1
|
Rizor E, Fridriksson J, Peters DM, Rorden C, Bonilha L, Yourganov G, Fritz SL, Stewart JC. Brain-Hand Function Relationships Based on Level of Grasp Function in Chronic Left-Hemisphere Stroke. Neurorehabil Neural Repair 2024; 38:752-763. [PMID: 39162287 PMCID: PMC11486587 DOI: 10.1177/15459683241270080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND OBJECTIVE The biomarkers of hand function may differ based on level of motor impairment after stroke. The objective of this study was to determine the relationship between resting state functional connectivity (RsFC) and unimanual contralesional hand function after stroke and whether brain-behavior relationships differ based on level of grasp function. METHODS Sixty-two individuals with chronic, left-hemisphere stroke were separated into three functional levels based on Box and Blocks Test performance with the contralesional hand: Low (moved 0 blocks), Moderate (moved >0% but <90% of blocks relative to the ipsilesional hand), and High (moved ≥90% of blocks relative to the ipsilesional hand). RESULTS RsFC in the ipsilesional and interhemispheric motor networks was reduced in the Low group compared to the Moderate and High groups. While interhemispheric RsFC correlated with hand function (grip strength and Stroke Impact Scale Hand) across the sample, contralesional RsFC correlated with hand function in the Low group and no measures of connectivity correlated with hand function in the Moderate and High groups. Linear regression modeling found that contralesional RsFC significantly predicted hand function in the Low group, while no measure correlated with hand function in the High group. Corticospinal tract integrity was the only predictor of hand function for the Moderate group and in an analysis across the entire sample. CONCLUSIONS Differences in brain-hand function relationships based on level of motor impairment may have implications for predictive models of treatment response and the development of intervention protocols aimed at improving hand function after stroke.
Collapse
Affiliation(s)
- Elizabeth Rizor
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department Communication Sciences & Disorders, University of South Carolina, Columbia, SC, USA
| | - Denise M. Peters
- Department of Rehabilitation & Movement Science, University of Vermont, Burlington, VT, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Grigori Yourganov
- Department of Rehabilitation & Movement Science, University of Vermont, Burlington, VT, USA
| | - Stacy L. Fritz
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
2
|
Lee K, Barradas V, Schweighofer N. Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601213. [PMID: 39005333 PMCID: PMC11244868 DOI: 10.1101/2024.06.28.601213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Whereas the orderly recruitment of compensatory motor cortical areas after stroke depends on the size of the motor cortex lesion affecting arm and hand movements, the mechanisms underlying this reorganization are unknown. Here, we hypothesized that the recruitment of compensatory areas results from the motor system's goal to optimize performance given the anatomical constraints before and after the lesion. This optimization is achieved through two complementary plastic processes: a homeostatic regulation process, which maximizes information transfer in sensory-motor networks, and a reinforcement learning process, which minimizes movement error and effort. To test this hypothesis, we developed a neuro-musculoskeletal model that controls a 7-muscle planar arm via a cortical network that includes a primary motor cortex and a premotor cortex that directly project to spinal motor neurons, and a contra-lesional primary motor cortex that projects to spinal motor neurons via the reticular formation. Synapses in the cortical areas are updated via reinforcement learning and the activity of spinal motor neurons is adjusted through homeostatic regulation. The model replicated neural, muscular, and behavioral outcomes in both non-lesioned and lesioned brains. With increasing lesion sizes, the model demonstrated systematic recruitment of the remaining primary motor cortex, premotor cortex, and contra-lesional cortex. The premotor cortex acted as a reserve area for fine motor control recovery, while the contra-lesional cortex helped avoid paralysis at the cost of poor joint control. Plasticity in spinal motor neurons enabled force generation after large cortical lesions despite weak corticospinal inputs. Compensatory activity in the premotor and contra-lesional motor cortex was more prominent in the early recovery period, gradually decreasing as the network minimized effort. Thus, the orderly recruitment of compensatory areas following strokes of varying sizes results from biologically plausible local plastic processes that maximize performance, whether the brain is intact or lesioned.
Collapse
Affiliation(s)
- Kevin Lee
- Computer Science, University of Southern California, Los Angeles, USA
| | - Victor Barradas
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA
| |
Collapse
|
3
|
Dong A, Gao Z, Wang H, Wu R, Wang W, Jin X, Ji Y, Yang F, Zhu T, Jiang Z, Xu Y, Guo J, Ji L. Acupuncture Alleviates Chronic Ischemic White Matter Injury in SHR Rats via JNK-NMDAR Circuit. Mol Neurobiol 2024; 61:3144-3160. [PMID: 37976026 DOI: 10.1007/s12035-023-03759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
To study the protective mechanism of acupuncture at "Jiangya Recipe" on chronic ischemic white matter injury in spontaneously hypertensive rats (SHR) and the regulation of Jun N-terminal kinase-N-methyl-D-aspartate receptor (JNK-NMDAR) loop. A hypertensive white matter injury model was established in 46 male SHR rats aged 11 weeks by bilateral common carotid artery tapering (SHR-2VGO). In the SHR sham operation group, only bilateral common carotid arteries were isolated and in the SHR-2VGO modeling group, 36 rats were used for microcoil spring clip implantation to narrow the common carotid arteries and then, after 2 weeks of modeling, rats with impaired motor function were removed, and SHR-2VGO rats with successful final models were randomly divided into the model group, JNK blocking group, and acupuncture group. The sham operation group, model group, and JNK blocking group underwent the same grasping fixation, and the acupuncture group received acupuncture at acupoints "Jiangya Fang" once daily. In the JNK blocker group, an injection cannula was implanted into the lateral ventricle and sp600125 was injected into the lateral ventricle at 4.5 ul/day for 4 weeks. One week after the end of the intervention, white matter lesions were detected by MRI DWI and T2 imaging, and the learning and memory ability of rats was tested by Y-Maze and Passive Avoidance. Myelin density was detected by luxol fast blue (LFB) staining, also axon arrangement, myelin integrity, and thickness of neurons were detected by electron microscopy; neuronal morphology and the number of Nissl bodies in the hippocampus were detected by Nissl staining, dendritic spine density changes were detected by Golgi staining, and JNK, NMDAR1, and N-methyl-D-receptor 2B (NMDAR2B) in DG, CA3 region of hippocampus were detected by immunohistochemistry, protein expression of p-JNK/JNK, p-NMDAR1/NMDAR1, NMDAR2B, GSK3β protein expression in the fimbria of hippocampus was detected by Western blot. The Y maze test of SHR-2VGO+Acu and SHR-2VGO+ sp600125 group showed that the spontaneous alternating reaction rate increased significantly. At the same time, the incubation period increased significantly and the number of errors decreased significantly in Passive Avoidance. MRI T2WI showed that the white matter high signal of the corpus callosum, internal capsule and hippocampal fimbria in the SHR-2VGO+ sp600125 and SHR-2VGO+Acu groups was significantly lower than that in the SHR-2VGO model group, and the striatum and anterior commissure were not obvious. DWI showed that the SHR-2VGO model group had scattered high signal and limited diffusion movement in both the internal capsule and striatum, but the difference between groups was not obvious. Compared with SHR-2VGO rats, LFB staining of SHR-2VGO + sp600125 and SHR-2VGO +Acu groups showed significant relaxation of myelin porosity in corpus callosum, striatum, inner capsule, anterior commissure and hippocampal fimbria, and electron microscopy showed improved axonal myelin integrity and thickness in corpus callosum region. Also, the number of blue patchy Nissl bodies increased, and the number and complexity of dendritic spines increased significantly in Golgi staining. Immunohistochemical detection showed that JNK levels in DG and CA3 region were increased and NMDAR1 and NMDAR2B levels were decreased in SHR-2VGO+Acu and SHR-2VGO+ sp600125 groups. Meanwhile, protein expressions of GSK3β, NMDAR1/p-NMDAR1 and NMDAR2B in fimbria of hippocampus were increased, and JNK/P-JNK protein expression decreased. Acupuncture can increase the density and thickness of myelin sheath in white matter areas of corpus callosum, anterior commissure and hippocampal fimbria, increase the number and length of hippocampal neuronal dendrites, and improve hypertensive white matter injury and cognitive decline through JNK-NMDAR pathway.
Collapse
Affiliation(s)
- Aiai Dong
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Zhen Gao
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Haijun Wang
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Ronglin Wu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Weifeng Wang
- Shanxi University of Traditional Chinese Medicine Affiliated Hospital of Acupuncture and Massage, Taiyuan, 030006, China
| | - Xiaofei Jin
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Yufang Ji
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Faming Yang
- Shanxi University of Traditional Chinese Medicine Affiliated Hospital of Acupuncture and Massage, Taiyuan, 030006, China
| | - Tao Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ziwen Jiang
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Yongrong Xu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Jilong Guo
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Laixi Ji
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
4
|
Au NPB, Wu T, Kumar G, Jin Y, Li YYT, Chan SL, Lai JHC, Chan KWY, Yu KN, Wang X, Ma CHE. Low-dose ionizing radiation promotes motor recovery and brain rewiring by resolving inflammatory response after brain injury and stroke. Brain Behav Immun 2024; 115:43-63. [PMID: 37774892 DOI: 10.1016/j.bbi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yuting Jin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Shun Lam Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Paul T, Wiemer VM, Hensel L, Cieslak M, Tscherpel C, Grefkes C, Grafton ST, Fink GR, Volz LJ. Interhemispheric Structural Connectivity Underlies Motor Recovery after Stroke. Ann Neurol 2023; 94:785-797. [PMID: 37402647 DOI: 10.1002/ana.26737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Although ample evidence highlights that the ipsilesional corticospinal tract (CST) plays a crucial role in motor recovery after stroke, studies on cortico-cortical motor connections remain scarce and provide inconclusive results. Given their unique potential to serve as structural reserve enabling motor network reorganization, the question arises whether cortico-cortical connections may facilitate motor control depending on CST damage. METHODS Diffusion spectrum imaging (DSI) and a novel compartment-wise analysis approach were used to quantify structural connectivity between bilateral cortical core motor regions in chronic stroke patients. Basal and complex motor control were differentially assessed. RESULTS Both basal and complex motor performance were correlated with structural connectivity between bilateral premotor areas and ipsilesional primary motor cortex (M1) as well as interhemispheric M1 to M1 connectivity. Whereas complex motor skills depended on CST integrity, a strong association between M1 to M1 connectivity and basal motor control was observed independent of CST integrity especially in patients who underwent substantial motor recovery. Harnessing the informational wealth of cortico-cortical connectivity facilitated the explanation of both basal and complex motor control. INTERPRETATION We demonstrate for the first time that distinct aspects of cortical structural reserve enable basal and complex motor control after stroke. In particular, recovery of basal motor control may be supported via an alternative route through contralesional M1 and non-crossing fibers of the contralesional CST. Our findings help to explain previous conflicting interpretations regarding the functional role of the contralesional M1 and highlight the potential of cortico-cortical structural connectivity as a future biomarker for motor recovery post-stroke. ANN NEUROL 2023;94:785-797.
