1
|
Aragón-Daud A, Oberti De Luca SM, Schurmann Vignaga S, Prado P, Figueras R, Lizaso L, González-Gadea ML, Manes F, Cetkovich M, Pallavicini C, Torralva T, de la Fuente LA. Attentional ERPs in consumers of smoked and insufflated cocaine associated with neuropsychological performance. Drug Alcohol Depend 2024; 259:111288. [PMID: 38648721 DOI: 10.1016/j.drugalcdep.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cocaine consumption is associated with reduced attentional event-related potentials (ERPs), namely P3a and P3b, indicating bottom-up and top-down deficits respectively. At cognitive level, these impairments are larger for faster routes of administration (e.g., smoked cocaine [SC]) than slower routes (e.g., insufflated cocaine [IC]). Here we assess these ERPs considering the route of cocaine administration. We hypothesized that SC dependent (SCD) would exhibit reduced amplitude of the P3a, while both SCD and IC dependent (ICD) would show reduced amplitude of the P3b. METHODS We examined 25 SCD, 22 ICD matched by poly-consumption profiles, and 25 controls matched by demographic variables. We combined EEG data from the Global-Local task with behavioral data from attentional cognitive tasks. RESULTS At the behavioral level, SCD exhibited attentional deficits in both bottom-up and top-down processes, while ICD only showed a tendency for top-down deficits. The amplitude of P3a and P3b was lower in Users groups. We observed subtle route-based differences, with larger differences in the P3a for SCD and in the P3b for ICD. Neurophysiological and behavioral data converged, with the P3a associated to bottom-up performance and P3b to top-down. CONCLUSIONS Different routes of administration lead to distinct attentional neurocognitive profiles. Specifically, SCD showed greater attentional impairment, mainly at bottom-up/P3a, while ICD showed a trend of top-down/P3b deficits. These findings emphasize the crucial role of considering the route of administration in both clinical and research settings and support the use of attentional ERPs as valid measures for assessing attentional deficits in substance Dependence.
Collapse
Affiliation(s)
- Agustina Aragón-Daud
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
| | - Sofía Milagros Oberti De Luca
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | | | - Pilar Prado
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Rosario Figueras
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucia Lizaso
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - María Luz González-Gadea
- National Scientific and Technical Research Council (CONICET), Argentina; Cognitive Neuroscience Center, University of San Andres, Buenos Aires, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Department of Neuroscience and Learning, Catholic University of Uruguay, Uruguay; National Scientific and Technical Research Council (CONICET), Argentina
| | - Marcelo Cetkovich
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Carla Pallavicini
- National Scientific and Technical Research Council (CONICET), Argentina; Department of Physics, University of Buenos Aires (UBA), Buenos Aires, Argentina; The Integrative Neuroscience and Cognition Center, University of Paris, Paris, France
| | - Teresa Torralva
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Laura Alethia de la Fuente
- National Scientific and Technical Research Council (CONICET), Argentina; Department of Physics, University of Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Snyder AD, Ma L, Steinberg JL, Woisard K, Moeller FG. Dynamic Causal Modeling Self-Connectivity Findings in the Functional Magnetic Resonance Imaging Neuropsychiatric Literature. Front Neurosci 2021; 15:636273. [PMID: 34456665 PMCID: PMC8385130 DOI: 10.3389/fnins.2021.636273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.
Collapse
Affiliation(s)
- Andrew D Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Radiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kyle Woisard
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Frederick G Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
3
|
Arias AJ, Ma L, Bjork JM, Hammond CJ, Zhou Y, Snyder A, Moeller FG. Altered effective connectivity of the reward network during an incentive-processing task in adults with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:1563-1577. [PMID: 34120362 DOI: 10.1111/acer.14650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abnormalities of reward sensitivity and impulsivity are known to be correlated with each other and alcohol use disorder (AUD) risk, but the underlying aberrant neural circuitry involved is not clearly defined. We sought to extend the current knowledge of AUD pathophysiology by studying incentive processing in persons with AUD using functional neuroimaging data. METHODS We utilized functional MRI data from the Human Connectome Project Database obtained during performance of a number-guessing incentive-processing task with win, loss, and neutral feedback conditions in 78 participants with either DSM-IV alcohol abuse or dependence (combined as the AUD group) and 78 age- and sex-matched control (CON) participants. Within a network consisting of anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), insula, ventral striatum, and dorsal striatum (DS) in the right hemisphere, we performed dynamic causal modeling analysis to test group-level differences (AUD vs. CON) in effective directional connectivity (EC) as modulated by "win" and "loss" conditions. We used linear regression analyses to characterize the relations between each EC outcome and measures of cumulative alcohol exposure and impulsivity. RESULTS During wins, AUD participants had lower ECs from ACC to the other four nodes, greater ECs from insula to the other four nodes, greater ECs from DLPFC to the other four nodes, and greater DS to DS self-connection EC than CON participants. In the total sample, EC from the insula to the DLPFC (insula → DLPFC) during wins was positively correlated with both impulsivity (as measured by the delay-discounting task) and cumulative alcohol exposure. The DS to DS self-connection EC during wins was positively correlated with impulsivity. Many of the altered ECs from the ACC and insula to other nodes were correlated with cumulative alcohol exposure. CONCLUSIONS Individuals with AUD have disrupted EC in both instrumentally driven and automatized corticostriatal reward circuits during non-alcohol reward feedback. These results point to disrupted corticostriatal EC in both "top-down" and "bottom-up" pathways among individuals with AUD.
