1
|
Li J, Wang S, Du T, Tang J, Yang J. Identifying the Shared and Dissociable Neural Bases between Self-Worth and Moral Ambivalence. Brain Sci 2024; 14:736. [PMID: 39061476 PMCID: PMC11274856 DOI: 10.3390/brainsci14070736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Self-ambivalence, a prevalent phenomenon in daily life, has been increasingly substantiated by research. It refers to conflicting self-views and evaluations, primarily concerning self-worth and morality. Previous behavioral research has distinguished self-worth and moral ambivalence, but it remains unclear whether they have separable neural bases. The present study addressed this question by examining resting-state brain activity (i.e., the fractional amplitude of low-frequency fluctuations, fALFF) and connectivity (i.e., resting-state functional connectivity, RSFC) in 112 college students. The results found that self-worth ambivalence was positively related to the fALFF in the orbitofrontal cortex (OFC) and left superior parietal lobule (SPL). The RSFC strength between the SPL and precuneus/posterior cingulate cortex (PCC) was positively related to self-worth ambivalence. Moral ambivalence was positively associated with the fALFF in the left SPL (extending into the temporoparietal junction) and right SPL. The RSFC strengths between the left SPL/TPJ and OFC, as well as the RSFC strengths between the right SPL as a seed and the bilateral middle and inferior temporal gyrus, were associated with moral ambivalence. Overall, the neural bases of self-worth and moral ambivalence are associated with the SPL and OFC, involved in attentional alertness and value representation, respectively. Additionally, the neural basis of moral ambivalence is associated with the TPJ, responsible for mentalizing.
Collapse
Affiliation(s)
- Jiwen Li
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Shuai Wang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Tengfei Du
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Jianchao Tang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Brown L, White LK, Makhoul W, Teferi M, Sheline YI, Balderston NL. Role of the intraparietal sulcus (IPS) in anxiety and cognition: Opportunities for intervention for anxiety-related disorders. Int J Clin Health Psychol 2023; 23:100385. [PMID: 37006335 PMCID: PMC10060180 DOI: 10.1016/j.ijchp.2023.100385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
Our objective was to review the literature on the parietal cortex and intraparietal sulcus (IPS) in anxiety-related disorders, as well as opportunities for using neuromodulation to target this region and reduce anxiety. We provide an overview of prior research demonstrating: 1) the importance of the IPS in attention, vigilance, and anxious arousal, 2) the potential for neuromodulation of the IPS to reduce unnecessary attention toward threat and anxious arousal as demonstrated in healthy samples; and 3) limited data on the potential for neuromodulation of the IPS to reduce hyper-attention toward threat and anxious arousal among clinical samples with anxiety-related disorders. Future research should evaluate the efficacy of IPS neuromodulation in fully powered clinical trials, as well as the value in augmenting evidence-based treatments for anxiety with IPS neuromodulation.
Collapse
Affiliation(s)
- Lily Brown
- Center for the Treatment and Study of Anxiety, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren K. White
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Walid Makhoul
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Marta Teferi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Yvette I. Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicholas L. Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Hills PJ, Arabacı G, Fagg J, Canter L, Thompson C, Moseley R. Low-frequency rTMS to the parietal lobe increases eye-movement carryover and decreases hazard rating. Neuropsychologia 2021; 158:107895. [PMID: 34043999 DOI: 10.1016/j.neuropsychologia.2021.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
The persistence of attentional set from one task to a secondary unrelated task, revealed through carryover of eye movements, has been attributed to increased activation in the parietal lobe and decreased activation to the frontal lobe. To directly test this, we adopted a modified version of the Thompson and Crundall (2011) paradigm using low-frequency repetitive TMS to P3 and F3. In each trial, participants viewed letter-strings that were arranged horizontally, vertically, or randomly across the screen before viewing a road image and providing a hazardousness rating for it. The orientation of the letter search influenced eye movements to the road images and this carryover was greater following stimulation to F3 than to P3 (or sham). Furthermore, hazardous ratings were lower following P3 stimulation. These results confirm the involvement of attentional orienting and switching mechanisms in the carryover of eye movements. It is suggested that this "attentional inertia" effect will increase with greater orienting of attentional resources in an initial task and poor inhibition of previously-relevant settings between tasks.