Collapse
Affiliation(s)
- Theresa Paul
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Valerie M Wiemer
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas Hensel
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Caroline Tscherpel
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Scott T Grafton
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Varghese R, Chang B, Kim B, Liew SL, Schweighofer N, Winstein CJ. Corpus Callosal Microstructure Predicts Bimanual Motor Performance in Chronic Stroke Survivors: a Preliminary Cross-Sectional Study. Top Stroke Rehabil 2023; 30:626-634. [PMID: 35856402 PMCID: PMC9852360 DOI: 10.1080/10749357.2022.2095085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/19/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Microstructural changes in the corpus callosum (CC) are associated with more severe motor impairment in the paretic hand, poor recovery, and general disability. The purpose of this study was to determine if CC microstructure predicts bimanual motor performance in chronic stroke survivors. METHODS We examined the relationship between the fractional anisotropy (FA) across the CC, in both the sensorimotor and non-sensorimotor regions, and movement times for two self-initiated and self-paced bimanual tasks in 41 chronic stroke survivors. Using publicly available control datasets (n = 52), matched closely for imaging acquisition parameters, we also explored the effect of stroke and age on callosal microstructure. RESULTS In mild-to-moderate chronic stroke survivors with relatively localized lesions to the motor areas, lower callosal FA values, suggestive of a more disorganized microstructure, were associated with slower bimanual performance. Associations were strongest for the primary motor fibers (b = -2.19 ± 1.03, p = .035), followed closely by premotor/supplementary motor (b = -2.07 ± 1.07, p = .041) and prefrontal (b = -1.92 ± 0.97, p = .05) fibers of the callosum. Secondary analysis revealed that compared to neurologically age-similar adults, chronic stroke survivors exhibited significantly lower mean FA in all regions of the CC, except the splenium. CONCLUSION Remote widespread changes in the callosal genu and body are associated with slower performance on cooperative bimanual tasks that require precise and interdependent coordination of the hands. Measures of callosal microstructure may prove to be a useful predictor of real-world bimanual performance in chronic stroke survivors.
Collapse
Affiliation(s)
- Rini Varghese
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089
| | - Brianna Chang
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089
| | - Bokkyu Kim
- SUNY Upstate Medical University, Department of Physical Therapy, Syracuse, NY 13210
| | - Sook-Lei Liew
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90089
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089
| | - Carolee J. Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
7
|
Yu K, Chen XF, Guo J, Wang S, Huang XT, Guo Y, Dong SS, Yang TL. Assessment of bidirectional relationships between brain imaging-derived phenotypes and stroke: a Mendelian randomization study. BMC Med 2023; 21:271. [PMID: 37491271 PMCID: PMC10369749 DOI: 10.1186/s12916-023-02982-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Stroke is a major cause of mortality and long-term disability worldwide. Whether the associations between brain imaging-derived phenotypes (IDPs) and stroke are causal is uncertain. METHODS We performed two-sample bidirectional Mendelian randomization (MR) analyses to explore the causal associations between IDPs and stroke. Summary data of 587 brain IDPs (up to 33,224 individuals) from the UK Biobank and five stroke types (sample size range from 301,663 to 446,696, case number range from 5,386 to 40,585) from the MEGASTROKE consortium were used. RESULTS Forward MR indicated 14 IDPs belong to projection fibers or association fibers were associated with stroke. For example, higher genetically determined mean diffusivity (MD) in the right external capsule was causally associated with an increased risk of small vessel stroke (IVW OR = 2.76, 95% CI 2.07 to 3.68, P = 5.87 × 10-12). Reverse MR indicated that genetically determined higher risk of any ischemic stroke was associated with increased isotropic or free water volume fraction (ISOVF) in body of corpus callosum (IVW β = 0.23, 95% CI 0.14 to 0.33, P = 3.22 × 10-7). This IDP is a commissural fiber and it is not included in the IDPs identified by forward MR. CONCLUSIONS We identified 14 IDPs with statistically significant evidence of causal effects on stroke or stroke subtypes. We also identified potential causal effects of stroke on one IDP of commissural fiber. These findings might guide further work toward identifying preventative strategies at the brain imaging levels.
Collapse
Affiliation(s)
- Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Sen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
8
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Hillis AE, Sebastian R. Corticocerebellar White Matter Integrity Is Related to Naming Outcome in Post-Stroke Aphasia. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:404-419. [PMID: 37588128 PMCID: PMC10426388 DOI: 10.1162/nol_a_00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/03/2023] [Indexed: 08/18/2023]
Abstract
Studies have shown that the integrity of white matter tracts connecting different regions in the left cerebral hemisphere is important for aphasia recovery after stroke. However, the impact of the underlying structural connection between the cortex and the cerebellum in post-stroke aphasia is poorly understood. We studied the microstructural integrity of the cerebellum and the corticocerebellar connections and their role in picture naming. Fifty-six patients with left cerebral infarcts (sparing the cerebellum) underwent diffusion tensor imaging (DTI) and Boston Naming Test. We compared the fractional anisotropy (FA) and mean diffusivity (MD) values of the right and the left cerebellum (lobular gray and white matter structures) and cerebellocortical connections. Recursive feature elimination and Spearman correlation analyses were performed to evaluate the relationship between naming performance and the corticocerebellar connections. We found that the right, relative to left, cerebellar structures and their connections with the left cerebrum showed lower FA and higher MD values, both reflecting lower microstructural integrity. This trend was not observed in the healthy controls. Higher MD values of the right major cerebellar outflow tract were associated with poorer picture naming performance. Our study provides the first DTI data demonstrating the critical importance of ascending and descending corticocerebellar connections for naming outcomes after stroke.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erin L. Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bonnie L. Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Reddy BS, Naik D, Sakalecha AK, L YU, Uhasai K, Mannan V J. Role of Magnetic Resonance Imaging in Morphometric Alterations of Corpus Callosum in Stroke Patients. Cureus 2023; 15:e35332. [PMID: 36974258 PMCID: PMC10038770 DOI: 10.7759/cureus.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Corpus callosum plays a role in interhemispheric integration, language, intelligence, and creativity of individuals, hence variations in corpus callosum size are seen in various neurological diseases such as Alzheimer's and bipolar affective disorder. While the dimensions differ based on gender, age, and ethnicity, pathological variations are seen with some diseases such as vascular dementia, leukoaraiosis, stroke, and carotid artery stenosis. This study was conducted to compare the morphometric alterations of the corpus callosum between normal subjects and stroke patients using magnetic resonance imaging (MRI). METHODS This was a case-control study conducted on 84 subjects divided into cases and control groups. The widths of the genu, body & splenium, and anterior-posterior (AP) diameter of the corpus callosum were measured and the values were compared among the two groups. Student's t-test and regression analysis were utilized for the analysis of data and p<0.05 was considered statistically significant. RESULTS Sixteen patients (19.04%) belonged to the age range of 18-40 years, 32 (38.09%) belonged to the age range of 41-60 years and 36 (42.8%) belonged to the age group of >60 years. There was no discrepancy between cases and controls or between the age groups. The mean width of genu, body & splenium, and AP diameter was compared between normal individuals and stroke patients. It was noted to be significantly lesser in cases than in controls. The morphometric indices i.e., width of genu, body & splenium, and AP diameter of the corpus callosum in cases versus controls were noted to be 9.8 ± 1.2 vs. 10.27 ± 0.3 mm, p=0.12; 5.1±0.9 vs. 5.3±0.24 mm, p=0.25; 12.11 ± 9.65 vs. 12.52 ± 13.9 mm, p=0.04 (significant) and 71.22±3.1 vs. 72.32±1.2, p=0.23, respectively. CONCLUSION This study showed that patients with stroke have a significant reduction in morphometric indices i.e., width of genu, body & splenium, and the AP diameter of the corpus callosum when compared to normal individuals.
Collapse
|
10
|
Roy B, Marshall RS. New Insight in Causal Pathways Following Subcortical Stroke: From Correlation to Causation. Neurology 2023; 100:271-272. [PMID: 36307227 DOI: 10.1212/wnl.0000000000201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bhaskar Roy
- From the Department of Neurology (B.R.), Yale School of Medicine, CT; and Columbia University Irving Medical Center (R.S.M.), NY
| | - Randolph S Marshall
- From the Department of Neurology (B.R.), Yale School of Medicine, CT; and Columbia University Irving Medical Center (R.S.M.), NY.
| |
Collapse
|
11
|
Yu Q, Yin D, Kaiser M, Xu G, Guo M, Liu F, Li J, Fan M. Pathway-Specific Mediation Effect Between Structure, Function, and Motor Impairment After Subcortical Stroke. Neurology 2023; 100:e616-e626. [PMID: 36307219 PMCID: PMC9946180 DOI: 10.1212/wnl.0000000000201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE To investigate the pathway-specific correspondence between structural and functional changes resulting from focal subcortical stroke and their causal influence on clinical symptom. METHODS In this retrospective, cross-sectional study, we mainly focused on patients with unilateral subcortical chronic stroke with moderate-severe motor impairment assessed by Fugl-Meyer Assessment (upper extremity) and healthy controls. All participants underwent both resting-state fMRI and diffusion tensor imaging. To parse the pathway-specific structure-function covariation, we performed association analyses between the fine-grained corticospinal tracts (CSTs) originating from 6 subareas of the sensorimotor cortex and functional connectivity (FC) of the corresponding subarea, along with the refined corpus callosum (CC) sections and interhemispheric FC. A mediation analysis with FC as the mediator was used to further assess the pathway-specific effects of structural damage on motor impairment. RESULTS Thirty-five patients (mean age 52.7 ± 10.2 years, 27 men) and 43 healthy controls (mean age 56.2 ± 9.3 years, 21 men) were enrolled. Among the 6 CSTs, we identified 9 structurally and functionally covaried pathways, originating from the ipsilesional primary motor area (M1), dorsal premotor area (PMd), and primary somatosensory cortex (p < 0.05, corrected). FC for the bilateral M1, PMd, and ventral premotor cortex covaried with secondary degeneration of the corresponding CC sections (p < 0.05, corrected). Moreover, these covarying structures and functions were significantly correlated with the Fugl-Meyer Assessment (upper extremity) scores (p < 0.05, uncorrected). In particular, FC between the ipsilesional PMd and contralesional cerebellum (β = -0.141, p < 0.05, CI = [-0.319 to -0.015]) and interhemispheric FC of the PMd (β = 0.169, p < 0.05, CI = [0.015-0.391]) showed significant mediation effects in the prediction of motor impairment with structural damage of the CST and CC. DISCUSSIONS This study reveals causal influence of structural and functional pathways on motor impairment after subcortical stroke and provides a promising way to investigate pathway-specific structure-function coupling. Clinically, our findings may offer a circuit-based evidence for the PMd as a critical neuromodulation target in more impaired patients with stroke and also suggest the cerebellum as a potential target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxia Fan
- From the Shanghai Key Laboratory of Magnetic Resonance (Q.Y., G.X., M.G., F.L., J.L., M.F.), School of Physics and Electronic Science, East China Normal University; Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education) (D.Y.), School of Psychology and Cognitive Science, East China Normal University; Shanghai Changning Mental Health Center (D.Y.); Precision Imaging Beacon (M.K.), School of Medicine, University of Nottingham, United Kingdom; and School of Medicine (M.K.), Shanghai Jiao Tong University, China.