Collapse
Affiliation(s)
- Albert J Arias
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Yi Zhou
- Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Andrew Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Frederick Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Neurology, Virginia Commonwealth University (VCU), Richmond, VA, USA
| |
Collapse
|
4
|
Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020; 226:117548. [PMID: 33186712 PMCID: PMC7836236 DOI: 10.1016/j.neuroimage.2020.117548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rob Gregory
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Wendy-Elizabeth Davies
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Lee Harrison
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Jonathan C W Brooks
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
5
|
Zhukovsky P, Morein‐Zamir S, Meng C, Dalley JW, Ersche KD. Network failures: When incentives trigger impulsive responses. Hum Brain Mapp 2020; 41:2216-2228. [PMID: 32150321 PMCID: PMC7267965 DOI: 10.1002/hbm.24941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Adequate control of impulsive urges to act is demanded in everyday life but is impaired in neuropsychiatric conditions such as stimulant use disorder. Despite intensive research it remains unclear whether failures in impulse control are caused by impaired suppression of behavior or by the over invigoration of behavior by stimuli associated with salient incentives such as drugs, food, and money. We investigated failures in impulse control using functional magnetic resonance imaging (fMRI) to map the neural correlates of premature (impulsive) responses during the anticipation phase of the Monetary Incentive Delay (MID) task in healthy controls (HC), stimulant-dependent individuals (SDIs), and their unaffected first-degree siblings (SIB). We combined task-based fMRI analyses with dynamic causal modeling to show that failures of impulse control were associated with interactions between cingulo-opercular and dorsal striatal networks regardless of group status and incentive type. We further report that group-specific incentive salience plays a critical role in modulating impulsivity in SDIs since drug-related incentives specifically increased premature responding and shifted task modulation away from the dorsal striatal network to the cingulo-opercular network. Our findings thus indicate that impulsive actions are elicited by salient personally-relevant incentive stimuli and those such slips of action recruit a distinct fronto-striatal network.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | | | - Chun Meng
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Ma L, Steinberg JL, Bjork JM, Wang Q, Hettema JM, Abbate A, Moeller FG. Altered Effective Connectivity of Central Autonomic Network in Response to Negative Facial Expression in Adults With Cannabis Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:84-96. [PMID: 31345781 PMCID: PMC8598077 DOI: 10.1016/j.bpsc.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabis use is associated with an increased risk of stress-related adverse cardiovascular events. Because brain regions of the central autonomic network largely overlap with brain regions related to the neural response to emotion and stress, the central autonomic network may mediate the autonomic response to negative emotional stimuli. We aimed to obtain evidence to determine whether neural connectivity of the central autonomic network is altered in individuals with cannabis use disorder (CUD) when they are exposed to negative emotional stimuli. METHODS Effective (directional) connectivity (EC) analysis using dynamic causal modeling was applied to functional magnetic resonance imaging data acquired from 23 subjects with CUD and 23 control subjects of the Human Connectome Project while they performed an emotional face-matching task with interleaving periods of negative-face (fearful/angry) and neutral-shape stimuli. The EC difference (modulatory change) was measured during the negative-face trials relative to the neutral-shape trials. RESULTS The CUD group was similar to the control group in nonimaging measures and brain activations but showed greater modulatory changes in left amygdala to hypothalamus EC (positively associated with Perceived Stress Scale score), right amygdala to bilateral fusiform gyri ECs (positively associated with Perceived Stress Scale score), and left ventrolateral prefrontal cortex to bilateral fusiform gyri ECs (negatively associated with Perceived Stress Scale score). CONCLUSIONS Left amygdala to hypothalamus EC and right amygdala to bilateral fusiform gyri ECs are possibly part of circuits underlying the risk of individuals with CUD to stress-related disorders. Correspondingly, left ventrolateral prefrontal cortex to bilateral fusiform gyri ECs are possibly part of circuits reflecting a protective mechanism.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia; Department of Radiology, Virginia Commonwealth University, Richmond, Virginia.
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia; Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia; Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Qin Wang
- Information Systems, Statistics, and Management Science, University of Alabama, Tuscaloosa, Alabama
| | - John M Hettema
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia; Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct Funct 2019; 224:1417-1428. [PMID: 30747315 DOI: 10.1007/s00429-019-01846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
It has been shown that exposure to cocaine can result in neuroinflammatory responses. Microglia, the resident CNS immune cells, undergo a transition to an activated state when challenged. In rodents, and possibly humans, cocaine exposure activates microglia. The goal of this study was to assess the extent and magnitude of microglial activation in rhesus monkeys with an extensive history of cocaine self-administration. Male rhesus monkeys (N = 4/group) were trained to respond on a fixed-interval 3-min schedule of food or 0.3 mg/kg/injection cocaine presentation (30 reinforcers/session) for 300 sessions. At the end of the final session, monkeys were administered 2-[14C]deoxyglucose intravenously and 45 min later euthanized. Brain sections were used for autoradiographic assessments of glucose utilization and for microglia activation with [3H]PK11195, a marker for the microglial 18-kDa translocator protein. There were no group differences in gray matter [3H]PK11195 binding, while binding was significantly greater in cocaine self-administration animals as compared to food controls in 8 of the 11 white matter tracts measured at the striatal level. Binding did not differ from control at other levels. There were also significant increases in white matter local cerebral glucose utilization at the striatal level, which were positively correlated with [3H]PK11195 binding. The present findings demonstrate an elevation in [3H]PK11195 binding in forebrain white matter tracts of nonhuman primates with a prolonged history of cocaine self-administration. These elevations were also associated with greater cerebral metabolic rates. These data suggest that white matter deficits may contribute to behavioral, motivational, and cognitive impairments observed in cocaine abusers.
