatically potentiated by individual object features and are represented in distinct brain areas.
Collapse
|
39
|
Nobusako S, Ishibashi R, Takamura Y, Oda E, Tanigashira Y, Kouno M, Tominaga T, Ishibashi Y, Okuno H, Nobusako K, Zama T, Osumi M, Shimada S, Morioka S. Distortion of Visuo-Motor Temporal Integration in Apraxia: Evidence From Delayed Visual Feedback Detection Tasks and Voxel-Based Lesion-Symptom Mapping. Front Neurol 2018; 9:709. [PMID: 30210434 PMCID: PMC6119712 DOI: 10.3389/fneur.2018.00709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Limb apraxia is a higher brain dysfunction that typically occurs after left hemispheric stroke and its cause cannot be explained by sensory disturbance or motor paralysis. The comparison of motor signals and visual feedback to generate errors, i.e., visuo-motor integration, is important in motor control and motor learning, which may be impaired in apraxia. However, in apraxia after stroke, it is unknown whether there is a specific deficit in visuo-motor temporal integration compared to visuo-tactile and visuo-proprioceptive temporal integration. We examined the precision of visuo-motor temporal integration and sensory-sensory (visuo-tactile and visuo-proprioception) temporal integration in apraxia after stroke by using a delayed visual feedback detection task with three different conditions (tactile, passive movement, and active movement). The delay detection threshold and the probability curve for delay detection obtained in this task were quantitative indicators of the respective temporal integration functions. In addition, we performed subtraction and voxel-based lesion-symptom mapping to identify the brain lesions responsible for apraxia and deficits in visuo-motor temporal integration. The behavioral experiments showed that the delay detection threshold was extended and that the probability curve for delay detection was less steep in apraxic patients compared to controls (pseudo-apraxic patients and unaffected patients), only for the active movement condition, and not for the tactile and passive movement conditions. Furthermore, the severity of apraxia was significantly correlated with the delay detection threshold and the steepness of the probability curve in the active movement condition. These results indicated that multisensory (i.e., visual, tactile, and proprioception) feedback was normally temporally integrated, but motor prediction and visual feedback were not correctly temporally integrated in apraxic patients. That is, apraxic patients had difficulties with visuo-motor temporal integration. Lesion analyses revealed that both apraxia and the distortion of visuo-motor temporal integration were associated with lesions in the fronto-parietal motor network, including the left inferior parietal lobule and left inferior frontal gyrus. We suppose that damage to the left inferior fronto-parietal network could cause deficits in motor prediction for visuo-motor temporal integration, but not for sensory-sensory (visuo-tactile and visuo-proprioception) temporal integration, leading to the distortion of visuo-motor temporal integration in patients with apraxia.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| | | | - Yusaku Takamura
- Graduate School of Health Science, Kio University, Nara, Japan.,Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | - Emika Oda
- Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | | | - Masashi Kouno
- Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | | | - Yurie Ishibashi
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Hiroyuki Okuno
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Kaori Nobusako
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Takuro Zama
- Rhythm-Based Brain Information Processing Unit, RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Saitama, Japan
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| |
Collapse
|
40
|
The effect of handedness on spatial and motor representation of pitch patterns in pianists. PLoS One 2018; 13:e0195831. [PMID: 29718946 PMCID: PMC5931456 DOI: 10.1371/journal.pone.0195831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/01/2018] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effect of handedness on pianists' abilities to adjust their keyboard performance skills to new spatial and motor mappings. Left- and right-handed pianists practiced simple melodies on a regular MIDI piano keyboard (practice) and were then asked to perform these with modified melodic contours (the same or reversed melodic contour causing a change of fingering) and on a reversed MIDI piano keyboard (test). The difference of performance duration between the practice and the test phase as well as the amount of errors played were used as test measures. Overall, a stronger effect for modified melodic contours than for the reversed keyboard was observed. Furthermore, we observed a trend of left-handed pianists to be quicker and more accurate in playing melodies when reversing their fingering with reversed contours in their left-hand performances. This suggests that handedness may influence pianists' skill to adjust to new spatial and motor mappings.