| |
Collapse
|
12
|
Li Y, Yu Z, Zhou X, Wu P, Chen J. Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Front Neurol 2022; 13:996621. [PMID: 36267883 PMCID: PMC9577250 DOI: 10.3389/fneur.2022.996621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of the present study was to explore the longitudinal changes in functional homotopy in the default mode network (DMN) and motor network and its relationships with clinical characteristics in patients with stroke. Methods Resting-state functional magnetic resonance imaging was performed in stroke patients with subcortical ischemic lesions and healthy controls. The voxel-mirrored homotopic connectivity (VMHC) method was used to examine the differences in functional homotopy in patients with stroke between the two time points. Support vector machine (SVM) and correlation analyses were also applied to investigate whether the detected significant changes in VMHC were the specific feature in patients with stroke. Results The patients with stroke had significantly lower VMHC in the DMN and motor-related regions than the controls, including in the precuneus, parahippocampus, precentral gyrus, supplementary motor area, and middle frontal gyrus. Longitudinal analysis revealed that the impaired VMHC of the superior precuneus showed a significant increase at the second time point, which was no longer significantly different from the controls. Between the two time points, the changes in VMHC in the superior precuneus were significantly correlated with the changes in clinical scores. SVM analysis revealed that the VMHC of the superior precuneus could be used to correctly identify the patients with stroke from the controls with a statistically significant accuracy of 81.25% (P ≤ 0.003). Conclusions Our findings indicated that the increased VMHC in the superior precuneus could be regarded as the neuroimaging manifestation of functional recovery. The significant correlation and the discriminative power in classification results might provide novel evidence to understand the neural mechanisms responsible for brain reorganization after stroke.
Collapse
Affiliation(s)
- Yongxin Li
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li
| | - Zeyun Yu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| | - Ping Wu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ping Wu
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Li Y, Yu Z, Wu P, Chen J. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: A longitudinal study. Front Aging Neurosci 2022; 14:933567. [PMID: 36185473 PMCID: PMC9520312 DOI: 10.3389/fnagi.2022.933567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke can be viewed as an acute disruption of an individual's connectome caused by a focal or widespread loss of blood flow. Although individuals exhibit connectivity changes in multiple functional networks after stroke, the neural mechanisms that underlie the longitudinal reorganization of the connectivity patterns are still unclear. The study aimed to determine whether brain network connectivity patterns after stroke can predict longitudinal behavioral outcomes. Nineteen patients with stroke with subcortical lesions underwent two sessions of resting-state functional magnetic resonance imaging scanning at a 1-month interval. By independent component analysis, the functional connectivity within and between multiple brain networks (including the default mode network, the dorsal attention network, the limbic network, the visual network, and the frontoparietal network) was disrupted after stroke and partial recovery at the second time point. Additionally, regression analyses revealed that the connectivity between the limbic and dorsal attention networks at the first time point showed sufficient reliability in predicting the clinical scores (Fugl-Meyer Assessment and Neurological Deficit Scores) at the second time point. The overall findings suggest that functional coupling between the dorsal attention and limbic networks after stroke can be regarded as a biomarker to predict longitudinal clinical outcomes in motor function and the degree of neurological functional deficit. Overall, the present study provided a novel opportunity to improve prognostic ability after subcortical strokes.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zeyun Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct Funct 2022; 227:3173-3187. [PMID: 35881254 DOI: 10.1007/s00429-022-02525-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Understanding the relationships between brain organization and behavior is a central goal of neuroscience. Traditional teaching emphasizes that the human cerebrum includes many distinct areas for which damage or dysfunction would lead to a unique and specific behavioral syndrome. This teaching implies that brain areas correspond to encapsulated modules that are specialized for specific cognitive operations. However, empirically, local damage from stroke more often produces one of a small number of clusters of deficits and disrupts brain-wide connectivity in a small number of predictable ways (relative to the vast complexity of behavior and brain connectivity). Behaviors that involve shared operations show correlated deficits following a stroke, consistent with a low-dimensional behavioral space. Because of the networked organization of the brain, local damage from a stroke can result in widespread functional abnormalities, matching the low dimensionality of behavioral deficit. In alignment with this, neurological disease, psychiatric disease, and altered brain states produce behavioral changes that are highly correlated across a range of behaviors. We discuss how known structural and functional network priors in addition to graph theoretical concepts such as modularity and entropy have provided inroads to understanding this more complex relationship between brain and behavior. This model for brain disease has important implications for normal brain-behavior relationships and the treatment of neurological and psychiatric diseases.
Collapse
|
15
|
Hayward KS, Ferris JK, Lohse KR, Borich MR, Borstad A, Cassidy JM, Cramer SC, Dukelow SP, Findlater SE, Hawe RL, Liew SL, Neva JL, Stewart JC, Boyd LA. Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology 2022; 99:e402-e413. [PMID: 35550551 PMCID: PMC9421772 DOI: 10.1212/wnl.0000000000200517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is difficult to predict poststroke outcome for individuals with severe motor impairment because both clinical tests and corticospinal tract (CST) microstructure may not reliably indicate severe motor impairment. Here, we test whether imaging biomarkers beyond the CST relate to severe upper limb (UL) impairment poststroke by evaluating white matter microstructure in the corpus callosum (CC). In an international, multisite hypothesis-generating observational study, we determined if (1) CST asymmetry index (CST-AI) can differentiate between individuals with mild-moderate and severe UL impairment and (2) CC biomarkers relate to UL impairment within individuals with severe impairment poststroke. We hypothesized that CST-AI would differentiate between mild-moderate and severe impairment, but CC microstructure would relate to motor outcome for individuals with severe UL impairment. METHODS Seven cohorts with individual diffusion imaging and motor impairment (Fugl-Meyer Upper Limb) data were pooled. Hand-drawn regions-of-interest were used to seed probabilistic tractography for CST (ipsilesional/contralesional) and CC (prefrontal/premotor/motor/sensory/posterior) tracts. Our main imaging measure was mean fractional anisotropy. Linear mixed-effects regression explored relationships between candidate biomarkers and motor impairment, controlling for observations nested within cohorts, as well as age, sex, time poststroke, and lesion volume. RESULTS Data from 110 individuals (30 with mild-moderate and 80 with severe motor impairment) were included. In the full sample, greater CST-AI (i.e., lower fractional anisotropy in the ipsilesional hemisphere, p < 0.001) and larger lesion volume (p = 0.139) were negatively related to impairment. In the severe subgroup, CST-AI was not reliably associated with impairment across models. Instead, lesion volume and CC microstructure explained impairment in the severe group beyond CST-AI (p's < 0.010). DISCUSSION Within a large cohort of individuals with severe UL impairment, CC microstructure related to motor outcome poststroke. Our findings demonstrate that CST microstructure does relate to UL outcome across the full range of motor impairment but was not reliably associated within the severe subgroup. Therefore, CC microstructure may provide a promising biomarker for severe UL outcome poststroke, which may advance our ability to predict recovery in individuals with severe motor impairment after stroke.
Collapse
Affiliation(s)
- Kathryn S Hayward
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia.
| | - Jennifer K Ferris
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Keith R Lohse
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Michael R Borich
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Alexandra Borstad
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jessica M Cassidy
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Steven C Cramer
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sean P Dukelow
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sonja E Findlater
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Rachel L Hawe
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sook-Lei Liew
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jason L Neva
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jill C Stewart
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Lara A Boyd
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| |
Collapse
|
16
|
Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain 2022; 145:457-475. [PMID: 34918041 PMCID: PMC9014757 DOI: 10.1093/brain/awab439] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Stroke ranks among the leading causes for morbidity and mortality worldwide. New and continuously improving treatment options such as thrombolysis and thrombectomy have revolutionized acute stroke treatment in recent years. Following modern rhythms, the next revolution might well be the strategic use of the steadily increasing amounts of patient-related data for generating models enabling individualized outcome predictions. Milestones have already been achieved in several health care domains, as big data and artificial intelligence have entered everyday life. The aim of this review is to synoptically illustrate and discuss how artificial intelligence approaches may help to compute single-patient predictions in stroke outcome research in the acute, subacute and chronic stage. We will present approaches considering demographic, clinical and electrophysiological data, as well as data originating from various imaging modalities and combinations thereof. We will outline their advantages, disadvantages, their potential pitfalls and the promises they hold with a special focus on a clinical audience. Throughout the review we will highlight methodological aspects of novel machine-learning approaches as they are particularly crucial to realize precision medicine. We will finally provide an outlook on how artificial intelligence approaches might contribute to enhancing favourable outcomes after stroke.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Huang HW, Zhang XK, Li HY, Wang YG, Jing B, Chen Y, Patel MB, Ely EW, Liu YO, Zhou JX, Lin S, Zhang GB. Higher Grade Glioma Increases the Risk of Postoperative Delirium: Deficient Brain Compensation Might Be a Potential Mechanism of Postoperative Delirium. Front Aging Neurosci 2022; 14:822984. [PMID: 35493935 PMCID: PMC9045131 DOI: 10.3389/fnagi.2022.822984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The brain compensation mechanism in postoperative delirium (POD) has not been reported. We uncovered the mechanism by exploring the association between POD and glioma grades, and the relationship between preoperative brain structural and functional compensation with POD in patients with frontal glioma. Methods A total of 335 adult patients with glioma were included. The multivariable analysis examined the association between tumor grade and POD. Then, 20 patients with left frontal lobe glioma who had presurgical structural and functional MRI data and Montreal Cognitive Assessment (MoCA) in this cohort were analyzed. We measured the gray matter volume (GMV) and functional connectivity (FC) in patients with (n = 8) and without (n = 12) POD and healthy controls (HCs, n = 29) to detect the correlation between the structural and functional alteration and POD. Results The incidence of POD was 37.3%. Multivariable regression revealed that high-grade glioma had approximately six times the odds of POD. Neuroimaging data showed that compared with HC, the patients with left frontal lobe glioma showed significantly increased GMV of the right dorsal lateral prefrontal cortex (DLPFC) in the non-POD group and decreased GMV of right DLPFC in the POD group, and the POD group exhibited significantly decreased FC of right DLPFC, and the non-POD group showed the increasing tendency. Partial correlation analysis showed that GMV in contralesional DLPFC were positively correlated with preoperative neurocognition, and the GMV and FC in contralesional DLPFC were negatively correlated with POD. Conclusions Our findings suggested that insufficient compensation for injured brain regions involving cognition might be more vulnerable to suffering from POD.