Collapse
|
8
|
Ma L, Steinberg JL, Bjork JM, Keyser-Marcus L, Vassileva J, Zhu M, Ganapathy V, Wang Q, Boone EL, Ferré S, Bickel WK, Gerard Moeller F. Fronto-striatal effective connectivity of working memory in adults with cannabis use disorder. Psychiatry Res Neuroimaging 2018; 278:21-34. [PMID: 29957349 PMCID: PMC6953485 DOI: 10.1016/j.pscychresns.2018.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Previous working memory (WM) studies found that relative to controls, subjects with cannabis use disorder (CUD) showed greater brain activation in some regions (e.g., left [L] and right [R] ventrolateral prefrontal cortex [VLPFC], and L dorsolateral prefrontal cortex [L-DLPFC]), and lower activation in other regions (e.g., R-DLPFC). In this study, effective connectivity (EC) analysis was applied to functional magnetic resonance imaging data acquired from 23 CUD subjects and 23 controls (two groups matched for sociodemographic factors and substance use history) while performing an n-back WM task with interleaved 2-back and 0-back periods. A 2-back minus 0-back modulator was defined to measure the modulatory changes of EC corresponding to the 2-back relative to 0-back conditions. Compared to the controls, the CUD group showed smaller modulatory change in the R-DLPFC to L-caudate pathway, and greater modulatory changes in L-DLPFC to L-caudate, R-DLPFC to R-caudate, and R-VLPFC to L-caudate pathways. Based on previous fMRI studies consistently suggesting that greater brain activations are related to a compensatory mechanism for cannabis neural effects (less regional brain activations), the smaller modulatory change in the R-DLPFC to L-caudate EC may be compensated by the larger modulatory changes in the other prefrontal-striatal ECs in the CUD individuals.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Radiology, Virginia Commonwealth University (VCU), Richmond, VA, USA.
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Lori Keyser-Marcus
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Jasmin Vassileva
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Min Zhu
- Radiology Department, Mu Dang Jiang Medical University, Mu Dang Jiang, Hei Long Jiang, China
| | - Venkatesh Ganapathy
- Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Qin Wang
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Edward L Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), 203 East Cary Street, Suite 202, Richmond, VA 23219, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Pharmacology & Toxicology, VCU, Richmond, VA, USA; Department of Neurology, VCU, Richmond, VA, USA
| |
Collapse
|
9
|
Zhang Y, Zhang S, Ide JS, Hu S, Zhornitsky S, Wang W, Dong G, Tang X, Li CSR. Dynamic network dysfunction in cocaine dependence: Graph theoretical metrics and stop signal reaction time. NEUROIMAGE-CLINICAL 2018; 18:793-801. [PMID: 29876265 PMCID: PMC5988015 DOI: 10.1016/j.nicl.2018.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
Abstract
Graphic theoretical metrics have become increasingly popular in characterizing functional connectivity of neural networks and how network connectivity is compromised in neuropsychiatric illnesses. Here, we add to this literature by describing dynamic network connectivities of 78 cocaine dependent (CD) and 85 non-drug using healthy control (HC) participants who underwent fMRI during performance of a stop signal task (SST). Compared to HC, CD showed prolonged stop signal reaction time (SSRT), consistent with deficits in response inhibition. In graph theoretical analysis of dynamic functional connectivity, we examined temporal flexibility and spatiotemporal diversity of 14 networks covering the whole brain. Temporal flexibility quantifies how frequently a brain region interacts with regions of other communities across time, with high temporal flexibility indicating that a region interacts predominantly with regions outside its own community. Spatiotemporal diversity quantifies how uniformly a brain region interacts with regions in other communities over time, with high spatiotemporal diversity indicating that the interactions are more evenly distributed across communities. Compared to HC, CD exhibited decreased temporal flexibility and increased spatiotemporal diversity in the great majority of neural networks. The graph metric measures of the default mode network negatively correlated with SSRT in CD but not HC. The findings are consistent with diminished temporal flexibility and a compensatory increase in spatiotemporal diversity, in association with impairment of a critical executive function, in cocaine addiction. More broadly, the findings suggest that graph theoretical metrics provide new insights for connectivity analyses to elucidate network dysfunction that may elude conventional measures. Cocaine addiction (CA) is associated with prolonged stop signal reaction time (SSRT). CA is associated with decreased temporal flexibility (TF) of neural networks. CA is associated with increased spatial temporal diversity (STD) of neural networks. The TF and STD of default mode network correlated negatively with SSRT in CA. Dynamic connectivity captures network dysfunction in link with inhibition deficits in CA.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, State University of New York, Oswego, NY, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Guozhao Dong
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
10
|
Ma L, Steinberg JL, Cunningham KA, Bjork JM, Lane SD, Schmitz JM, Burroughs T, Narayana PA, Kosten TR, Bechara A, Moeller FG. Altered anterior cingulate cortex to hippocampus effective connectivity in response to drug cues in men with cocaine use disorder. Psychiatry Res 2018; 271:59-66. [PMID: 29108734 PMCID: PMC5741507 DOI: 10.1016/j.pscychresns.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
Abstract
Drug-related attentional bias may have significant implications for the treatment of cocaine use disorder (CocUD). However, the neurobiology of attentional bias is not completely understood. This study employed dynamic causal modeling (DCM) to conduct an analysis of effective (directional) connectivity involved in drug-related attentional bias in treatment-seeking CocUD subjects. The DCM analysis was conducted based on functional magnetic resonance imaging (fMRI) data acquired from fifteen CocUD subjects while performing a cocaine-word Stroop task, during which blocks of Cocaine Words (CW) and Neutral Words (NW) alternated. There was no significant attentional bias at group level. Although no significant brain activation was found, the DCM analysis found that, relative to the NW, the CW caused a significant increase in the strength of the right (R) anterior cingulate cortex (ACC) to R hippocampus effective connectivity. Greater increase of this connectivity was associated with greater CW reaction time (relative to NW reaction time). The increased strength of R ACC to R hippocampus connectivity may reflect ACC activation of hippocampal memories related to drug use, which was triggered by the drug cues. This circuit could be a potential target for therapeutics in CocUD patients. No significant change was found in the other modeled connectivities.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Radiology, Richmond, VA, USA.