Collapse
Affiliation(s)
- P J Hills
- Department of Psychology, Bournemouth University, Poole, United Kingdom.
| | - G Arabacı
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - J Fagg
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - L Canter
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - C Thompson
- Directorate of Psychology and Public Health, School of Health Sciences, University of Salford, Salford, UK
| | - R Moseley
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
4
|
Zhang F, Hua B, Wang T, Wang M, Ding ZX, Ding JR. Abnormal amplitude of spontaneous low-frequency fluctuation in children with growth hormone deficiency: A resting-state functional magnetic resonance imaging study. Neurosci Lett 2020; 742:135546. [PMID: 33290838 DOI: 10.1016/j.neulet.2020.135546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Growth hormone deficiency (GHD) is a developmental disorder caused by the partial or complete deficiency of growth hormone secreted by the pituitary gland, or its receptor. Patients with GHD are characterized by short stature, slow growth, and certain cognitive and behavioral abnormalities. Previous behavioral and neuroimaging studies indicate that GHD might affect the brain functional activity associated with cognitive and behavioral abilities. We thus investigated the spontaneous neural activity in children with GHD using amplitude of low-frequency fluctuation (ALFF) analysis. ALFF was calculated based on resting-state functional magnetic resonance imaging (rs-fMRI) data in 26 children with GHD and 15 age- and sex-matched healthy controls (HCs). Comparative analysis revealed that the ALFF of the right lingual gyrus and angular gyrus were significantly increased, while the ALFF of the right dorsolateral superior frontal gyrus, the left postcentral gyrus, superior parietal gyrus and middle temporal gyrus were significantly decreased in children with GHD relative to HCs. These findings support the presence of abnormal brain functional activity in children with GHD, which may account for the abnormal cognition and behavior, such as aggression, somatic complaints, attention deficits, and language withdrawal. This study provides imaging evidence for future studies on the pathophysiological mechanisms of abnormal behavior and cognition in children with GHD.
Collapse
Affiliation(s)
- Fanyu Zhang
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, China; School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Bo Hua
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, China; School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Tengfei Wang
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, China; School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Mei Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Xiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ju-Rong Ding
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, China; School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China.
| |
Collapse
|
5
|
Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Transl Psychiatry 2020; 10:68. [PMID: 32066739 PMCID: PMC7026136 DOI: 10.1038/s41398-020-0751-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most prevalent mental disorders, with few effective neuropharmacological treatments, making treatments development critical. While noninvasive neuromodulation can successfully treat depression, few treatment targets have been identified specifically for anxiety disorders. Previously, we showed that shock threat increases excitability and connectivity of the intraparietal sulcus (IPS). Here we tested the hypothesis that inhibitory repetitive transcranial magnetic stimulation (rTMS) targeting this region would reduce induced anxiety. Subjects were exposed to neutral, predictable, and unpredictable shock threat, while receiving double-blinded, 1 Hz active or sham IPS rTMS. We used global brain connectivity and electric-field modelling to define the single-subject targets. We assessed subjective anxiety with online ratings and physiological arousal with the startle reflex. Startle stimuli (103 dB white noise) probed fear and anxiety during the predictable (fear-potentiated startle, FPS) and unpredictable (anxiety-potentiated startle, APS) conditions. Active rTMS reduced both FPS and APS relative to both the sham and no stimulation conditions. However, the online anxiety ratings showed no difference between the stimulation conditions. These results were not dependent on the laterality of the stimulation, or the subjects' perception of the stimulation (i.e. active vs. sham). Results suggest that reducing IPS excitability during shock threat is sufficient to reduce physiological arousal related to both fear and anxiety, and are consistent with our previous research showing hyperexcitability in this region during threat. By extension, these results suggest that 1 Hz parietal stimulation may be an effective treatment for clinical anxiety, warranting future work in anxiety patients.
