1
|
Chen Y, He H, Ding Y, Tao W, Guan Q, Krueger F. Connectome-based prediction of decreased trust propensity in older adults with mild cognitive impairment: A resting-state functional magnetic resonance imaging study. Neuroimage 2024; 292:120605. [PMID: 38615705 DOI: 10.1016/j.neuroimage.2024.120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Trust propensity (TP) relies more on social than economic rationality to transform the perceived probability of betrayal into positive reciprocity expectations in older adults with normal cognition. While deficits in social rationality have been observed in older adults with mild cognitive impairment (MCI), there is limited research on TP and its associated resting-state functional connectivity (RSFC) mechanisms in this population. To measure TP and related psychological functions (affect, motivation, executive cognition, and social cognition), MCI (n = 42) and normal healthy control (NHC, n = 115) groups completed a one-shot trust game and additional assessments of related psychological functions. RSFC associated with TP was analyzed using connectome-based predictive modeling (CPM) and lesion simulations. Our behavioral results showed that the MCI group trusted less (i.e., had lower TP) than the NHC group, with lower TP associated with higher sensitivity to the probability of betrayal in the MCI group. In the MCI group, only negative CPM models (RSFC negatively correlated with TP) significantly predicted TP, with a high salience network (SN) contribution. In contrast, in the NHC group, positive CPM models (RSFC positively correlated with TP) significantly predicted TP, with a high contribution from the default mode network (DMN). In addition, the total network strength of the NHC-specific positive network was lower in the MCI group than in the NHC group. Our findings demonstrated a decrease in TP in the MCI group compared to the NHC group, which is associated with deficits in social rationality (social cognition, associated with DMN) and increased sensitivity to betrayal (affect, associated with SN) in a trust dilemma. In conclusion, our study contributes to understanding MCI-related alterations in trust and their underlying neural mechanisms.
Collapse
Affiliation(s)
- Yiqi Chen
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Department of Psychology, University of Mannheim, Mannheim 68131, Germany
| | - Hao He
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yiyang Ding
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wuhai Tao
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Qing Guan
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Frank Krueger
- Department of Psychology, University of Mannheim, Mannheim 68131, Germany; School of Systems Biology, George Mason University, Fair, VA, USA
| |
Collapse
|
2
|
Anticipatory cues in emotional processing shift the activation of a combined salience sensorimotor functional network in drug-naïve depressed patients. J Affect Disord 2023; 320:509-516. [PMID: 36206887 DOI: 10.1016/j.jad.2022.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Major depressive disorder is characterized by a large-scale brain network dysfunction, contributing to impairments in cognitive and affective functioning. Core regions of default mode, limbic and salience networks are also impaired in emotional processing and anticipation. This study aimed to explore default mode, salience, and limbic networks modulation during the processing of emotional stimuli with and without anticipatory cues in depression, and further investigate how these networks were functionally coupled with the rest of the brain. METHODS Twenty-one drug-naïve depressed patients and 15 matched controls were included in the study. All participants completed a psychological assessment and the affective pictures paradigm during an fMRI acquisition. Group independent component analysis and psychophysiological interactions analyses were performed. RESULTS A significant interaction between Cue, Valence and Group was found for the salience/sensorimotor network. When processing uncued emotional stimuli, patients showed increased activation of this network for negative vs. neutral pictures, whereas when anticipatory cues were displayed previously to the picture presentation, they invert this pattern of activation (hyperactivating the salience/sensorimotor network for positive vs. neutral pictures). Patients showed increased functional connectivity between the salience/sensorimotor network and the left amygdala as well as the right inferior parietal lobule compared to controls when processing uncued negative pictures. LIMITATIONS The sample size was modest, and the salience/sensorimotor network included regions not typically identified as part of salience network. Thus, this study should be replicated to further interpret the results. CONCLUSIONS Anticipatory cues shift the pattern of activation of the salience/sensorimotor network in drug-naïve depressed patients.