Collapse
|
41
|
Crivelli D, Sabogal Rueda MD, Balconi M. Linguistic and motor representations of everyday complex actions: an fNIRS investigation. Brain Struct Funct 2018. [PMID: 29532151 DOI: 10.1007/s00429-018-1646-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present work aimed at exploring functional correlates of motor and linguistic representations of everyday actions, with a specific interest in potential sensorimotor activation effects induced by the use of related action sentences. While it is indeed known that observing simple motor acts (e.g., precision grasping) and listening to the sound of specific actions (e.g., walking) activate sensorimotor structures, less is known when we move to more complex behaviors and more abstract linguistic representations (e.g., verbal descriptions). Again, the potential of linguistic representations to facilitate the activation of specific sensorimotor structures during action execution or observation is yet unexplored. We then aimed at investigating hemodynamic activation patterns (via functional near-infrared spectroscopy, fNIRS) within the sensorimotor network during different tasks based on everyday activities. Twenty volunteers were asked to execute (EXE), observe (OBS), or listen (LIS) to brief verbal descriptions of transitive actions, to observe them while listening to their description (OBS-LIS), or to execute them while listening to their description (EXE-LIS). Analyses highlighted that, in the left hemisphere, hemodynamic responses were the lowest during observation of complex actions and observation coupled with listening, greater during simple listening to verbal description of actions, and maximal when participants actually executed complex actions or executed them while listening to their verbal descriptions. The present results suggest that processing verbal descriptions of actions might keep the sensorimotor network more active than simply observing them. Such first pieces of evidence hint at potential implications for novel procedures for rehabilitation of movement and action deficits.
Collapse
Affiliation(s)
- D Crivelli
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy. .,Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.
| | - M D Sabogal Rueda
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy
| | - M Balconi
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
42
|
Biduła SP, Przybylski Ł, Pawlak MA, Króliczak G. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals. Front Neurosci 2017; 11:525. [PMID: 28983238 PMCID: PMC5613132 DOI: 10.3389/fnins.2017.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Using functional magnetic resonance imaging (fMRI) in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN), including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation.
Collapse
Affiliation(s)
- Szymon P Biduła
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Łukasz Przybylski
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznań University of Medical SciencesPoznan, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| |
Collapse
|
43
|
Fraser LE, Harris LR. The effect of hand position on perceived finger orientation in left- and right-handers. Exp Brain Res 2017; 235:3683-3693. [PMID: 28929312 PMCID: PMC5671529 DOI: 10.1007/s00221-017-5090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Collapse
Affiliation(s)
- Lindsey E Fraser
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | - Laurence R Harris
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
44
|
Wade NE, Padula CB, Anthenelli RM, Nelson E, Eliassen J, Lisdahl KM. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study. Neurobiol Stress 2017; 7:74-79. [PMID: 28626785 PMCID: PMC5466595 DOI: 10.1016/j.ynstr.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). MATERIALS AND METHODS For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. RESULTS After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. CONCLUSIONS This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
Collapse
Affiliation(s)
- Natasha E. Wade
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
| | - Claudia B. Padula
- Sierra Pacific Mental Illness Research, Education, and Clinical Center, VA, Palo Alto, USA
- Health Care System and Department of Psychiatry and Behavioral Sciences, Stanford University, 3801 Miranda Ave, Palo Alto, CA 93403, USA
| | - Robert M. Anthenelli
- Department of Psychiatry, University of California, San Diego, Health Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA
| | - Erik Nelson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, PO Box 670559, Cincinnati, OH, USA
| | - James Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, PO Box 670559, Cincinnati, OH, USA
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
- Corresponding author.