Collapse
|
6
|
Martín-Arévalo E, Lupiáñez J, Narganes-Pineda C, Marino G, Colás I, Chica AB. The causal role of the left parietal lobe in facilitation and inhibition of return. Cortex 2019; 117:311-322. [PMID: 31185374 DOI: 10.1016/j.cortex.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
Following non-informative peripheral cues, responses are facilitated at the cued compared to the uncued location at short cue-target intervals. This effect reverses at longer intervals, giving rise to Inhibition of Return (IOR). The integration-segregation hypothesis (Lupiáñez, 2010) suggests that peripheral cues always produce an onset-detection cost regardless the behavioral cueing effect that is measured - either facilitation or IOR. In the present study, we used transcranial magnetic stimulation (TMS) to investigate the causal contribution of this detection cost to performance. We used a cueing paradigm with a target discrimination task that was preceded by a non-informative peripheral cue. The presence-absence of a central intervening event was manipulated. Online TMS to the left superior parietal lobe (compared to an active vertex stimulation) lead to an overall more positive effect (faster responses for cued as compared to uncued trials), by putatively impairing the detection cost contribution to performance. The data revealed a strong association between overall RT and the TMS effect, and also between overall RT and the integrity of the first branch of the left superior longitudinal fascicule. These results have critical implications not only for the open debate about the mechanism/s underlying spatial orienting effects, but also for the growing literature demonstrating that white matter connectivity is crucial for explaining inter-individual behavioral variability.
Collapse
Affiliation(s)
- E Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - J Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - C Narganes-Pineda
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - G Marino
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - I Colás
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
7
|
TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul 2018; 11:1071-1079. [PMID: 29759942 DOI: 10.1016/j.brs.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 05/02/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Animal studies suggest that synchronized electrical activities in the brain are regulated by the primary inhibitory and excitatory neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, respectively. Identifying direct evidence that this same basic chemical-electrical neuroscience principle operates in the human brains is critical for translation of neuroscience to pathological research. OBJECTIVE/HYPOTHESIS We hypothesize that the background neurochemical concentrations may affect the cortical excitability probed by transcranial magnetic stimulation (TMS). METHODS We used TMS with simultaneous evoked potential recording to probe the cortical excitability and determined how background frontal cortical GABA and glutamate levels measured using magnetic resonance spectroscopy (MRS) modulate frontal electrical activities. RESULTS We found that TMS-evoked N100 reflects a balance between GABA-inhibitory and glutamate-excitatory levels. About 46% of individual variances in frontal N100 can be explained by their glutamate/GABA ratio (r = -0.68, p = 0.001). Both glutamate (r = -0.51, p = 0.019) and GABA (r = 0.55, p = 0.01) significantly contributed to this relationship but in opposite directions. CONCLUSION The current finding encourages additional mechanistic studies to develop TMS evoked N100 as a potential electrophysiological biomarker for translating the known inhibitory GABAergic vs. excitatory glutamatergic chemical-electrical principle from animal brain studies to human brain studies.
Collapse
|
8
|
Abstract
The lateralization of visuospatial attention has been well investigated and demonstrated to be primarily resulting from unbalanced interaction between interhemispheric fronto-parietal networks in previous studies. Many recent studies of top-down attention have reported the neural signatures of its effects within visual cortex and identified its causal basis. However, the relationship between top-down networks and asymmetric visuospatial attention has not been well studied. In the current study, we aimed to explore the relationship between top-down connectivity and asymmetric visuospatial ability by using repetitive transcranial magnetic stimulation (rTMS) and resting-state functional connectivity (RSFC) analyses. We used rTMS and RSFC to model the virtual lesion to assess the behavioral performances in visuospatial attention shifting and to identify the behavior-related top-down functional connectivities, respectively. Furthermore, we also investigated the top-down connectivity in neglect patients to validate the RSFC findings. RSFC analyses in healthy subjects and neglect patients consistently revealed that asymmetric visuospatial ability and visuospatial neglect were closely related to the bias of top-down functional connectivity between posterior superior parietal lobule (SPL) and V1. Our findings indicate that stronger top-down connectivity has stronger dominance on its corresponding visual field. We argue that an asymmetric top-down network may represent a possible neurophysiological substrate for the ongoing functional asymmetry of visuospatial attention, and its interhemispheric unbalanced interaction could contribute to the clinical manifestations of visuospatial neglect.