Collapse
Affiliation(s)
- Hua-Wei Huang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Kang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yong-Gang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - You Chen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Mayur B. Patel
- Section of Surgical Sciences, Department of Surgery and Neurosurgery, Division of Trauma, Surgical Critical Care, and Emergency General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Geriatric Research, Education, and Clinical Center Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| |
Collapse
|
18
|
Tavazzi E, Bergsland N, Pirastru A, Pelizzari L, Cazzoli M, Saibene FL, Navarro JS, Farina E, Comanducci A, Cecconi P, Baglio F. Brain plasticity after rehabilitation in a severe case of artery of Percheron stroke assessed with multimodal MR imaging. Neurocase 2022; 28:194-198. [PMID: 35465838 DOI: 10.1080/13554794.2022.2062249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artery of Percheron (AOP) stroke is a rare event. We describe an AOP stroke involving both thalami and the midbrain, resulting in a multifunctional clinical impairment. Intensive inpatient multidisciplinary rehabilitation favored the recovery of motor deficits, together with the improvement of cognitive dysfunctions. MRI assessment in the chronic post-stroke phase showed structural and functional reorganization in response to the extended thalamic tissue damage and absence of revascularization. Thalamo-cortical networks involving frontal and prefrontal regions, as well as parietal areas were disrupted, whereas increased functional thalamo-occipital connectivity was found. This report sheds light on brain reorganization following AOP stroke after rehabilitation..
Collapse
Affiliation(s)
- E Tavazzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - N Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - A Pirastru
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - L Pelizzari
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - M Cazzoli
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - F L Saibene
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - J S Navarro
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - E Farina
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - A Comanducci
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - P Cecconi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - F Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
19
|
Kwon BM, Lee Y, Lee HH, Ko N, Kim H, Kim BR, Moon WJ, Lee J. Relationship Between Ipsilesional Upper Extremity Motor Function and Corpus Callosum Integrity in Patients With Unilateral Stroke: A Diffusion Tensor Imaging Study. BRAIN & NEUROREHABILITATION 2022; 15:e7. [PMID: 36743845 PMCID: PMC9833466 DOI: 10.12786/bn.2022.15.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/08/2022] Open
Abstract
This study aims to investigate the relationship between ipsilesional upper extremity (UE) motor function and the integrity of the subregions of the corpus callosum in hemiparetic stroke patients with motor deficits of the dominant or non-dominant ipsilesional side. Twenty participants with unilateral UE deficits after stroke were included. Each of the 10 participants had lesions on the left and right sides. The ipsilesional UE function was assessed with the Jebsen-Taylor hand function test (JHFT), the 9-hole peg test (9HPT), and grip and pinch strength tests. Fractional anisotropy (FA) was calculated for the integrity of the 5 subregions of the corpus callosum. Pearson's correlation analysis was conducted to investigate the relationship between UE function and the integrity of the callosal subregions. The results of JHFT and 9HPT showed a significant correlation with the FA value of the corpus callosum I projecting to the frontal lobe in the left lesion group (p < 0.05). There was no correlation between the ipsilesional UE motor function and the FA value of the ulnar subregion in the right lesion group (p > 0.05). These results showed that the motor deficits of the ipsilesional UE correlated with the integrity of callosal fiber projection to the prefrontal area when the ipsilesional side was non-dominant.
Collapse
Affiliation(s)
- Bo Mi Kwon
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Yejin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea.,Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Nayeon Ko
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Hyuntae Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Bo-Ram Kim
- Department of Rehabilitation Medicine, Gyeongin Rehabilitation Center Hospital, Incheon, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Inflammatory Response and Secondary White Matter Damage to the Corpus Callosum after Focal Striatal Stroke in Rats. Int J Mol Sci 2022; 23:ijms23063179. [PMID: 35328600 PMCID: PMC8955860 DOI: 10.3390/ijms23063179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disabilities worldwide, resulting in a debilitating condition occasioned by disturbances in the cerebral vasculature. Primary damage due to metabolic collapse is a quick outcome following stroke, but a multitude of secondary events, including excitotoxicity, inflammatory response, and oxidative stress cause further cell death and functional impairment. In the present work, we investigated whether a primary ischemic damage into the dorsal striatum may cause secondary damage in the circumjacent corpus callosum (CC). Animals were injected with endothelin-1 and perfused at 3, 7, 14, and 30 post-lesion days (PLD). Sections were stained with Cresyl violet for basic histopathology and immunolabeled by antibodies against astrocytes (anti-GFAP), macrophages/microglia (anti-IBA1/anti MHC-II), oligodendrocytes (anti-TAU) and myelin (anti-MBP), and Anti-Nogo. There were conspicuous microgliosis and astrocytosis in the CC, followed by later oligodendrocyte death and myelin impairment. Our results suggest that secondary white matter damage in the CC follows a primary focal striatal ischemia in adult rats.
Collapse
|
21
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
22
|
Michiels L, Mertens N, Thijs L, Radwan A, Sunaert S, Vandenbulcke M, Verheyden G, Koole M, Van Laere K, Lemmens R. Changes in synaptic density in the subacute phase after ischemic stroke: A 11C-UCB-J PET/MR study. J Cereb Blood Flow Metab 2022; 42:303-314. [PMID: 34550834 PMCID: PMC9122519 DOI: 10.1177/0271678x211047759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional alterations after ischemic stroke have been described with Magnetic Resonance Imaging (MRI) and perfusion Positron Emission Tomography (PET), but no data on in vivo synaptic changes exist. Recently, imaging of synaptic density became available by targeting synaptic vesicle protein 2 A, a protein ubiquitously expressed in all presynaptic nerve terminals. We hypothesized that in subacute ischemic stroke loss of synaptic density can be evaluated with 11C-UCB-J PET in the ischemic tissue and that alterations in synaptic density can be present in brain regions beyond the ischemic core. We recruited ischemic stroke patients to undergo 11C-UCB-J PET/MR imaging 21 ± 8 days after stroke onset to investigate regional 11C-UCB-J SUVR (standardized uptake value ratio). There was a decrease (but residual signal) of 11C-UCB-J SUVR within the lesion of 16 stroke patients compared to 40 healthy controls (ratiolesion/controls = 0.67 ± 0.28, p = 0.00023). Moreover, 11C-UCB-J SUVR was lower in the non-lesioned tissue of the affected hemisphere compared to the unaffected hemisphere (ΔSUVR = -0.17, p = 0.0035). The contralesional cerebellar hemisphere showed a lower 11C-UCB-J SUVR compared to the ipsilesional cerebellar hemisphere (ΔSUVR = -0.14, p = 0.0048). In 8 out of 16 patients, the asymmetry index suggested crossed cerebellar diaschisis. Future research is required to longitudinally study these changes in synaptic density and their association with outcome.
Collapse
Affiliation(s)
- Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Liselot Thijs
- Department of Rehabilitation Sciences, 26657KU Leuven, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Geriatric Psychiatry, University Psychiatric Centre, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, 26657KU Leuven, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
24
|
Lee J, Kim H, Kim J, Chang WH, Kim YH. Multimodal Imaging Biomarker-Based Model Using Stratification Strategies for Predicting Upper Extremity Motor Recovery in Severe Stroke Patients. Neurorehabil Neural Repair 2021; 36:217-226. [PMID: 34970925 DOI: 10.1177/15459683211070278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Various prognostic biomarkers for upper extremity (UE) motor recovery after stroke have been reported. However, most have relatively low predictive accuracy in severe stroke patients.Objective. This study suggests an imaging biomarker-based model for effectively predicting UE recovery in severe stroke patients.Methods. Of 104 ischemic stroke patients screened, 42 with severe motor impairment were included. All patients underwent structural, diffusion, and functional magnetic resonance imaging at 2 weeks and underwent motor function assessments at 2 weeks and 3 months after stroke onset. According to motor function recovery at 3 months, patients were divided into good and poor subgroups. The value of multimodal imaging biomarkers of lesion load, lesion volume, white matter integrity, and cortical functional connectivity for motor recovery prediction was investigated in each subgroup.Results. Imaging biomarkers varied depending on recovery pattern. The integrity of the cerebellar tract (P = .005, R2 = .432) was the primary biomarker in the good recovery group. In contrast, the sensory-related corpus callosum tract (P = .026, R2 = .332) and sensory-related functional connectivity (P = .001, R2 = .531) were primary biomarkers in the poor recovery group. A prediction model was proposed by applying each biomarker in the subgroup to patients with different motor evoked potential responses (P < .001, R2 = .853, root mean square error = 5.28).Conclusions. Our results suggest an optimized imaging biomarker model for predicting UE motor recovery after stroke. This model can contribute to individualized management of severe stroke in a clinical setting.