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, TX, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, TX, USA
| | | | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychiatry and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Antoine Bechara
- Brain and Creativity Institute, and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Pharmacology and Toxicology, Richmond, VA, USA; Department of Neurology, VCU, Richmond, VA, USA
| |
Collapse
|
11
|
Miller WR, Fox RG, Stutz SJ, Lane SD, Denner L, Cunningham KA, Dineley KT. PPARγ agonism attenuates cocaine cue reactivity. Addict Biol 2018; 23:55-68. [PMID: 27862692 DOI: 10.1111/adb.12471] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/03/2016] [Accepted: 10/09/2016] [Indexed: 01/15/2023]
Abstract
Cocaine use disorder is a chronic relapsing condition characterized by compulsive drug seeking and taking even after prolonged abstinence periods. Subsequent exposure to drug-associated cues can promote intense craving and lead to relapse in abstinent humans and rodent models. The responsiveness to these cocaine-related cues, or 'cue reactivity', can trigger relapse and cocaine-seeking behaviors; cue reactivity is measurable in cocaine-dependent humans as well as rodent models. Cue reactivity is thought to be predictive of cocaine craving and relapse. Here we report that PPARγ agonism during abstinence from cocaine self-administration reduced previously active lever pressing in Sprague Dawley rats during cue-reactivity tests, while administration of the PPARγ antagonist, GW9662, reversed this effect. PPARγ agonism also normalized nuclear ERK activity in the medial prefrontal cortex and hippocampus which was reversed with GW9662. Our results support the utility of PPARγ agonism as a relapse prevention strategy to maintain abstinence in the presence of cocaine-associated cues.
Collapse
Affiliation(s)
- William R Miller
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| | - Robert G Fox
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Sonja J Stutz
- Center for Addiction Research; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences; University of Texas Health Science Center at Houston; Houston TX USA
| | - Larry Denner
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Division of Endocrinology; Internal Medicine University of Texas Medical Branch; Galveston TX USA
| | - Kathryn A Cunningham
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
- Department of Pharmacology and Toxicology; Galveston TX USA
| | - Kelly T Dineley
- Department of Neurology; Galveston TX USA
- Center for Addiction Research; Galveston TX USA
- Mitchell Center for Neurodegenerative Diseases; Galveston TX USA
| |
Collapse
|
12
|
Lopes BM, Gonçalves PD, Ometto M, dos Santos B, Cavallet M, Chaim-Avancini TM, Serpa MH, Nicastri S, Malbergier A, Busatto GF, de Andrade AG, Cunha PJ. Distinct cognitive performance and patterns of drug use among early and late onset cocaine users. Addict Behav 2017; 73:41-47. [PMID: 28475942 DOI: 10.1016/j.addbeh.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Adolescence is a crucial period for neurodevelopment, but few studies have investigated the impact of early cocaine use on cognitive performance and patterns of substance use. METHODS We evaluated 103 cocaine dependent inpatients divided in two groups: early-onset users (EOG; n=52), late-onset users (LOG; n=51), and 63 healthy controls. Neuropsychological functioning was evaluated using Digits Forward (DF) and Backward (DB), Trail Making Test (TMT), Stroop Color Word Test (SCWT), Controlled Oral Word Association Test (COWAT), Wisconsin Card Sorting Test (WCST), Rey Osterrieth Complex Figure Test (ROCFT), Frontal Assessment Battery (FAB), and Iowa Gambling Test (IGT). Use of alcohol and other drugs was assessed with the Addiction Severity Index (ASI-6). RESULTS Analyses of covariance controlling for age, IQ and years of education showed that EOG presented worse performance in attention span (DF, p=0.020), working memory (DB, p=0.001), sustained attention (WCST, p=0.030), declarative memory (ROCFT, p=0.031) and general executive functioning (FAB, p=0.003) when compared with the control group. LOG presented impairments on divided attention (TMT, p=0.003) and general executive functioning (FAB, p=0.001) in relation to the control group. EOG presented higher use of cannabis and alcohol than LOG (p≤0.001). CONCLUSION Early-onset cocaine users display more pronounced neuropsychological alterations than controls, as well as a greater frequency of polydrug consumption than LOG. The prominent cognitive deficits in EOG probably reflect the deleterious interference of cocaine use with early stages of neurodevelopment. This may be related to more severe clinical characteristics of substance disorder in this subgroup, including polysubstance abuse.