Collapse
|
3
|
Deming P, Heilicher M, Koenigs M. How reliable are amygdala findings in psychopathy? A systematic review of MRI studies. Neurosci Biobehav Rev 2022; 142:104875. [PMID: 36116578 DOI: 10.1016/j.neubiorev.2022.104875] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
The amygdala is a key component in predominant neural circuitry models of psychopathy. Yet, after two decades of neuroimaging research on psychopathy, the reproducibility of amygdala findings is questionable. We systematically reviewed MRI studies (81 of adults, 53 of juveniles) to determine the consistency of amygdala findings across studies, as well as within specific types of experimental tasks, community versus forensic populations, and the lowest- versus highest-powered studies. Three primary findings emerged. First, the majority of studies found null relationships between psychopathy and amygdala structure and function, even in the context of theoretically relevant tasks. Second, findings of reduced amygdala activity were more common in studies with low compared to high statistical power. Third, the majority of peak coordinates of reduced amygdala activity did not fall primarily within the anatomical bounds of the amygdala. Collectively, these findings demonstrate significant gaps in the empirical support for the theorized role of the amygdala in psychopathy and indicate the need for novel research perspectives and approaches in this field.
Collapse
Affiliation(s)
- Philip Deming
- Department of Psychology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA.
| | - Mickela Heilicher
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA
| |
Collapse
|
4
|
Qi D, Lam CLM, Wong JJ, Chang DHF, Lee TMC. Positive affect is inversely related to the salience and emotion network's connectivity. Brain Imaging Behav 2021; 15:2031-2039. [PMID: 33033982 PMCID: PMC8413151 DOI: 10.1007/s11682-020-00397-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/02/2022]
Abstract
Increasing evidence has shown that positive affect enhances many aspects of daily functioning. Yet, how dispositional positive affect is represented in the intrinsic brain networks remains unclear. Here, we used resting-state functional Magnetic Resonance Imaging to test how trait positive and negative affect of an individual were associated with the intrinsic connectivity of brain regions within the salience and emotion network and the default mode network in 70 healthy young adults. We observed that positive affect was negatively associated with connectivity within the salience and emotion network, particularly with the bidirectional connections spanning the left anterior insula and left nucleus accumbens. For connections between the salience and emotion network and the rest of the brain, we observed that positive affect was negatively related to the connectivity between the right amygdala and the right middle temporal gyrus. Affect-based modulations of connectivity were specific to positive affect and to the salience and emotion network. Our findings highlight the critical role of salience and emotion network in the neural relations of positive affect, and lay the groundwork for future studies on modeling the connectivity of salience and emotion network to predict mental well-being.
Collapse
Affiliation(s)
- Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Jing Jun Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Dev Cogn Neurosci 2020; 45:100836. [PMID: 32836077 PMCID: PMC7451790 DOI: 10.1016/j.dcn.2020.100836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Emotion processing is believed to dominate over other brain functions during adolescence, including inhibitory control. However, few studies have examined the neural underpinnings of affective states during cognitive control. Here, we characterized the brain in an affective state by cross-sectionally assessing age-related changes in amygdala background connectivity during an affective inhibitory control task. Participants completed an antisaccade (AS) fMRI task while affective auditory stimuli were presented, and a 5-minute resting state scan. Results showed that while adolescents reported similar arousal levels across emotional conditions, adults perceived negative sounds to be more “arousing” and performed better than adolescents in negative trials. Amygdala background connectivity showed age-related increases with brain regions related to attention and executive control, which were not evident during resting state. Together, results suggest that amygdala connectivity within an affective context is fairly low in mid-adolescence but much stronger in adulthood, supporting age-related improvements in inhibitory control within an affective state. These findings suggest limitations during adolescence in differentiating between the arousing effects of various emotions, potentially undermining the ability to optimally engage inhibitory control. Furthermore, the age-related fMRI findings suggest that low amygdala connectivity to brain areas involved in executive control may underlie these limited abilities during adolescence.
Collapse
|
6
|
Zhang J, Andreano JM, Dickerson BC, Touroutoglou A, Barrett LF. Stronger Functional Connectivity in the Default Mode and Salience Networks Is Associated With Youthful Memory in Superaging. Cereb Cortex 2020; 30:72-84. [PMID: 31058917 PMCID: PMC7029690 DOI: 10.1093/cercor/bhz071] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
"Superagers" are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Joseph M Andreano
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alexandra Touroutoglou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
7
|
Li Z, Lei K, Coles CD, Lynch ME, Hu X. Longitudinal changes of amygdala functional connectivity in adolescents prenatally exposed to cocaine. Drug Alcohol Depend 2019; 200:50-58. [PMID: 31085378 PMCID: PMC6607904 DOI: 10.1016/j.drugalcdep.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prenatal cocaine exposure (PCE) is associated with arousal dysregulation, but interactions between exposure and age are rarely investigated directly with longitudinal study designs. Our previous study had examined task-elicited emotional arousal and noted persistently high amygdala activations in the development of adolescents with PCE. However, while externally imposed emotional arousal could be considered a "state" effect depending on specific task stimuli, it is still unclear whether similar developmental alterations extend to intrinsic functional connectivity (FC), reflecting more of a "trait" effect. METHODS We used a longitudinal design and analyzed resting-state functional magnetic resonance imaging data acquired twice from 25 adolescents with PCE and 16 non-exposed controls. Both groups were each scanned first at the mean age of 14.3 and then again at 16.6 years. Seeding in bilateral amygdalae and comparing the 2nd scan with the 1st, we examined the interaction effect between PCE and age on FCs in the emotional network. RESULTS Compared with the younger age, we observed a generally decreased FC in the emotional network of the control group at the older age, but these FCs were generally increased at the older age in this same network of the PCE group. Additionally, this interaction effect of exposure by age in the right fusiform was positively correlated with the emotional interference imposed by external task stimuli. CONCLUSIONS These results provided additional data directly characterizing developmental changes in the emotional network of adolescents with PCE, complementing and extending the notion of a PCE-associated long-term teratogenic effect on arousal regulation.