Collapse
Affiliation(s)
- Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, 36626Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heegoo Kim
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, 35017Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinuk Kim
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, 35017Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, 36626Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, 36626Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, 35017Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Quantifying changes over 1 year in motor and cognitive skill after transient ischemic attack (TIA) using robotics. Sci Rep 2021; 11:17011. [PMID: 34426586 PMCID: PMC8382836 DOI: 10.1038/s41598-021-96177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
Recent work has highlighted that people who have had TIA may have abnormal motor and cognitive function. We aimed to quantify deficits in a cohort of individuals who had TIA and measured changes in their abilities to perform behavioural tasks over 1 year of follow-up using the Kinarm Exoskeleton robot. We additionally considered performance and change over time in an active control cohort of migraineurs. Individuals who had TIA or migraine completed 8 behavioural tasks that assessed cognition as well as motor and sensory functionality in the arm. Participants in the TIA cohort were assessed at 2, 6, 12, and 52 weeks after symptom resolution. Migraineurs were assessed at 2 and 52 weeks after symptom resolution. We measured overall performance on each task using an aggregate metric called Task Score and quantified any significant change in performance including the potential influence of learning. We recruited 48 individuals to the TIA cohort and 28 individuals to the migraine cohort. Individuals in both groups displayed impairments on robotic tasks within 2 weeks of symptom cessation and also at approximately 1 year after symptom cessation, most commonly in tests of cognitive-motor integration. Up to 51.3% of people in the TIA cohort demonstrated an impairment on a given task within 2-weeks of symptom resolution, and up to 27.3% had an impairment after 1 year. In the migraine group, these numbers were 37.5% and 31.6%, respectively. We identified that up to 18% of participants in the TIA group, and up to 10% in the migraine group, displayed impairments that persisted for up to 1 year after symptom resolution. Finally, we determined that a subset of both cohorts (25-30%) experienced statistically significant deteriorations in performance after 1 year. People who have experienced transient neurological symptoms, such as those that arise from TIA or migraine, may continue to experience lasting neurological impairments. Most individuals had relatively stable task performance over time, with some impairments persisting for up to 1 year. However, some individuals demonstrated substantial changes in performance, which highlights the heterogeneity of these neurological disorders. These findings demonstrate the need to consider factors that contribute to lasting neurological impairment, approaches that could be developed to alleviate the lasting effects of TIA or migraine, and the need to consider individual neurological status, even following transient neurological symptoms.
Collapse
|
26
|
Cheng B, Petersen M, Schulz R, Boenstrup M, Krawinkel L, Gerloff C, Thomalla G. White matter degeneration revealed by fiber-specific analysis relates to recovery of hand function after stroke. Hum Brain Mapp 2021; 42:5423-5432. [PMID: 34407244 PMCID: PMC8519864 DOI: 10.1002/hbm.25632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent developments of higher‐order diffusion‐weighted imaging models have enabled the estimation of specific white matter fiber populations within a voxel, addressing limitations of traditional imaging markers of white matter integrity. We applied fixel based analysis (FBA) to investigate the evolution of fiber‐specific white matter changes in a prospective study of stroke patients and upper limb motor deficit over 1 year after stroke. We studied differences in fiber density and macrostructural changes in fiber cross‐section. Motor function was assessed by grip strength. We conducted a whole‐brain analysis of fixel metrics and predefined corticospinal tract (CST) region of interest in relation to changes in motor functions. In 30 stroke patients (mean age 62.3 years, SD ±16.9; median NIHSS 4, IQR 2–5), whole‐brain FBA revealed progressing loss of fiber density and cross‐section in the ipsilesional corticospinal tract and long‐range fiber tracts such as the superior longitudinal fascicle and trans‐callosal tracts extending towards contralesional white matter tracts. Lower FBA metrics measured at the brainstem section of the CST 1 month after stroke were significantly associated with lower grip strength 3 months (p = .009, adjusted R2 = 0.259) and 1 year (T4: p < .001, adj. R2 = 0.515) after stroke. Compared to FA, FBA metrics showed a comparably strong association with grip strength at later time points. Using FBA, we demonstrate progressive fiber‐specific white matter loss after stroke and association with functional motor outcome. Our results promote the application of fiber‐specific analysis to detect secondary neurodegeneration after stroke in relation to clinical recovery.
Collapse
Affiliation(s)
- Bastian Cheng
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Petersen
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Boenstrup
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Lutz Krawinkel
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Jablonka JA, Binkowski R, Kazmierczak M, Sadowska M, Sredniawa W, Szlachcic A, Urban P. The Role of Interhemispheric Interactions in Cortical Plasticity. Front Neurosci 2021; 15:631328. [PMID: 34305511 PMCID: PMC8299724 DOI: 10.3389/fnins.2021.631328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Despite the fact that there is a growing awareness to the callosal connections between hemispheres the two hemispheres of the brain are commonly treated as independent structures when peripheral or cortical manipulations are applied to one of them. The contralateral hemisphere is often used as a within-animal control of plastic changes induced onto the other side of the brain. This ensures uniform conditions for producing experimental and control data, but it may overlook possible interhemispheric interactions. In this paper we provide, for the first time, direct proof that cortical, experience-dependent plasticity is not a unilateral, independent process. We mapped metabolic brain activity in rats with 2-[14C] deoxyglucose (2DG) following experience-dependent plasticity induction after a month of unilateral (left), partial whiskers deprivation (only row B was left). This resulted in ∼45% widening of the cortical sensory representation of the spared whiskers in the right, contralateral barrel field (BF). We show that the width of 2DG visualized representation is less than 20% when only contralateral stimulation of the spared row of whiskers is applied in immobilized animals. This means that cortical map remodeling, which is induced by experience-dependent plasticity mechanisms, depends partially on the contralateral hemisphere. The response, which is observed by 2DG brain mapping in the partially deprived BF after standard synchronous bilateral whiskers stimulation, is therefore the outcome of at least two separately activated plasticity mechanisms. A focus on the integrated nature of cortical plasticity, which is the outcome of the emergent interactions between deprived and non-deprived areas in both hemispheres may have important implications for learning and rehabilitation. There is also a clear implication that there is nothing like “control hemisphere” since any plastic changes in one hemisphere have to have influence on functioning of the opposite one.
Collapse
Affiliation(s)
| | | | - Marcin Kazmierczak
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Maria Sadowska
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Władysław Sredniawa
- Faculty of Biology, University of Warsaw, Warsaw, Poland.,Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | | | - Paulina Urban
- Faculty of Biology, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. NEUROIMAGE-CLINICAL 2021; 31:102710. [PMID: 34126348 PMCID: PMC8209270 DOI: 10.1016/j.nicl.2021.102710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Increase in upper limb function post task specific training in chronic stroke. Motor improvements were not accompanied by changes in white matter integrity. Integrity in contralesional fibers predicted larger motor recovery in Responders. Non-responders had more severe damage of transcallosal fibers than Responders.
Objective To investigate white matter (WM) plasticity induced by intensive upper limb (UL) task specific training (TST) in chronic stroke. Methods Diffusion tensor imaging data and UL function measured by the Action Research Arm Test (ARAT) were collected in 30 individuals with chronic stroke prior to and after intensive TST. ANOVAs tested the effects of training on the entire sample and on the Responders [ΔARAT ≥ 5.8, N = 13] and Non-Responders [ΔARAT < 5.8, N = 17] groups. Baseline fractional anisotropy (FA) values were correlated with ARATpost TST controlling for baseline ARAT and age to identify voxels predictive of response to TST. Results. While ARAT scores increased following training (p < 0.0001), FA changes within major WM tracts were not significant at p < 0.05. In the Responder group, larger baseline FA of both contralesional (CL) and transcallosal tracts predicted larger ARAT scores post-TST. Subcortical lesions and more severe damage to transcallosal tracts were more pronounced in the Non-Responder than in the Responder group. Conclusions The motor improvements post-TST in the Responder group may reflect the engagement of interhemispheric processes not available to the Non-Responder group. Future studies should clarify differences in the role of CL and transcallosal pathways as biomarkers of recovery in response to training for individuals with cortical and subcortical stroke. This knowledge may help to identify sources of heterogeneity in stroke recovery, which is necessary for the development of customized rehabilitation interventions.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Xin Hong
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Kristina Zinn
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110 USA.
| |
Collapse
|
29
|
Chen J, Sun D, Shi Y, Jin W, Wang Y, Xi Q, Ren C. Altered static and dynamic voxel-mirrored homotopic connectivity in subacute stroke patients: a resting-state fMRI study. Brain Imaging Behav 2021; 15:389-400. [PMID: 32125611 DOI: 10.1007/s11682-020-00266-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sixty-four subacute stroke patients and 55 age-matched healthy controls (HCs) underwent a resting-state functional magnetic resonance imaging scan using an echo-planar imaging sequence and high-resolution sagittal T1-weighted images using a three-dimensional magnetization-prepared rapid gradient echo sequence. Static and dynamic voxel-mirrored homotopic connectivity (VMHC) was computed, respectively. The relationships between the clinical measures, including National Institutes of Health Stroke Scale (NIHSS), illness duration, Fugl-Meyer assessment for upper and lower extremities (FMA-total) and size of lesion volume, and the static/ dynamic VMHC variability alterations in stroke patients were calculated. The stroke patients showed significantly increased static VMHC in the corpus callosum, middle occipital gyrus and inferior parietal gyrus, and decreased static VMHC in the inferior temporal gyrus and precentral gyrus (PreCG) compared with those of HCs. For dynamic VMHC variability, increased dynamic VMHC variability in the inferior temporal gyrus and PreCG was detected in stroke patients relative to that in HCs. Correlation analysis exhibited that significant negative correlations were shown between the FMA scores and dynamic VMHC variability in PreCG. The present study suggests that combined static and dynamic VMHC could be helpful to evaluate the motor function of stroke patients and understand the intrinsic differences of inter-hemispheric coordination after stroke.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Department of Neurology, Zhongshan Hospital Affiliated to Fudan University, Xuhui District, Shanghai, China
| | - Dalong Sun
- Division of Gastroenterology, Department of Internal Medicine, Zhongshan Hospital Affiliated to Fudan University, Xuhui District, Shanghai, China
| | - Yonghui Shi
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanbin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Chuancheng Ren
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China. .,Departments of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
30
|
Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA, Simchick GA, Sneed SE, Grimes JA, Zhao Q, Stice SL, West FD. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci Rep 2021; 11:3814. [PMID: 33589720 PMCID: PMC7884696 DOI: 10.1038/s41598-021-83432-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.
Collapse
Affiliation(s)
- Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | | | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Gregory A Simchick
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Aruna Bio Inc, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
31
|
Mekbib DB, Debeli DK, Zhang L, Fang S, Shao Y, Yang W, Han J, Jiang H, Zhu J, Zhao Z, Cheng R, Ye X, Zhang J, Xu D. A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. Ann N Y Acad Sci 2021; 1493:75-89. [PMID: 33442915 DOI: 10.1111/nyas.14554] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Given the rising incidence of stroke, several technology-driven methods for rehabilitation have recently been developed. Virtual reality (VR) is a promising therapeutic technology among them. We recently developed a neuroscientifically grounded VR system to aid recovery of motor function poststroke. The developed system provides unilateral and bilateral upper extremity (UE) training in a fully immersive virtual environment that may stimulate and activate mirror neurons (MNs) in the brain necessary for UE rehabilitation. Twenty-three participants were randomized to a VR group (n = 12) to receive VR intervention (8 h within 2 weeks) plus 8-h occupational therapy (OT) or a control group (n = 11) to receive time-matched OT alone. Treatment effects on motor recovery and cortical reorganization were investigated using the Barthel Index (BI), Fugl-Meyer Upper Extremity (FM-UE), and resting-state fMRI. Both groups significantly improved BI (P < 0.05), reflecting the recovery of UE motor function. The VR group revealed significant improvements on FM-UE scores (P < 0.05) than the control group. Neural activity increased after the intervention, particularly in the brain areas implicating MNs, such as in the primary motor cortex. Overall, results suggested that using a neuroscientifically grounded VR system might offer additional benefits for UE rehabilitation in patients receiving OT.