Collapse
|
13
|
Brooks SJ, Funk SG, Young SY, Schiöth HB. The Role of Working Memory for Cognitive Control in Anorexia Nervosa versus Substance Use Disorder. Front Psychol 2017; 8:1651. [PMID: 29018381 PMCID: PMC5615794 DOI: 10.3389/fpsyg.2017.01651] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023] Open
Abstract
Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity.
Collapse
Affiliation(s)
- Samantha J Brooks
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden.,Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Sabina G Funk
- Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Susanne Y Young
- Department of Psychiatry, Stellenbosch UniversityBellville, South Africa
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden
| |
Collapse
|
14
|
Daughters SB, Ross TJ, Bell RP, Yi JY, Ryan J, Stein EA. Distress tolerance among substance users is associated with functional connectivity between prefrontal regions during a distress tolerance task. Addict Biol 2017; 22:1378-1390. [PMID: 27037525 PMCID: PMC5625840 DOI: 10.1111/adb.12396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 11/28/2022]
Abstract
Distress tolerance (DT), defined as the ability to persist in goal directed behavior while experiencing affective distress, is implicated in the development and maintenance of substance use disorders. While theory and evidence indicate that cortico-limbic neural dysfunction may account for deficits in goal directed behavior while experiencing distress, the neurobiological mechanisms of DT have yet to be examined. We modified a computerized DT task for use in functional magnetic resonance imaging (fMRI), the Paced Auditory Serial Addition Task (PASAT-M), and examined the neural correlates and functional connectivity of DT among a cohort of substance users (n = 21; regular cocaine and nicotine users) and healthy controls (n = 25). In response to distress during the PASAT-M, we found greater activation in a priori cortico-limbic network ROIs, namely the right insula, anterior cingulate cortex (ACC), bilateral medial frontal gyrus (MFG), right inferior frontal gyrus (IFG) and right ventromedial prefrontal cortex (vmPFC) significantly predicted higher DT among substance users, but not healthy controls. In addition, greater task-specific functional connectivity during distress between the right MFG and bilateral vmPFC/sgACC was associated with higher DT among substance users, but not healthy controls. The observed positive relationship between DT and neural activation in cortico-limbic structures, as well as functional connectivity between the rMFG and vmPFC/sgACC, is in line with theory and research suggesting the importance of these structures for persisting in goal directed behavior while experiencing affective distress.
Collapse
Affiliation(s)
- Stacey B. Daughters
- Department of Psychology and Neuroscience, University of North Carolina – Chapel Hill
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, NIH
| | - Ryan P. Bell
- Department of Psychology and Neuroscience, University of North Carolina – Chapel Hill
| | - Jennifer Y. Yi
- Department of Psychology and Neuroscience, University of North Carolina – Chapel Hill
| | - Jonathan Ryan
- Department of Psychology and Neuroscience, University of North Carolina – Chapel Hill
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, NIH
| |
Collapse
|
15
|
Ma L, Steinberg JL, Wang Q, Schmitz JM, Boone EL, Narayana PA, Moeller FG. A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects. Drug Alcohol Depend 2017; 173:39-46. [PMID: 28192722 PMCID: PMC5704923 DOI: 10.1016/j.drugalcdep.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous diffusion tensor imaging (DTI) studies have consistently shown that subjects with cocaine use disorder (CocUD) had altered white matter microstructure in the corpus callosum. It is believed that these alterations are due to preexisting factors, chronic cocaine use, or both. However, there is no published longitudinal DTI study on human cocaine users yet which could shed light on the relationship between cocaine use and DTI findings. METHODS This study used a longitudinal design and DTI to test if the white matter microstructure shows quicker alteration in CocUD subjects than controls. DTI data were acquired from eleven CocUD subjects who participated a treatment study and eleven non-drug-using controls at baseline (Scan 1) and after ten weeks (Scan 2). The baseline fractional anisotropy (FA), a general measure of white matter microstucture, and the change in FA (ΔFA, equals Scan 1 FA minus Scan 2 FA) were both compared between groups. RESULTS The two groups did not show a difference in FA at baseline. The CocUD subjects had significantly greater ΔFA than the controls in the left splenium of the corpus callosum. In CocUD subjects, greater ΔFA in this region was associated with shorter lifetime cocaine use and greater number of positive cocaine urine samples collected during the treatment. CONCLUSION The finding in the left splenium is consistent with previous animal studies and provide indirect evidence about the effects of chronic cocaine use on white matter alterations. The subject sample size is small, therefore the results should be treated as preliminary.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Radiology, VCU, Richmond, VA, USA.