Collapse
Affiliation(s)
- Zhihao Li
- School of Psychology and Sociology, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
| | - Kaikai Lei
- School of Psychology and Sociology, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Mary Ellen Lynch
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
8
|
Schöne M, Seidenbecher S, Tozzi L, Kaufmann J, Griep H, Fenker D, Frodl T, Bogerts B, Schiltz K. Neurobiological correlates of violence perception in martial artists. Brain Behav 2019; 9:e01276. [PMID: 30907076 PMCID: PMC6520304 DOI: 10.1002/brb3.1276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The direct exertion as well as the visual perception of violence can have a hedonistic effect and elicit positive arousal in predisposed individuals. This appetitive aspect of aggression in healthy subjects has been neglected in psychiatric research so far. METHODS Using functional magnetic resonance imaging, we tested whether subjects trained in sports with a violent component (martial arts) show altered brain responses in reward-associated brain areas when compared to controls. Sixteen martial artists (e.g., boxing, mixed martial arts) and 24 controls watched violent versus neutral pictures while performing a cognitive cover task. Subjects' aggressiveness was assessed by the aggressiveness factors questionnaire (FAF). RESULTS While watching violent pictures, martial artists had a stronger activation in the left amygdala than controls. Within the martial artist group however, there was an inverse correlation between activation in the left amygdala and degree of aggressiveness. CONCLUSIONS Higher amygdala activation while watching violent pictures might reflect that perception of violence conveys increased salience to martial artists as compared to controls. The inverse correlation between amygdala activation and aggressiveness within the martial artist group might be explained by the assumption that the more aggressive martial artists may be more accustomed to violent situations leading to a down-modulation of amygdala activation. Appetitive aggression should be taken into account as a factor contributing to violence.
Collapse
Affiliation(s)
- Maria Schöne
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland.,Department of Psychiatry and Behavioral Science, Stanford University, Stanford, California
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Griep
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Fenker
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Institute of Neuroscience, Dublin, Ireland.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Salus-Institute, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Department of Forensic Psychiatry, Psychiatric Hospital of the University of Munich, Munich, Germany
| |
Collapse
|
9
|
Touroutoglou A, Dickerson BC. Cingulate-centered large-scale networks: Normal functions, aging, and neurodegenerative disease. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:113-127. [PMID: 31731908 DOI: 10.1016/b978-0-444-64196-0.00008-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review evidence from structural and functional neuroimaging in humans to consider the role of the cingulate cortex subregions (i.e., subgenual anterior cingulate cortex, pregenual anterior cingulate cortex, anterior midcingulate cortex, and dorsal posterior cingulate cortex) as major hubs anchoring multiple large-scale brain networks. We begin with a review of evidence from intrinsic functional connectivity and diffusion tensor imaging studies to show how connections within and between cingulate-centered networks contribute to processing and integrating signals related to autonomic, affective, executive, and memory functions. We then consider how variability in cingulate-centered networks could contribute to a range of aging outcomes, including typical aging and unusually successful aging (dubbed "superaging"), as well as early neurodegenerative dementias, including frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| |
Collapse
|
10
|
Touroutoglou A, Zhang J, Andreano JM, Dickerson BC, Barrett LF. Dissociable Effects of Aging on Salience Subnetwork Connectivity Mediate Age-Related Changes in Executive Function and Affect. Front Aging Neurosci 2018; 10:410. [PMID: 30618717 PMCID: PMC6304391 DOI: 10.3389/fnagi.2018.00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with both changes in affective experience and attention. An intrinsic brain network subserving these functions, the salience network, has not shown clear evidence of a corresponding age-related change. We propose a solution to this discrepancy: that aging differentially affects the connectivity of two dissociated subsystems of the salience network identified in our prior research (Touroutoglou et al., 2012). We examined the age-related changes in intrinsic connectivity between a dorsal and a ventral salience subsystem in a sample of 111 participants ranging in age from 18 years to 81 years old. We predicted that connectivity within the ventral subsystem is relatively preserved with age, while connectivity in the dorsal subsystem declines. Our findings showed that the connectivity within the ventral subsystem was not only preserved but it actually increased with age, whereas the connectivity within the dorsal subsystem decreased with age. Furthermore, age-related increase in arousal experience was partially mediated by age-related increases in ventral salience subsystem, whereas age-related decline in executive function was fully mediated by age-related decreases in dorsal salience subsystem connectivity. These findings explain previously conflicting results on age-related changes in the salience network, and suggest a mechanism for relatively preserved affective function in the elderly.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Joseph M. Andreano
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bradford C. Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa Feldman Barrett