| |
Collapse
|
45
|
Chieffi S, Villano I, Iavarone A, Messina A, Monda V, Viggiano A, Messina G, Monda M. Manual asymmetry for temporal and spatial parameters in sensorimotor synchronization. Exp Brain Res 2017; 235:1511-1518. [PMID: 28251335 DOI: 10.1007/s00221-017-4919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
Previous studies suggest a right hemisphere advantage for temporal processing and a left hemisphere advantage for planning of motor actions. In the present study, we studied sensorimotor synchronization of hand reaching movements with an auditory rhythm. Blindfolded right-handed participants were asked to synchronize left and right hand movements to an auditory rhythm (40 vs. 60 vs. 80 bpm) and simultaneously reproduce the amplitude of a previously shown movement. Constant and variable asynchronies and movement amplitude errors were measured. The results showed that (a) constant asynchrony was lesser with the left hand than the right hand and (b) constant and variable amplitude errors were lesser with the right hand than the left hand. We suggest that when hand reaching movements are synchronized with an auditory rhythm, the left hand/right hemisphere system appears relatively specialized in temporally adhering to the rhythm and the right hand/left hemisphere system in performing spatially accurate movements.
Collapse
Affiliation(s)
- Sergio Chieffi
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy.
| | - Ines Villano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Alessandro Iavarone
- Neurological and Stroke Unit, CTO Hospital, AORN "Ospedali dei Colli", Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Andrea Viggiano
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| |
Collapse
|
46
|
Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study. J Int Neuropsychol Soc 2017; 23:108-120. [PMID: 28205496 DOI: 10.1017/s1355617716001120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Neuropsychological and neuroimaging evidence indicates that tool use knowledge and abilities are represented in the praxis representation network (PRN) of the left cerebral hemisphere. We investigated whether PRN would also underlie the planning of function-appropriate grasps of tools, even though such an assumption is inconsistent with some neuropsychological evidence for independent representations of tool grasping and skilled tool use. METHODS Twenty right-handed participants were tested in an event-related functional magnetic resonance imaging (fMRI) study wherein they planned functionally appropriate grasps of tools versus grasps of non-tools matched for size and/or complexity, and later executed the pantomimed grasps of these objects. The dominant right, and non-dominant left hands were used in two different sessions counterbalanced across participants. The tool and non-tool stimuli were presented at three different orientations, some requiring uncomfortable hand rotations for effective grips, with the difficulty matched for both hands. RESULTS Planning functional grasps of tools (vs. non-tools) was associated with significant asymmetrical increases of activity in the temporo/occipital-parieto-frontal networks. The greater involvement of the left hemisphere PRN was particularly evident when hand movement kinematics (including wrist rotations) for grasping tools and non-tools were matched. The networks engaged in the task for the dominant and non-dominant hand were virtually identical. The differences in neural activity for the two object categories disappeared during grasp execution. CONCLUSIONS The greater hand-independent engagement of the left-hemisphere praxis representation network for planning functional grasps reveals a genuine effect of an early affordance/function-based visual processing of tools. (JINS, 2017, 23, 108-120).
Collapse
|
47
|
Króliczak G, Piper BJ, Frey SH. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychologia 2016; 93:501-512. [PMID: 27020138 PMCID: PMC5036996 DOI: 10.1016/j.neuropsychologia.2016.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/27/2016] [Accepted: 03/21/2016] [Indexed: 11/27/2022]
Abstract
Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms.
Collapse
Affiliation(s)
- Gregory Króliczak
- Institute of Psychology, Action & Cognition Laboratory, Adam Mickiewicz University in Poznań, Poland
| | - Brian J Piper
- Neuroscience Program, Bowdoin College, Brunswick, ME 04011, USA
| | - Scott H Frey
- Department of Psychological Sciences, Rehabilitation Neuroscience Laboratory; Brain Imaging Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
48
|
Kourtis D, Vingerhoets G. Evidence for dissociable effects of handedness and consistency of hand preference in allocation of attention and movement planning: An EEG investigation. Neuropsychologia 2016; 93:493-500. [DOI: 10.1016/j.neuropsychologia.2016.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
|
49
|
Serrien DJ, Sovijärvi-Spapé MM. Manual dexterity: Functional lateralisation patterns and motor efficiency. Brain Cogn 2016; 108:42-6. [DOI: 10.1016/j.bandc.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
50
|
Häberling IS, Corballis PM, Corballis MC. Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex 2016; 82:72-85. [DOI: 10.1016/j.cortex.2016.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022]
|