| | - Joel L. Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA
| | - Qin Wang
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Joy M. Schmitz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center (UTHSC), Houston, Texas, USA
| | - Edward L Boone
- Department of Statistical Sciences and Operations Research, VCU, Richmond, Virginia, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC, Houston, Texas, USA
| | - F. Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, Virginia, USA,Department of Psychiatry, VCU, Richmond, Virginia, USA,Department of Pharmacology and Toxicology, VCU, Richmond, Virginia, USA,Department of Neurology, VCU, Richmond, Virginia, USA
| |
Collapse
|
16
|
Li B, Cui LB, Xi YB, Friston KJ, Guo F, Wang HN, Zhang LC, Bai YH, Tan QR, Yin H, Lu H. Abnormal Effective Connectivity in the Brain is Involved in Auditory Verbal Hallucinations in Schizophrenia. Neurosci Bull 2017; 33:281-291. [PMID: 28224285 DOI: 10.1007/s12264-017-0101-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022] Open
Abstract
Information flow among auditory and language processing-related regions implicated in the pathophysiology of auditory verbal hallucinations (AVHs) in schizophrenia (SZ) remains unclear. In this study, we used stochastic dynamic causal modeling (sDCM) to quantify connections among the left dorsolateral prefrontal cortex (inner speech monitoring), auditory cortex (auditory processing), hippocampus (memory retrieval), thalamus (information filtering), and Broca's area (language production) in 17 first-episode drug-naïve SZ patients with AVHs, 15 without AVHs, and 19 healthy controls using resting-state functional magnetic resonance imaging. Finally, we performed receiver operating characteristic (ROC) analysis and correlation analysis between image measures and symptoms. sDCM revealed an increased sensitivity of auditory cortex to its thalamic afferents and a decrease in hippocampal sensitivity to auditory inputs in SZ patients with AVHs. The area under the ROC curve showed the diagnostic value of these two connections to distinguish SZ patients with AVHs from those without AVHs. Furthermore, we found a positive correlation between the strength of the connectivity from Broca's area to the auditory cortex and the severity of AVHs. These findings demonstrate, for the first time, augmented AVH-specific excitatory afferents from the thalamus to the auditory cortex in SZ patients, resulting in auditory perception without external auditory stimuli. Our results provide insights into the neural mechanisms underlying AVHs in SZ. This thalamic-auditory cortical-hippocampal dysconnectivity may also serve as a diagnostic biomarker of AVHs in SZ and a therapeutic target based on direct in vivo evidence.
Collapse
Affiliation(s)
- Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Karl J Friston
- Wellcome Trust Center for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin-Chuan Zhang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Han Bai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Ray S, Di X, Biswal BB. Effective Connectivity within the Mesocorticolimbic System during Resting-State in Cocaine Users. Front Hum Neurosci 2016; 10:563. [PMID: 27881959 PMCID: PMC5101190 DOI: 10.3389/fnhum.2016.00563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/25/2016] [Indexed: 01/21/2023] Open
Abstract
Objective: Although effective connectivity between brain regions has been examined in cocaine users during tasks, no effective connectivity study has been conducted on cocaine users during resting-state. In the present functional magnetic resonance imaging study, we examined effective connectivity in resting-brain, between the brain regions within the mesocorticolimbic dopamine system, implicated in reward and motivated behavior, while the chronic cocaine users and controls took part in a resting-state scan by using a spectral Dynamic causal modeling (spDCM) approach. Method: As part of a study testing cocaine cue reactivity in cocaine users (Ray et al., 2015b), 20 non-treatment seeking cocaine-smoking (abstinent for at least 3 days) and 17 control participants completed a resting state scan and an anatomical scan. A mean voxel-based time series data extracted from four key brain areas (ventral tegmental area, VTA; nucleus accumbens, NAc; hippocampus, medial frontal cortex) within the mesocorticolimbic dopamine system during resting-state from the cocaine and control participants were used as input to the spDCM program to generate spDCM analysis outputs. Results: Compared to the control group, the cocaine group had higher effective connectivity from the VTA to NAc, hippocampus and medial frontal cortex. In contrast, the control group showed a higher effective connectivity from the medial frontal cortex to VTA, from the NAc to medial frontal cortex, and on the hippocampus self-loop. Conclusions: The present study is the first to show that during resting-state in abstaining cocaine users compared to controls, the VTA initiates an enhanced effective connectivity to NAc, hippocampus and medial frontal cortex areas within the mesocorticolimbic dopamine system, the brain's reward system. Future studies of effective connectivity analysis during resting-state may eventually be used to monitor treatment outcome.