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Andreano JM, Touroutoglou A, Dickerson B, Barrett LF. Hormonal Cycles, Brain Network Connectivity, and Windows of Vulnerability to Affective Disorder. Trends Neurosci 2018; 41:660-676. [PMID: 30274602 DOI: 10.1016/j.tins.2018.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
The rate of affective disorder is substantially higher in women than in men, and considerable evidence points to the actions of ovarian hormones in mediating this disparity. In this Opinion, we discuss the hypothesis that cyclic changes in ovarian hormone levels produce cyclic alterations in connectivity between the intrinsic networks of the brain. These alterations produce specific temporal windows within the menstrual cycle when internetwork connectivity is increased, associated with increased stress reactivity and better memory for unpleasant, arousing events, leading to increased negative mood and susceptibility to affective disorder. Our windows of vulnerability model offers insights for both treatment of affective disorder and research on sex differences in the brain.
Collapse
Affiliation(s)
- Joseph M Andreano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brad Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lisa Feldman Barrett
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
12
|
Collins JA, Dickerson BC. Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 2018; 29:440-450. [PMID: 30009477 DOI: 10.1002/hipo.23003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category-selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting-state functional MRI (fMRI) scan, followed by face- and place-encoding tasks, followed by another resting-state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face-responsive regions of the fusiform gyrus and perirhinal cortex increased following the face-encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene-selective region of the retrosplenial cortex before and after the place-encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
13
|
Arefin TM, Mechling AE, Meirsman AC, Bienert T, Hübner NS, Lee HL, Ben Hamida S, Ehrlich A, Roquet D, Hennig J, von Elverfeldt D, Kieffer BL, Harsan LA. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice. Brain Connect 2018; 7:526-540. [PMID: 28882062 DOI: 10.1089/brain.2017.0486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88-/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.
Collapse
Affiliation(s)
- Tanzil Mahmud Arefin
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany .,3 Bernstein Center Freiburg, University of Freiburg , Freiburg, Germany .,4 Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine , New York, New York
| | - Anna E Mechling
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany
| | - Aura Carole Meirsman
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,6 Neuroscience Paris Seine, Institut de Biologie Paris Seine , CNRS UMR 8246/INSERM U1130/Université Pierre et Marie Currie, Paris, France
| | - Thomas Bienert
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Neele Saskia Hübner
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany
| | - Hsu-Lei Lee
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Sami Ben Hamida
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Aliza Ehrlich
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Dan Roquet
- 8 Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg-CNRS , Strasbourg, France
| | - Jürgen Hennig
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Dominik von Elverfeldt
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Brigitte Lina Kieffer
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Laura-Adela Harsan
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,8 Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg-CNRS , Strasbourg, France .,9 Department of Biophysics and Nuclear Medicine, Faculty of Medicine, University Hospital Strasbourg , Strasbourg, France
| |
Collapse
|
14
|
Huang YA, Jastorff J, Van den Stock J, Van de Vliet L, Dupont P, Vandenbulcke M. Studying emotion theories through connectivity analysis: Evidence from generalized psychophysiological interactions and graph theory. Neuroimage 2018; 172:250-262. [DOI: 10.1016/j.neuroimage.2018.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022] Open
|
15
|
Training-induced brain activation and functional connectivity differentiate multi-talker and single-talker speech training. Neurobiol Learn Mem 2018. [PMID: 29535043 DOI: 10.1016/j.nlm.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In second language acquisition studies, the high talker variability training approach has been frequently used to train participants to learn new speech patterns. However, the neuroplasticity induced by training is poorly understood. In the present study, native English speakers were trained on non-native pitch patterns (linguistic tones from Mandarin Chinese) in multi-talker (N = 16) or single-talker (N = 16) training conditions. We focused on two aspects of multi-talker training, voice processing and lexical phonology accessing, and used functional magnetic resonance imaging (fMRI) to measure the brain activation and functional connectivity (FC) of two regions of interest in a tone identification task conducted before and after training, namely the anterior part of the right superior temporal gyrus (aRSTG) and the posterior left superior temporal gyrus (pLSTG). The results showed distinct patterns of associations between neural signals and learning success for multi-talker training. Specifically, post-training brain activation in the aRSTG and FC strength between the aRSTG and pLSTG were correlated with learning success in the multi-talker training group but not in the single-talker group. These results suggest that talker variability in the training procedure may enhance neural efficiency in these brain areas and strengthen the cooperation between them. Our findings highlight the brain processing of newly learned speech patterns is influenced by the given training approach.