Collapse
|
9
|
Duecker F, Schuhmann T, Bien N, Jacobs C, Sack AT. Moving Beyond Attentional Biases: Shifting the Interhemispheric Balance between Left and Right Posterior Parietal Cortex Modulates Attentional Control Processes. J Cogn Neurosci 2017; 29:1267-1278. [DOI: 10.1162/jocn_a_01119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The concept of interhemispheric competition has been very influential in attention research, and the occurrence of biased attention due to an imbalance in posterior parietal cortex (PPC) is well documented. In this context, the vast majority of studies have assessed attentional performance with tasks that did not include an explicit experimental manipulation of attention, and, as a consequence, it remains largely unknown how these findings relate to core attentional constructs such as endogenous and exogenous control and spatial orienting and reorienting. We here addressed this open question by creating an imbalance between left and right PPC with transcranial direct current stimulation, resulting in right-hemispheric dominance, and assessed performance on three experimental paradigms that isolate distinct attentional processes. The comparison between active and sham transcranial direct current stimulations revealed a highly informative pattern of results with differential effects across tasks. Our results demonstrate the functional necessity of PPC for endogenous and exogenous attentional control and, importantly, link the concept of interhemispheric competition to core attentional processes, thus moving beyond the notion of biased attention after noninvasive brain stimulation over PPC.
Collapse
|
10
|
Balderston NL, Hale E, Hsiung A, Torrisi S, Holroyd T, Carver FW, Coppola R, Ernst M, Grillon C. Threat of shock increases excitability and connectivity of the intraparietal sulcus. eLife 2017; 6. [PMID: 28555565 PMCID: PMC5478270 DOI: 10.7554/elife.23608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/29/2017] [Indexed: 11/30/2022] Open
Abstract
Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year period, placing a substantial burden on the national health care system. Therefore, there is a critical need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased, multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and connectivity (fMRI) to identify the regions of the brain that contribute most prominently to sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both elevated neural activity and global brain connectivity during threat. The IPS plays a key role in attention orienting and may contribute to the hypervigilance that is a common symptom of pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for the paradoxical facilitation of performance on tasks that require an external focus of attention, and impairment of performance on tasks that require an internal focus of attention. DOI:http://dx.doi.org/10.7554/eLife.23608.001 Anxiety disorders affect around one in five Americans, and in many cases people experience anxiety so intensely that they have difficulties performing day-to-day activities. To help these people, it is important to understand how anxiety works. Current research suggests that anxiety disorders are caused when the connections in the brain that control our response to threat are either excessively or inappropriately activated. However, it was not clear what causes the anxiety to last for long periods. To better understand this phenomenon, Balderston et al. studied the brains of over 30 volunteers using two types of measurements called magnetoencephalography and fMRI. In the each experiment, participants experienced periods of threat, where they could receive unpredictable electric shocks. In the first experiment, Balderston et al. measured the brain activity by recording the magnetic fields generated in the brain. In the second experiment, they used fMRI to record changes in the blood flow throughout the brain to measure how the different regions in the brain communicate. The recordings identified a single part of the brain that increased its activity and changed its communication pattern with the other regions in the brain, when people are anxious. This region in a part of the brain called parietal lobe, is also important for processing attention, which suggests that anxiety might make people also more aware of their surroundings. However, this extra awareness might also make it more difficult for people to concentrate. Future studies may be able to stimulate this area of the brain through the scalp to potentially reduce anxiety, as the affected area is close to the skull. DOI:http://dx.doi.org/10.7554/eLife.23608.002
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Elizabeth Hale
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Abigail Hsiung
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Salvatore Torrisi
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Tom Holroyd
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Frederick W Carver
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Richard Coppola
- MEG Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
11
|
N100 as a generic cortical electrophysiological marker based on decomposition of TMS-evoked potentials across five anatomic locations. Exp Brain Res 2016; 235:69-81. [PMID: 27628235 DOI: 10.1007/s00221-016-4773-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022]
Abstract
N100, the negative peak of electrical response occurring around 100 ms, is present in diverse functional paradigms including auditory, visual, somatic, behavioral and cognitive tasks. We hypothesized that the presence of the N100 across different paradigms may be indicative of a more general property of the cerebral cortex regardless of functional or anatomic specificity. To test this hypothesis, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to measure cortical excitability by TMS across cortical regions without relying on specific sensory, cognitive or behavioral modalities. The five stimulated regions included left prefrontal, left motor, left primary auditory cortices, the vertex and posterior cerebellum with stimulations performed using supra- and subthreshold intensities. EEG responses produced by TMS stimulation at the five locations all generated N100s that peaked at the vertex. The amplitudes of the N100s elicited by these five diverse cortical origins were statistically not significantly different (all uncorrected p > 0.05). No other EEG response components were found to have this global property of N100. Our findings suggest that anatomy- and modality-specific interpretation of N100 should be carefully evaluated, and N100 by TMS may be used as a biomarker for evaluating local versus general cortical properties across the brain.