Collapse
Affiliation(s)
- Suchismita Ray
- Center of Alcohol Studies, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Xin Di
- New Jersey Institute of Technology Newark, NJ, USA
| | | |
Collapse
|
18
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
19
|
Brooks SJ. A debate on working memory and cognitive control: can we learn about the treatment of substance use disorders from the neural correlates of anorexia nervosa? BMC Psychiatry 2016; 16:10. [PMID: 26772802 PMCID: PMC4715338 DOI: 10.1186/s12888-016-0714-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Anorexia Nervosa (AN) is a debilitating, sometimes fatal eating disorder (ED) whereby restraint of appetite and emotion is concomitant with an inflexible, attention-to-detail perfectionist cognitive style and obsessive-compulsive behaviour. Intriguingly, people with AN are less likely to engage in substance use, whereas those who suffer from an ED with a bingeing component are more vulnerable to substance use disorder (SUD). DISCUSSION This insight into a beneficial consequence of appetite control in those with AN, which is shrouded by the many other unhealthy, excessive and deficit symptoms, may provide some clues as to how the brain could be trained to exert better, sustained control over appetitive and impulsive processes. Structural and functional brain imaging studies implicate the executive control network (ECN) and the salience network (SN) in the neuropathology of AN and SUD. Additionally, excessive employment of working memory (WM), alongside more prominent cognitive deficits may be utilised to cope with the experience of negative emotions and may account for aberrant brain function. WM enables mental rehearsal of cognitive strategies while regulating, restricting or avoiding neural responses associated with the SN. Therefore, high versus low WM capacity may be one of the factors that unites common cognitive and behavioural symptoms in those suffering from AN and SUD respectively. Furthermore, emerging evidence suggests that by evoking neural plasticity in the ECN and SN with WM training, improvements in neurocognitive function and cognitive control can be achieved. Thus, considering the neurocognitive processes of excessive appetite control and how it links to WM in AN may aid the application of adjunctive treatment for SUD.
Collapse
Affiliation(s)
- Samantha J. Brooks
- UCT Department of Psychiatry and Mental Health, Groote Schuur Hospital, Anzio Road, Observatory Cape Town, South Africa
| |
Collapse
|
20
|
Ray S, Haney M, Hanson C, Biswal B, Hanson SJ. Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers. Neuropsychopharmacology 2015; 40:2960-8. [PMID: 26038158 PMCID: PMC4864631 DOI: 10.1038/npp.2015.150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/09/2022]
Abstract
The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala → hippocampus → dorsal striatum → insula → medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response.
Collapse
Affiliation(s)
- Suchismita Ray
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ, USA
| | | | | | | | - Stephen José Hanson
- Rutgers University Brain Imaging Center, Newark, NJ, USA
- Psychology Department, Rutgers University, Newark, NJ, USA
| |
Collapse
|
21
|
Ma L, Steinberg JL, Moeller FG, Johns SE, Narayana PA. Effect of cocaine dependence on brain connections: clinical implications. Expert Rev Neurother 2015; 15:1307-19. [PMID: 26512421 DOI: 10.1586/14737175.2015.1103183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence, based on human and animal studies, has led to models for interpreting the neural basis of cognitive functions as interactions between functionally related brain regions. In this review, we focus on magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to CD. The majority of these brain connectivity studies indicated that cocaine use is associated with altered brain connectivity between different structures, including cortical-striatal regions and default mode network. In cocaine users some of the altered brain connectivity measures are associated with behavioral performance, history of drug use, and treatment outcome. The implications of these brain connectivity findings to the treatment of CD and the pros and cons of the major brain connectivity techniques are discussed. Finally potential future directions in cocaine use disorder research using brain connectivity techniques are briefly described.
Collapse
Affiliation(s)
- Liangsuo Ma
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,b Department of Radiology , VCU , Richmond , VA , USA
| | - Joel L Steinberg
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA
| | - F Gerard Moeller
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA.,d Department of Pharmacology and Toxicology , VCU , Richmond , VA , USA.,e Department of Neurology , VCU , Richmond , VA , USA
| | - Sade E Johns
- a Institute for Drug and Alcohol Studies , Virginia Commonwealth University (VCU) , Richmond , VA , USA.,c Department of Psychiatry , VCU , Richmond , VA , USA
| | - Ponnada A Narayana
- f Department of Diagnostic and Interventional Imaging , University of Texas Health Science Center at Houston (UTHealth) , Houston , TX , USA
| |
Collapse
|
22
|
Ma L, Steinberg JL, Cunningham KA, Lane SD, Kramer LA, Narayana PA, Kosten TR, Bechara A, Moeller FG. Inhibitory behavioral control: a stochastic dynamic causal modeling study using network discovery analysis. Brain Connect 2015; 5:177-86. [PMID: 25336321 PMCID: PMC4394161 DOI: 10.1089/brain.2014.0275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition.