Collapse
|
16
|
Kozlowska K, Spooner CJ, Palmer DM, Harris A, Korgaonkar MS, Scher S, Williams LM. "Motoring in idle": The default mode and somatomotor networks are overactive in children and adolescents with functional neurological symptoms. Neuroimage Clin 2018; 18:730-743. [PMID: 29876262 PMCID: PMC5987846 DOI: 10.1016/j.nicl.2018.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Objective Children and adolescents with functional neurological symptom disorder (FND) present with diverse neurological symptoms not explained by a disease process. Functional neurological symptoms have been conceptualized as somatoform dissociation, a disruption of the brain's intrinsic organization and reversion to a more primitive level of function. We used EEG to investigate neural function and functional brain organization in children/adolescents with FND. Method EEG was recorded in the resting eyes-open condition in 57 patients (aged 8.5-18 years) and 57 age- and sex-matched healthy controls. Using a topographical map, EEG power data were quantified for regions of interest that define the default mode network (DMN), salience network, and somatomotor network. Source localization was examined using low-resolution brain electromagnetic tomography (LORETA). The contributions of chronic pain and arousal as moderators of differences in EEG power were also examined. Results Children/adolescents with FND had excessive theta and delta power in electrode clusters corresponding to the DMN-both anteriorly (dorsomedial prefrontal cortex [dmFPC]) and posteriorly (posterior cingulate cortex [PCC], precuneus, and lateral parietal cortex)-and in the premotor/supplementary motor area (SMA) region. There was a trend toward increased theta and delta power in the salience network. LORETA showed activation across all three networks in all power bands and localized neural sources to the dorsal anterior cingulate cortex/dmPFC, mid cingulate cortex, PCC/precuneus, and SMA. Pain and arousal contributed to slow wave power increases in all three networks. Conclusions These findings suggest that children and adolescents with FND are characterized by overactivation of intrinsic resting brain networks involved in threat detection, energy regulation, and preparation for action.
Collapse
Affiliation(s)
- Kasia Kozlowska
- The Children's Hospital at Westmead, Psychological Medicine, Locked Bag 4001, Westmead, NSW 2145, Australia; The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | | | - Donna M Palmer
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Anthony Harris
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia; Westmead Hospital Psychiatry Department, Darcy Rd, Westmead, NSW 2145, Australia.
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Stephen Scher
- The University of Sydney, Sydney, Australia; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford University, VA Palo Alto (Sierra-Pacific MIRECC) 401 Quarry Rd, United States.
| |
Collapse
|
17
|
Clark US, Miller ER, Hegde RR. Experiences of Discrimination Are Associated With Greater Resting Amygdala Activity and Functional Connectivity. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:367-378. [PMID: 29628069 DOI: 10.1016/j.bpsc.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/04/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Social discrimination, a type of psychological stressor, is associated with poorer physical and mental health outcomes, yet we have little understanding of how discrimination affects neural functions in marginalized populations. By contrast, the effects of psychological stress on neural functions are well documented, with evidence of significant effects on the amygdala-a neural region that is central to psychosocial functions. Accordingly, we conducted an examination of the relation between self-reported discrimination exposure and amygdala activity in a diverse sample of adults. METHODS Seventy-four adults (43% women; 72% African American; 23% Hispanic; 32% homosexual/bisexual) completed self-report ratings of discrimination exposure. Spontaneous amygdala activity and functional connectivity were assessed during resting-state functional magnetic resonance imaging. RESULTS Greater discrimination exposure was associated with higher levels of spontaneous amygdala activity. Increases in discrimination were also associated with stronger functional connectivity between the amygdala and several neural regions (e.g., anterior insula, putamen, caudate, anterior cingulate, medial frontal gyrus), with the most robust effects observed in the thalamus. These effects were independent of several demographic (e.g., race, ethnicity, sex) and psychological (e.g., current stress, depression, anxiety) factors. CONCLUSIONS Collectively, our findings provide the first evidence that social discrimination is independently associated with elevations in intrinsic amygdala activity and functional connectivity, thus revealing clear parallels between the neural substrates of discrimination and psychological stressors of other origins. Such results should spur future investigations of amygdala-based networks as potential etiological factors linking discrimination exposure to adverse physical and mental health outcomes.