Collapse
|
12
|
Language modulates brain activity underlying representation of kinship terms. Sci Rep 2015; 5:18473. [PMID: 26685907 PMCID: PMC4685275 DOI: 10.1038/srep18473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022] Open
Abstract
Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages.
Collapse
|
13
|
Neural summation in human motor cortex by subthreshold transcranial magnetic stimulations. Exp Brain Res 2014; 233:671-7. [PMID: 25399245 DOI: 10.1007/s00221-014-4146-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Integration of diverse synaptic inputs is a basic neuronal operation that relies on many neurocomputational principles, one of which is neural summation. However, we lack empirical understanding of neuronal summation in the human brains in vivo. Here, we explored the effect of neural summation on the motor cortex using two subthreshold pulses of transcranial magnetic stimulation (TMS), each with intensities ranging from 60 to 95% of the resting motor threshold (RMT) and interstimulus interval (ISI) varying from 1 to 25 ms. We found that two subthreshold TMS pulses can produce suprathreshold motor response when ISIs were less than 10 ms, most prominent at 1, 1.5 and 3 ms. This facilitatory, above-threshold response was evident when the intensity of the subthreshold pulses was above 80% of RMT but was absent as the intensity was 70% or below. Modeling of the summation data across intensity suggested that they followed an exponential function with excellent model fitting. Understanding the constraints for inducing summation of subthreshold stimulations to generate above-threshold response may have implications in modeling neural operations and potential clinical applications.
Collapse
|
14
|
Kiyonaga A, Korb FM, Lucas J, Soto D, Egner T. Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory. Neuroimage 2014; 100:200-5. [PMID: 24945665 DOI: 10.1016/j.neuroimage.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022] Open
Abstract
The contents of working memory (WM) steer visual attention, but the extent of this guidance can be strategically enhanced or inhibited when WM content is reliably helpful or harmful to a visual task. Current understanding of the neural substrates mediating the cognitive control over WM biases is limited, however, by the correlational nature of functional MRI approaches. A recent fMRI study provided suggestive evidence for a functional lateralization of these control processes in posterior parietal cortex (PPC): activity in left PPC correlated with the presentation of WM cues that ought to be strategically enhanced to optimize performance, while activity in the right PPC correlated with the presentation of cues that ought to be inhibited to prevent detrimental attentional biases in a visual search. Here, we aimed to directly assess whether the left and right PPC are causally involved in the cognitive control of WM biases, and to clarify their precise functional contributions. We therefore applied 1 Hz repetitive transcranial magnetic stimulation (rTMS) to left and right PPC (and a vertex control site) prior to administering a behavioral task assessing WM biasing control functions. We observed that the perturbation of left PPC eliminated the strategic benefit of predictably helpful WM cueing, while the perturbation of right PPC amplified the cost of unpredictable detrimental WM cueing. The left and right PPC thus play distinct causal roles in WM-attention interactions: the left PPC to maximize benefits, and the right PPC to minimize costs, of internally maintained content on visual attention.