Collapse
Affiliation(s)
- Liangsuo Ma
- Department of Radiology, Virginia Commonwealth University, Richmond, Virginia
| | - Joel L. Steinberg
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Kathryn A. Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Scott D. Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, Texas
| | - Larry A. Kramer
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, Texas
| | - Thomas R. Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Antoine Bechara
- Department of Psychology, Institute for the Neurological Study of Emotion and Creativity, University of Southern California, Los Angeles, California
| | - F. Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Ma L, Steinberg JL, Cunningham KA, Lane SD, Bjork JM, Neelakantan H, Price AE, Narayana PA, Kosten TR, Bechara A, Moeller FG. Inhibitory behavioral control: A stochastic dynamic causal modeling study comparing cocaine dependent subjects and controls. NEUROIMAGE-CLINICAL 2015; 7:837-47. [PMID: 26082893 PMCID: PMC4459041 DOI: 10.1016/j.nicl.2015.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023]
Abstract
Cocaine dependence is associated with increased impulsivity in humans. Both cocaine dependence and impulsive behavior are under the regulatory control of cortico-striatal networks. One behavioral laboratory measure of impulsivity is response inhibition (ability to withhold a prepotent response) in which altered patterns of regional brain activation during executive tasks in service of normal performance are frequently found in cocaine dependent (CD) subjects studied with functional magnetic resonance imaging (fMRI). However, little is known about aberrations in specific directional neuronal connectivity in CD subjects. The present study employed fMRI-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity associated with response inhibition in CD subjects, elicited under performance of a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard). The performance on the Go/NoGo task was not significantly different between CD subjects and controls. The DCM analysis revealed that prefrontal–striatal connectivity was modulated (influenced) during the NoGo conditions for both groups. The effective connectivity from left (L) anterior cingulate cortex (ACC) to L caudate was similarly modulated during the Easy NoGo condition for both groups. During the Hard NoGo condition in controls, the effective connectivity from right (R) dorsolateral prefrontal cortex (DLPFC) to L caudate became more positive, and the effective connectivity from R ventrolateral prefrontal cortex (VLPFC) to L caudate became more negative. In CD subjects, the effective connectivity from L ACC to L caudate became more negative during the Hard NoGo conditions. These results indicate that during Hard NoGo trials in CD subjects, the ACC rather than DLPFC or VLPFC influenced caudate during response inhibition. Dynamic causal modeling was used to study response inhibition in cocaine dependence. A Go/NoGo task with two levels of NoGo difficulty (Easy and Hard) was used. Patients and controls used anterior cingulate cortex to control caudate during Easy NoGo. Controls used dorsolateral/ventrolateral prefrontal cortex to control caudate during Hard NoGo. Patients continued using anterior cingulate cortex to control caudate during Hard NoGo.
Collapse
Affiliation(s)
- Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Radiology, VCU, Richmond, VA, USA
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston (UTHSC-H), USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA
| | - Harshini Neelakantan
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amanda E Price
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, UTHSC-H, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychiatry and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - F Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA ; Department of Psychiatry, VCU, Richmond, VA, USA ; Department of Pharmacology and Toxicology, Richmond, VCU, VA 23219, USA
| |
Collapse
|
24
|
Kim JH, Lawrence AJ. Drugs currently in Phase II clinical trials for cocaine addiction. Expert Opin Investig Drugs 2014; 23:1105-22. [PMID: 24773297 DOI: 10.1517/13543784.2014.915312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are no FDA-approved pharmacotherapies for treating cocaine addiction; thus, developing drugs to treat cocaine dependence is an unmet critical need. Fortunately, there are a number of drugs that are currently in Phase II clinical trial/s. This is due in part to the advances from in vivo imaging in humans which provided a roadmap of the neurochemistry of the cocaine-dependent brain. Most drugs currently in Phase II clinical trials attempt to modulate the disturbed neurochemistry in cocaine dependents to resemble those of healthy individuals. These predominantly modulate dopamine, serotonin, glutamate, GABA or noradrenaline signalling. AREAS COVERED This review summarizes the therapeutic potential of each drug as evidenced by clinical and preclinical studies. It also discusses their utility in terms of bioavailability and half-life. EXPERT OPINION Amphetamine salts and topiramate clearly stand out in terms of their potential efficacy in treating cocaine addiction. The efficacy of topiramate was closely associated with regular cognitive-behavioural therapy (CBT), which highlights the importance of a combined effort to promote abstinence and enhance retention via CBT. Cognitive/psychological screening appears necessary for a more symptom-based approach with more reasonable outcomes other than abstinence (e.g., improved quality of life) in treating cocaine addiction.
Collapse
Affiliation(s)
- Jee Hyun Kim
- The Florey Institute of Neuroscience and Mental Health, Behavioural Neuroscience Division , Parkville, VIC 3052 , Australia
| | | |
Collapse
|
25
|
Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend 2014; 137:143-7. [PMID: 24529965 PMCID: PMC4000724 DOI: 10.1016/j.drugalcdep.2014.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. METHODS Rhesus monkeys (N=4) self-administered cocaine (0.3mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (N=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. RESULTS Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. CONCLUSIONS These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users.
Collapse
|
26
|
Cunningham KA, Anastasio NC. Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 2014; 76 Pt B:460-78. [PMID: 23850573 PMCID: PMC4090081 DOI: 10.1016/j.neuropharm.2013.06.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/07/2023]
Abstract
Cocaine abuse and addiction remain great challenges on the public health agendas in the U.S. and the world. Increasingly sophisticated perspectives on addiction to cocaine and other drugs of abuse have evolved with concerted research efforts over the last 30 years. Relapse remains a particularly powerful clinical problem as, even upon termination of drug use and initiation of abstinence, the recidivism rates can be very high. The cycling course of cocaine intake, abstinence and relapse is tied to a multitude of behavioral and cognitive processes including impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to the negative consequences), and cocaine cue reactivity (responsivity to cocaine-associated stimuli) cited as two key phenotypes that contribute to relapse vulnerability even years into recovery. Preclinical studies suggest that serotonin (5-hydroxytryptamine; 5-HT) neurotransmission in key neural circuits may contribute to these interlocked phenotypes well as the altered neurobiological states evoked by cocaine that precipitate relapse events. As such, 5-HT is an important target in the quest to understand the neurobiology of relapse-predictive phenotypes, to successfully treat this complex disorder and improve diagnostic and prognostic capabilities. This review emphasizes the role of 5-HT and its receptor proteins in key addiction phenotypes and the implications of current findings to the future of therapeutics in addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Kathryn A Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|