Collapse
Affiliation(s)
- Destaw B Mekbib
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dereje Kebebew Debeli
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Fang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuling Shao
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wei Yang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiawei Han
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongjie Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- MOE & Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruidong Cheng
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangming Ye
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianmin Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, New York City, New York
| |
Collapse
|
32
|
Neural correlates of within-session practice effects in mild motor impairment after stroke: a preliminary investigation. Exp Brain Res 2020; 239:151-160. [PMID: 33130906 DOI: 10.1007/s00221-020-05964-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
While the structural integrity of the corticospinal tract (CST) has been shown to support motor performance after stroke, the neural correlates of within-session practice effects are not known. The purpose of this preliminary investigation was to examine the structural brain correlates of within-session practice effects on a functional motor task completed with the more impaired arm after stroke. Eleven individuals with mild motor impairment (mean age 57.0 ± 9.4 years, mean months post-stroke 37.0 ± 66.1, able to move ≥ 26 blocks on the Box and Blocks Test) due to left hemisphere stroke completed structural MRI and practiced a functional motor task that involved spooning beans from a start cup to three distal targets. Performance on the motor task improved with practice (p = 0.004), although response was variable. Baseline motor performance (Block 1) correlated with integrity of the CST (r = - 0.696) while within-session practice effects (change from Block 1 to Block 3) did not. Instead, practice effects correlated with degree of lesion to the superior longitudinal fasciculus (r = 0.606), a pathway that connects frontal and parietal brain regions previously shown to support motor learning. This difference between white matter tracts associated with baseline motor performance and within-session practice effects may have implications for understanding response to motor practice and the application of brain-focused intervention approaches aimed at improving hand function after stroke.
Collapse
|
33
|
Mekbib DB, Zhao Z, Wang J, Xu B, Zhang L, Cheng R, Fang S, Shao Y, Yang W, Han J, Jiang H, Zhu J, Ye X, Zhang J, Xu D. Proactive Motor Functional Recovery Following Immersive Virtual Reality-Based Limb Mirroring Therapy in Patients with Subacute Stroke. Neurotherapeutics 2020; 17:1919-1930. [PMID: 32671578 PMCID: PMC7851292 DOI: 10.1007/s13311-020-00882-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Virtual reality (VR) is considered to be a promising therapeutic technology for the rehabilitation of upper extremities (UEs) post-stroke. Recently, we designed and then implemented a neuroscientifically grounded VR protocol for the rehabilitation of patients with stroke. The system provides unilateral and bilateral limb mirroring exercises in a fully immersive virtual environment that may stimulate and activate the mirror neuron system in the brain to help patients for their rehabilitation. Twelve patients with subacute stroke underwent the newly implemented VR treatment in addition to conventional rehabilitation for 8 consecutive weekdays. The treatment effect on brain reorganization and motor function was investigated using resting-state fMRI (rs-fMRI) and the Fugl-Meyer assessment for Upper Extremity (FM-UE), respectively. Fifteen healthy controls (HCs) also underwent rs-fMRI scanning one time. The study finally obtained usable data from 8 patients and 13 HCs. After the intervention, patients demonstrated significant improvement in their FM-UE scores (p values < 0.042). Voxel-wise functional connectivity (FC) analysis based on the rs-fMRI data found that HCs showed widespread bilateral FC patterns associated with the dominant hemispheric primary motor cortex (M1). However, the FC patterns in patients revealed intra-hemispheric association with the ipsilesional M1 seed and this association became visible in the contra-hemisphere after the intervention. Moreover, the change of FC values between the bilateral M1 was significantly correlated with the changes in FM-UE scores (p values < 0.037). We conclude that unilateral and bilateral limb mirroring exercise in an immersive virtual environment may enhance cortical reorganization and lead to improved motor function.
Collapse
Affiliation(s)
- Destaw B Mekbib
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310000, China
| | - Zhiyong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, 200064, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jianbao Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310029, China
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology,, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bin Xu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310029, China
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Ruiding Cheng
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Shan Fang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yuling Shao
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Wei Yang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiawei Han
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hongjie Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Junming Zhu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology,, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
| | - Xiangming Ye
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jianmin Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Saft M, Gonzales-Portillo B, Park YJ, Cozene B, Sadanandan N, Cho J, Garbuzova-Davis S, Borlongan CV. Stem Cell Repair of the Microvascular Damage in Stroke. Cells 2020; 9:cells9092075. [PMID: 32932814 PMCID: PMC7563611 DOI: 10.3390/cells9092075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a life-threatening disease that leads to mortality, with survivors subjected to long-term disability. Microvascular damage is implicated as a key pathological feature, as well as a therapeutic target for stroke. In this review, we present evidence detailing subacute diaschisis in a focal ischemic stroke rat model with a focus on blood–brain barrier (BBB) integrity and related pathogenic processes in contralateral brain areas. Additionally, we discuss BBB competence in chronic diaschisis in a similar rat stroke model, highlighting the pathological changes in contralateral brain areas that indicate progressive morphological brain disturbances overtime after stroke onset. With diaschisis closely approximating stroke onset and progression, it stands as a treatment of interest for stroke. Indeed, the use of stem cell transplantation for the repair of microvascular damage has been investigated, demonstrating that bone marrow stem cells intravenously transplanted into rats 48 h post-stroke survive and integrate into the microvasculature. Ultrastructural analysis of transplanted stroke brains reveals that microvessels display a near-normal morphology of endothelial cells and their mitochondria. Cell-based therapeutics represent a new mechanism in BBB and microvascular repair for stroke.
Collapse
Affiliation(s)
| | | | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | | | | | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (Y.J.P.); (J.C.); (S.G.-D.)
- Correspondence: ; Tel.: +813-974-3988
| |
Collapse
|
35
|
Sotelo MR, Kalinosky BT, Goodfriend K, Hyngstrom AS, Schmit BD. Indirect Structural Connectivity Identifies Changes in Brain Networks After Stroke. Brain Connect 2020; 10:399-410. [PMID: 32731752 DOI: 10.1089/brain.2019.0725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background/Purpose: The purpose of this study was (1) to identify changes in structural connectivity after stroke and (2) to relate changes in indirect connectivity to post-stroke impairment. Methods: A novel measure of indirect connectivity was implemented to assess the impact of stroke on brain connectivity. Probabilistic tractography was performed on 13 chronic stroke and 16 control participants to estimate connectivity between gray matter (GM) regions. The Fugl-Meyer assessment of motor impairment was measured for stroke participants. Network measures of direct and indirect connectivity were calculated, and these measures were linearly combined with measures of white matter integrity to predict motor impairment. Results: We found significantly reduced indirect connectivity in the frontal and parietal lobes, ipsilesional subcortical regions, and bilateral cerebellum after stroke. When added to the regression analysis, the volume of GM with reduced indirect connectivity significantly improved the correlation between image parameters and upper extremity motor impairment (R2 = 0.71, p < 0.05). Conclusion: This study provides evidence of changes in indirect connectivity in regions remote from the lesion, particularly in the cerebellum and regions in the fronto-parietal cortices, and these changes correlate with upper extremity motor impairment. These results highlight the value of using measures of indirect connectivity to identify the effect of stroke on brain networks. Impact statement Changes in indirect structural connectivity occur in regions distant from a lesion after stroke, highlighting the impact that stroke has on brain functional networks. Specifically, losses in indirect structural connectivity occur in hubs with high centrality, including the fronto-parietal cortices and cerebellum. These losses in indirect connectivity more accurately reflect motor impairments than measures of direct structural connectivity. As a consequence, indirect structural connectivity appears to be important to recovery after stroke and imaging biomarkers that incorporate indirect structural connectivity might improve prognostication of stroke outcomes.
Collapse
Affiliation(s)
- Miguel R Sotelo
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin T Kalinosky
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Goodfriend
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
36
|
Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2020; 2:17. [PMID: 33324923 PMCID: PMC7650109 DOI: 10.1186/s42466-020-00060-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.
Collapse
Affiliation(s)
- Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| |
Collapse
|
37
|
Min YS, Jang KE, Park E, Kim AR, Kang MG, Cheong YS, Kim JH, Jung SH, Park J, Jung TD. Prediction of Motor Recovery in Patients with Basal Ganglia Hemorrhage Using Diffusion Tensor Imaging. J Clin Med 2020; 9:E1304. [PMID: 32370089 PMCID: PMC7290831 DOI: 10.3390/jcm9051304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
Abstract
Predicting prognosis in patients with basal ganglia hemorrhage is difficult. This study aimed to investigate the usefulness of diffusion tensor imaging in predicting motor outcome after basal ganglia hemorrhage. A total of 12 patients with putaminal hemorrhage were included in the study (aged 50 ± 12 years), 8 patients were male (aged 46 ± 11 years) and 4 were female (aged 59 ± 9 years). We performed diffusion tensor imaging and measured clinical outcome at baseline (pre) and 3 weeks (post1), 3 months (post2), and 6 months (post3) after the initial treatment. In the affected side of the brain, the mean fractional anisotropy (FA) value on pons was significantly higher in the good outcome group than that in the poor outcome group at pre (p = 0.004) and post3 (p = 0.025). Pearson correlation analysis showed that mean FA value at pre significantly correlated with the sum of the Brunnstrom motor recovery stage scores at post3 (R = 0.8, p = 0.002). Change in the FA ratio on diffusion tractography can predict motor recovery after hemorrhagic stroke.
Collapse
Affiliation(s)
- Yu-Sun Min
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (Y.-S.M.); (E.P.); (A.-R.K.)
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyung Eun Jang
- Department of Medical and Biomedical Engineering, Kyungpook National University, Daegu 41944, Korea;
| | - Eunhee Park
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (Y.-S.M.); (E.P.); (A.-R.K.)
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
| | - Ae-Ryoung Kim
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (Y.-S.M.); (E.P.); (A.-R.K.)
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
| | - Min-Gu Kang
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan 49201, Korea;
| | - Youn-Soo Cheong
- Department of Rehabilitation Medicine, Maryknoll Hospital, Busan 48972, Korea;
| | - Ju-Hyun Kim
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
| | - Seung-Hwan Jung
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
| | - Jaechan Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Biomedical Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Tae-Du Jung
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (Y.-S.M.); (E.P.); (A.-R.K.)