Collapse
Affiliation(s)
- Anastasia Kiyonaga
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - Franziska M Korb
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - John Lucas
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - David Soto
- Imperial College London, Division of Brain Sciences, United Kingdom
| | - Tobias Egner
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA.
| |
Collapse
|
15
|
Du X, Summerfelt A, Chiappelli J, Holcomb HH, Hong LE. Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav 2013; 46:39-48. [PMID: 24246068 DOI: 10.1080/00222895.2013.850401] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are generated from paired-pulse transcranial magnetic stimulations (ppTMS) using certain interstimulus intervals (ISIs). ppTMS provides an accessible technique to evaluate inhibitory and facilitatory motor neural circuits. However, SICI and ICF are highly variable such that individual variability is not captured by any one static ISI. The authors hypothesized that individuals may have individualized and relatively stable pattern of SICI-ICF profiles. They tested SICI and ICF profiles using ISIs from 1 to 500 ms, on 2 occasions about 3 weeks apart, and the test-retest reliability, in 23 healthy controls. Moderate-to-good test-retest reliabilities were found at ppTMS with 1 and 3 ms ISIs (SICI) and with 12, 15, 18, and 21 ms ISIs (ICF), but not with other control ISIs. A similar pattern of results was obtained for men and women. Interestingly, the peak facilitation, peak inhibition, and maximum inhibition and facilitation ranges were individualized, such that they varied considerably across individuals but had high repeatability within individual (Cronbach's α = 0.76 to 0.85). Therefore, individuals appear to have unique inhibition-facilitation profiles that are relatively stable. Although the functional implications of individualized profiles are currently unknown, the relatively stable profiles may index underlying neural inhibition and excitation traits.
Collapse
Affiliation(s)
- Xiaoming Du
- a Maryland Psychiatric Research Center, Department of Psychiatry , University of Maryland School of Medicine , Baltimore
| | | | | | | | | |
Collapse
|
16
|
Correlated activation of the thalamocortical network in a simple learning paradigm. Behav Brain Res 2013; 252:293-301. [PMID: 23791933 DOI: 10.1016/j.bbr.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 11/27/2022]
Abstract
The thalamocortical loop is a key player in sensory processing. We examined the functional interactions among its elements, expressed as cross-correlations between metabolic activity of the barrel cortex, somatosensory thalamic nuclei and posterior parietal cortex, in classical conditioning. In the training stimulation of vibrissae in mice was paired with a tail shock. [14C]-2-Deoxyglucose brain mapping was performed during the first and the final sessions of conditioning (conditioned stimulus+unconditioned stimulus; CS+UCS), in groups that received only the stimulation of vibrissae (conditioned stimulus; CS-only) and in nonstimulated controls (NS). In the CS-only group, the CS evoked the correlated activity of the examined structures during the first session, but in the third session these structures did not act in a correlated manner. Conversely, in the CS+UCS condition correlations among the thalamocortical loop structures activities became stronger during the course of the training. Particularly, the posterior parietal cortex, which controls voluntary deployment of attention, together with the barrel cortex becomes involved in the network of structures with the correlated activity. The results suggest a predominant role for bottom-up processing in the somatosensory pathway at the beginning of conditioning followed by top-down processing. This is consistent with the idea that the thalamocortical loop plays a crucial role in attentional processes.
Collapse
|
17
|
Neufeld J, Sinke C, Zedler M, Emrich HM, Szycik GR. Reduced audio-visual integration in synaesthetes indicated by the double-flash illusion. Brain Res 2012; 1473:78-86. [PMID: 22814147 DOI: 10.1016/j.brainres.2012.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/08/2012] [Indexed: 12/01/2022]
Abstract
It has been suggested that synaesthesia is the result of a hyper-sensitive multimodal binding-mechanism. To address the question whether multi-modal integration is altered in synaesthetes in general, grapheme-colour and auditory-visual synaesthetes were studied using the double-flash illusion. This illusion is induced by a single light flash presented together with multiple beep sounds, which is then perceived as multiple flashes. By varying the separation of auditory and visual stimuli, the hypothesis of a widened temporal window of audio-visual integration in synaesthetes was tested. As hypothesised, the results show differences between synaesthetes and controls concerning multisensory integration, but surprisingly other than expected synaesthetes perceive a reduced number of illusions and have a smaller time-window of audio-visual integration compared to controls. This indicates that they do not have a hyper-sensitive binding mechanism. On the contrary, synaesthetes seem to integrate even less than controls between vision and audition.
Collapse
Affiliation(s)
- Janina Neufeld
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | | | | | | | | |
Collapse
|