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (J.-H.K.); (S.-H.J.)
| |
Collapse
|
38
|
Egorova N, Dhollander T, Khlif MS, Khan W, Werden E, Brodtmann A. Pervasive White Matter Fiber Degeneration in Ischemic Stroke. Stroke 2020; 51:1507-1513. [PMID: 32295506 DOI: 10.1161/strokeaha.119.028143] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Purpose- We examined if ischemic stroke is associated with white matter degeneration predominantly confined to the ipsi-lesional tracts or with widespread bilateral axonal loss independent of lesion laterality. Methods- We applied a novel fixel-based analysis, sensitive to fiber tract-specific differences within a voxel, to assess axonal loss in stroke (N=104, 32 women) compared to control participants (N=40, 15 women) across the whole brain. We studied microstructural differences in fiber density and macrostructural (morphological) changes in fiber cross-section. Results- In participants with stroke, we observed significantly lower fiber density and cross-section in areas adjacent, or connected, to the lesions (eg, ipsi-lesional corticospinal tract). In addition, the changes extended beyond directly connected tracts, independent of the lesion laterality (eg, corpus callosum, bilateral inferior fronto-occipital fasciculus, right superior longitudinal fasciculus). Conclusions- We conclude that ischemic stroke is associated with extensive neurodegeneration that significantly affects white matter integrity across the whole brain. These findings expand our understanding of the mechanisms of brain volume loss and delayed cognitive decline in stroke.
Collapse
Affiliation(s)
- Natalia Egorova
- From the Dementia Research Theme, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia (N.E., M.S.K., W.K., E.W., A.B.).,Melbourne School of Psychological Sciences, University of Melbourne, Australia (N.E., A.B.)
| | - Thijs Dhollander
- Developmental Imaging Research Theme, Murdoch Children's Research Institute, Melbourne, Australia (T.D.)
| | - Mohamed Salah Khlif
- From the Dementia Research Theme, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia (N.E., M.S.K., W.K., E.W., A.B.)
| | - Wasim Khan
- From the Dementia Research Theme, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia (N.E., M.S.K., W.K., E.W., A.B.).,Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, United Kingdom (W.K.)
| | - Emilio Werden
- From the Dementia Research Theme, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia (N.E., M.S.K., W.K., E.W., A.B.)
| | - Amy Brodtmann
- From the Dementia Research Theme, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia (N.E., M.S.K., W.K., E.W., A.B.).,Melbourne School of Psychological Sciences, University of Melbourne, Australia (N.E., A.B.)
| |
Collapse
|
39
|
Pinter D, Gattringer T, Fandler-Höfler S, Kneihsl M, Eppinger S, Deutschmann H, Pichler A, Poltrum B, Reishofer G, Ropele S, Schmidt R, Enzinger C. Early Progressive Changes in White Matter Integrity Are Associated with Stroke Recovery. Transl Stroke Res 2020; 11:1264-1272. [PMID: 32130685 PMCID: PMC7575507 DOI: 10.1007/s12975-020-00797-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
Abstract
Information on microstructural white matter integrity has been shown to explain post-stroke recovery beyond clinical measures and focal brain damage. Especially, knowledge about early white matter changes might improve prediction of outcome. We investigated 42 acute reperfused ischemic stroke patients (mean age 66.5 years, 40% female, median admission NIHSS 9.5) with a symptomatic MRI-confirmed unilateral middle cerebral artery territory infarction 24-72 h post-stroke and after 3 months. All patients underwent neurological examination and brain MRI. Fifteen older healthy controls (mean age 57.3 years) were also scanned twice. We assessed fractional anisotropy (FA), mean diffusivity (MD), axial (AD), and radial diffusivity (RD). Patients showed significantly decreased white matter integrity in the hemisphere affected by the acute infarction 24-72 h post-stroke, which further decreased over 3 months compared with controls. Less decrease in FA of remote white matter tracts was associated with better stroke recovery even after correcting for infarct location and extent. A regression model including baseline information showed that the modified Rankin Scale and mean FA of the genu of the corpus callosum explained 53.5% of the variance of stroke recovery, without contribution of infarct volume. Furthermore, early dynamic FA changes of the corpus callosum within the first 3 months post-stroke independently predicted stroke recovery. Information from advanced MRI measures on white matter integrity at the acute stage, as well as early dynamic white matter degeneration beyond infarct location and extent, improve our understanding of post-stroke reorganization in the affected hemisphere and contribute to an improved prediction of recovery.
Collapse
Affiliation(s)
- Daniela Pinter
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria.
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | | | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | | | - Birgit Poltrum
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Schlemm E, Schulz R, Bönstrup M, Krawinkel L, Fiehler J, Gerloff C, Thomalla G, Cheng B. Structural brain networks and functional motor outcome after stroke-a prospective cohort study. Brain Commun 2020; 2:fcaa001. [PMID: 32954275 PMCID: PMC7425342 DOI: 10.1093/braincomms/fcaa001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
The time course of topological reorganization that occurs in the structural connectome after an ischaemic stroke is currently not well understood. We aimed to determine the evolution of structural brain networks in stroke patients with motor deficits and relate changes in their global topology to residual symptom burden and functional impairment. In this prospective cohort study, ischaemic stroke patients with supratentorial infarcts and motor symptoms were assessed longitudinally by advanced diffusion MRI and detailed clinical testing of upper extremity motor function at four time points from the acute to the chronic stage. For each time point, structural connectomes were reconstructed, and whole-hemisphere global network topology was quantified in terms of integration and segregation parameters. Using non-linear joint mixed-effects regression modelling, network evolution was related to lesion volume and clinical outcome. Thirty patients were included for analysis. Graph-theoretical analysis demonstrated that, over time, brain networks became less integrated and more segregated with decreasing global efficiency and increasing modularity. Changes occurred in both stroke and intact hemispheres and, in the latter, were positively associated with lesion volume. Greater change in topology was associated with larger residual symptom burden and greater motor impairment 1, 3 and 12 months after stroke. After ischaemic stroke, brain networks underwent characteristic changes in both ipsi- and contralesional hemispheres. Topological network changes reflect the severity of damage to the structural network and are associated with functional outcome beyond the impact of lesion volume.
Collapse
Affiliation(s)
- Eckhard Schlemm
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Lutz Krawinkel
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| | - Jens Fiehler
- Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention, Universitätsklinikum Hamburg–Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Sagnier S, Sibon I. The new insights into human brain imaging after stroke. J Neurosci Res 2019; 100:1171-1181. [PMID: 31498491 DOI: 10.1002/jnr.24525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Over the last two decades, developments of human brain stroke imaging have raised several questions about the place of new MRI biomarkers in the acute management of stroke and the prediction of poststroke outcome. Recent studies have demonstrated the main role of perfusion-weighted imaging in the identification of the best cerebral perfusion profile for a better response after reperfusion therapies in acute ischemic stroke. A major issue remains the early prediction of stroke outcome. While voxel-based lesion-symptom mapping emphasized the influence of stroke location, the analysis of the brain parenchyma underpinning the stroke lesion showed the relevance of prestroke cerebral status, including cortical atrophy, white matter integrity, or presence of chronic cortical cerebral microinfarcts. Moreover, besides the evaluation of the visually abnormal brain tissue, the analysis of normal-appearing brain parenchyma using diffusion tensor imaging and magnetization transfer imaging or spectroscopy offered new biomarkers to improve the prediction of the prognosis and new targets to follow in therapeutic trials. The aim of this review was to depict the main new radiological biomarkers reported in the last two decades that will provide a more thorough prediction of functional, motor, and neuropsychological outcome following the stroke. These new developments in neuroimaging might be a cornerstone in the emerging personalized medicine for stroke patients.
Collapse
Affiliation(s)
- Sharmila Sagnier
- UMR-5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-vasculaire, Bordeaux, France
| | - Igor Sibon
- UMR-5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-vasculaire, Bordeaux, France
| |
Collapse
|
42
|
Peng Y, Liu J, Hua M, Liang M, Yu C. Enhanced Effective Connectivity From Ipsilesional to Contralesional M1 in Well-Recovered Subcortical Stroke Patients. Front Neurol 2019; 10:909. [PMID: 31551901 PMCID: PMC6736556 DOI: 10.3389/fneur.2019.00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/05/2019] [Indexed: 01/28/2023] Open
Abstract
Background and Purpose: Interhemispheric imbalance may provide a framework for developing new strategies to facilitate post-stroke motor recovery especially for patients in chronic stage. Using effective connectivity analysis, we aimed to investigate interactions between the bilateral primary motor cortices (M1) and their correlations with motor function and M1-related structural and functional changes in well-recovered patients with chronic subcortical ischemic stroke. Methods: Twenty subcortical stroke patients and 20 normal controls underwent multimodal magnetic resonance imaging (MRI) examinations. During the movement of the affected hand, functional MRI was used to calculate the M1 activation and M1-M1 effective connectivity. Diffusion tensor imaging was used to compute the fractional anisotropy (FA) of the affected corticospinal tract (CST) and M1-M1 anatomical connection. After intergroup comparisons, we tested whether the altered M1-M1 effective connectivity was correlated with the motor function, M1 activation and FA of the affected CST and M1-M1 anatomical connection in patients. Results: Compared to normal controls, stroke patients exhibited increased excitatory effective connectivity from ipsilesional to contralesional M1 and increased ipsilesional M1 activation; however, they showed reduced FA values in the affected CST and M1-M1 anatomical connection. The increased effective connectivity was positively correlated with motor score and the FA of the M1-M1 anatomical connection, but not with the M1 activation or the FA of the affected CST in these patients. Conclusions: These findings suggest that the enhancement of M1-M1 effective connectivity from ipsilesional to contralesional hemisphere depends on the integrity of the underlying M1-M1 anatomical connection (i.e., less deficits of the M1-M1 anatomical connection, greater enhancement of the corresponding effective connectivity), and such M1-M1 effective connectivity enhancement plays a supportive role in motor function in chronic subcortical stroke.
Collapse
Affiliation(s)
- Yanmin Peng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Hua
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Meng Liang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Palmer JA, Wheaton LA, Gray WA, Saltão da Silva MA, Wolf SL, Borich MR. Role of Interhemispheric Cortical Interactions in Poststroke Motor Function. Neurorehabil Neural Repair 2019; 33:762-774. [PMID: 31328638 DOI: 10.1177/1545968319862552] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background/Objective. We investigated interhemispheric interactions in stroke survivors by measuring transcranial magnetic stimulation (TMS)-evoked cortical coherence. We tested the effect of TMS on interhemispheric coherence during rest and active muscle contraction and compared coherence in stroke and older adults. We evaluated the relationships between interhemispheric coherence, paretic motor function, and the ipsilateral cortical silent period (iSP). Methods. Participants with (n = 19) and without (n = 14) chronic stroke either rested or maintained a contraction of the ipsilateral hand muscle during simultaneous recordings of evoked responses to TMS of the ipsilesional/nondominant (i/ndM1) and contralesional/dominant (c/dM1) primary motor cortex with EEG and in the hand muscle with EMG. We calculated pre- and post-TMS interhemispheric beta coherence (15-30 Hz) between motor areas in both conditions and the iSP duration during the active condition. Results. During active i/ndM1 TMS, interhemispheric coherence increased immediately following TMS in controls but not in stroke. Coherence during active cM1 TMS was greater than iM1 TMS in the stroke group. Coherence during active iM1 TMS was less in stroke participants and was negatively associated with measures of paretic arm motor function. Paretic iSP was longer compared with controls and negatively associated with clinical measures of manual dexterity. There was no relationship between coherence and. iSP for either group. No within- or between-group differences in coherence were observed at rest. Conclusions. TMS-evoked cortical coherence during hand muscle activation can index interhemispheric interactions associated with poststroke motor function and potentially offer new insights into neural mechanisms influencing functional recovery.
Collapse
Affiliation(s)
| | | | | | | | - Steven L Wolf
- 1 Emory University, Atlanta, GA, USA
- 2 Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | | |
Collapse
|
44
|
Morphometric Alterations in the Corpus Callosum of Stroke Patients by Magnetic Resonance Imaging. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.62599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Schulz R, Runge CG, Bönstrup M, Cheng B, Gerloff C, Thomalla G, Hummel FC. Prefrontal-Premotor Pathways and Motor Output in Well-Recovered Stroke Patients. Front Neurol 2019; 10:105. [PMID: 30837935 PMCID: PMC6382735 DOI: 10.3389/fneur.2019.00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Structural brain imaging has continuously furthered our knowledge how different pathways of the human motor system contribute to residual motor output in stroke patients. Tract-related microstructure of pathways between primary and premotor areas has been found to critically influence motor output. The motor network is not restricted in connectivity to motor and premotor areas but these brain regions are densely interconnected with prefrontal regions such as the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex. So far, the available data about the topography of such direct pathways and their microstructural properties in humans are sparse. To what extent prefrontal-premotor connections might also relate to residual motor outcome after stroke is still an open question. The present study was designed to address this issue of structural connectivity of prefrontal-premotor pathways in 26 healthy, older participants (66 ± 10 years old, 15 male) and 30 well-recovered chronic stroke patients (64 ± 10 years old, 21 males). Probabilistic tractography was used to reconstruct direct fiber tracts between DLPFC and VLPFC and three premotor areas (dorsal and ventral premotor cortex and the supplementary motor area). Direct connections between DLPFC/VLPFC and the primary motor cortex were also tested. Tract-related microstructure was estimated for each specific tract by means of fractional anisotropy and alternative diffusion metrics. These measures were compared between the groups and related to residual motor outcome in the stroke patients. Direct prefrontal-premotor trajectories were successfully traceable in both groups. Similar in gross anatomic topography, stroke patients presented only marginal microstructural alterations of these tracts, predominantly of the affected hemisphere. However, there was no clear evidence for a significant association between tract-related microstructure of prefrontal-premotor connections and residual motor functions in the present group of well-recovered stroke patients. Direct prefrontal-motor connections between DLPFC/VLPFC and the primary motor cortex could not be reconstructed in the present healthy participants and stroke patients.
Collapse
Affiliation(s)
- Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens G Runge
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology Valais (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
46
|
Koh CL, Tang PF, Chen HI, Hsu YC, Hsieh CL, Tseng WYI. Impaired Callosal Motor Fiber Integrity and Upper Extremity Motor Impairment Are Associated With Stroke Lesion Location. Neurorehabil Neural Repair 2019; 32:602-612. [PMID: 30016930 DOI: 10.1177/1545968318779730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Damage to the callosal motor fibers (CMFs) may affect motor recovery in patients with stroke. However, whether the severity of CMF impairment varies with lesion locations remains unclear. OBJECTIVE To investigate (1) whether CMF impairment occurs after stroke and whether the impairment varies with lesion locations and (2) the associations of CMF impairment and upper extremity (UE) motor impairment. METHODS Twenty-nine patients with lesions involving the corticospinal tract (CST) were categorized into 2 groups: lesions involving the CMFs (CMF group, n = 15), and lesions not involving the CMFs (non-CMF group, n = 14). Thirteen healthy adults served as the control group. Tract integrity, assessed by the mean generalized fractional anisotropy (mGFA) using diffusion spectrum imaging, of the CMFs and the CST above the internal capsule (CSTABOVE) of the ipsilesional hemisphere were compared. RESULTS After accounting for the effect of lesion load on the CST, the CMF group exhibited a significantly lower mGFA of the CMFs than did the control and non-CMF groups (post hoc P = .005 and .001, respectively). No significant difference was observed between the non-CMF and control groups (post hoc P = .999). The CST and CMF impairment accounted for 56% of the variance of UE motor impairment in the CMF group ( P = .007), whereas no significant association was observed in the non-CMF group ( P = .570). CONCLUSIONS CMF impairment after stroke depends on lesion locations and CMF integrity has an incremental contribution to the severity of UE motor impairment in the CMF group.
Collapse
Affiliation(s)
- Chia-Lin Koh
- 1 National Taiwan University, Taipei, Taiwan.,2 Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Pei-Fang Tang
- 1 National Taiwan University, Taipei, Taiwan.,3 National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Ching-Lin Hsieh
- 1 National Taiwan University, Taipei, Taiwan.,3 National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
47
|
Abstract
OBJECTIVE The present study aimed to identify the brain regions involved in upper and lower limb motor and functional recovery after stroke. METHODS Twenty-five patients (mean age 73.4 years; average duration from stroke onset 50.1 months) were examined. Fractional anisotropy (FA) mapping using diffusion tensor imaging, and clinical measures, including the Fugl-Meyer motor assessment of upper and lower limbs, the Modified Barthel Index (MBI), and Functional Ambulation Category, were used for examinations. Linear regression analyses were carried out with the FA map as a dependent variable, each clinical measure as an independent variable, and patient age as a covariate. RESULTS FA in the internal capsule of the posterior limb of the lesioned hemisphere was significantly associated with Fugl-Meyer motor assessment scores for the upper limbs, whereas FAs in the internal capsule of the posterior limb of the lesioned hemisphere, the posterior corpus callosum of the lesioned hemisphere, and the middle cerebellar peduncle of the contralateral hemisphere were associated with Fugl-Meyer motor assessment scores for the lower limb. FA in brain regions with bilateral connection fibers was commonly associated with the score on the Korean version of the MBI and participants' functional ambulation. Furthermore, the FA in the corticospinal tract in the contralesional hemisphere was also associated with the score on the Korean version of the MBI (corrected P<0.05). CONCLUSION Motor and functional recovery of upper and lower limbs involves different brain regions. This finding is of particular relevance for treatment and recovery in stroke.
Collapse
|
48
|
Abstract
Background/Study Concept: Acute lacunar stroke (Als) plays a role in death/disability worldwide. Aphasia refers to chronic difficulty with communication in >20% of patients post stroke. We describe pathophysiological features of white matter (WM) abnormalities and their relationship between WM changes and aphasia quotient (AQ) scores in Als.Methods: Diffusion tensor imaging data were acquired in 37 Als patients and 28 healthy controls. Tract-based spatial statistics (TBSS) and correlation analyses were used.Results: Consistent with the hypothesis, Als had decreased fractional anisotropy (FA) and increased mean diffusivity, axial diffusivity and radial diffusivity in the genu, body and splenium of the corpus callosum (CC), superior longitudinal fasciculus (SLF) and corona radiata in the bilateral hemisphere. Reduced FA of SLF was correlated with AQ scores in Als patients.Conclusion: It is hoped that TBSS could shed new insights into aphasia mechanisms in Als to help promote aging-related disease studies.
Collapse
|
49
|
Wang D, Chen YJ, Li YH. Application of super-resolution track-density technique: Earlier detection of aging-related subtle alterations than morphological changes in corpus callosum from normal population? J Magn Reson Imaging 2018; 49:164-175. [PMID: 30160331 DOI: 10.1002/jmri.26051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Dan Wang
- Institute of Diagnostic and Interventional Radiology, Sixth Affiliated People's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Yu-Jie Chen
- Orthopedics Department, Sixth Affiliated People's Hospital; Shanghai Jiao Tong University; Shanghai China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Sixth Affiliated People's Hospital; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
50
|
Yu X, Jiaerken Y, Xu X, Jackson A, Huang P, Yang L, Yuan L, Lou M, Jiang Q, Zhang M. Abnormal corpus callosum induced by diabetes impairs sensorimotor connectivity in patients after acute stroke. Eur Radiol 2018; 29:115-123. [PMID: 29926208 DOI: 10.1007/s00330-018-5576-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To test the hypothesis that abnormal corpus callosum (CC) induced by diabetes may impair inter-hemispheric sensorimotor functional connectivity (FC) that is associated with poor clinical outcome after stroke. METHODS Forty-five patients with acute ischaemic stroke in the middle cerebral artery territory and 14 normal controls participated in the study. CC was divided into five subregions on three-dimensional T1-weighted image. The microstructural integrity of each subregion of CC was analysed by DTI and the inter-hemispheric FCs in primary motor cortex (M1-M1 FC) and primary sensory cortex (S1-S1 FC) were examined by resting-state functional magnetic resonance imaging. RESULTS Diabetic patients (n = 26) had significantly lower fractional anisotropy (FA) in the isthmus of CC (CCisthmus) when compared with non-diabetic patients (n = 19) and normal controls (p < 0.0001). In addition, diabetic patients had the lowest M1-M1 FC (p = 0.015) and S1-S1 FC (p = 0.001). In diabetic patients, reduced FA of CCisthmus correlated with decreased M1-M1 FC (r = 0.549, p = 0.004) and S1-S1 FC (r = 0.507, p = 0.008). Decreased M1-M1 FC was independently associated with poor outcome after stroke in patients with diabetes (odds ratio = 0.448, p = 0.017). CONCLUSIONS CC degeneration induced by diabetes impairs sensorimotor connectivity and dysfunction of motor connectivity can contribute to poor recovery after stroke in patients with diabetes. KEY POINTS • Abnormal isthmus of corpus callosum in stroke patients with diabetes. • Abnormal isthmus of corpus callosum correlated with decreased inter-hemispheric sensorimotor connectivity. • Decreased motor connectivity correlated with poor stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojun Xu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Alan Jackson
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Linglin Yang
- Department of Psychiatry, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lixia Yuan
- Department of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|