Collapse
Affiliation(s)
- Uraina S Clark
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Evan R Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachal R Hegde
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
18
|
Brooks JA, Shablack H, Gendron M, Satpute AB, Parrish MH, Lindquist KA. The role of language in the experience and perception of emotion: a neuroimaging meta-analysis. Soc Cogn Affect Neurosci 2017; 12:169-183. [PMID: 27539864 PMCID: PMC5390741 DOI: 10.1093/scan/nsw121] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Recent behavioral and neuroimaging studies demonstrate that labeling one's emotional experiences and perceptions alters those states. Here, we used a comprehensive meta-analysis of the neuroimaging literature to systematically explore whether the presence of emotion words in experimental tasks has an impact on the neural representation of emotional experiences and perceptions across studies. Using a database of 386 studies, we assessed brain activity when emotion words (e.g. 'anger', 'disgust') and more general affect words (e.g. 'pleasant', 'unpleasant') were present in experimental tasks vs not present. As predicted, when emotion words were present, we observed more frequent activations in regions related to semantic processing. When emotion words were not present, we observed more frequent activations in the amygdala and parahippocampal gyrus, bilaterally. The presence of affect words did not have the same effect on the neural representation of emotional experiences and perceptions, suggesting that our observed effects are specific to emotion words. These findings are consistent with the psychological constructionist prediction that in the absence of accessible emotion concepts, the meaning of affective experiences and perceptions are ambiguous. Findings are also consistent with the regulatory role of 'affect labeling'. Implications of the role of language in emotion construction and regulation are discussed.
Collapse
Affiliation(s)
| | - Holly Shablack
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill
| | | | | | | | - Kristen A Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
| |
Collapse
|
19
|
Caparelli EC, Ross TJ, Gu H, Liang X, Stein EA, Yang Y. Graph theory reveals amygdala modules consistent with its anatomical subdivisions. Sci Rep 2017; 7:14392. [PMID: 29089582 PMCID: PMC5663902 DOI: 10.1038/s41598-017-14613-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Similarities on the cellular and neurochemical composition of the amygdaloid subnuclei suggests their clustering into subunits that exhibit unique functional organization. The topological principle of community structure has been used to identify functional subnetworks in neuroimaging data that reflect the brain effective organization. Here we used modularity to investigate the organization of the amygdala using resting state functional magnetic resonance imaging (rsfMRI) data. Our goal was to determine whether such topological organization would reliably reflect the known neurobiology of individual amygdaloid nuclei, allowing for human imaging studies to accurately reflect the underlying neurobiology. Modularity analysis identified amygdaloid elements consistent with the main anatomical subdivisions of the amygdala that embody distinct functional and structural properties. Additionally, functional connectivity pathways of these subunits and their correlation with task-induced amygdala activation revealed distinct functional profiles consistent with the neurobiology of the amygdala nuclei. These modularity findings corroborate the structure–function relationship between amygdala anatomical substructures, supporting the use of network analysis techniques to generate biologically meaningful partitions of brain structures.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Xia Liang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.,Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Xia C, Touroutoglou A, Quigley KS, Barrett LF, Dickerson BC. Salience Network Connectivity Modulates Skin Conductance Responses in Predicting Arousal Experience. J Cogn Neurosci 2017; 29:827-836. [PMID: 27991182 PMCID: PMC5690982 DOI: 10.1162/jocn_a_01087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individual differences in arousal experience have been linked to differences in resting-state salience network connectivity strength. In this study, we investigated how adding task-related skin conductance responses (SCR), a measure of sympathetic autonomic nervous system activity, can predict additional variance in arousal experience. Thirty-nine young adults rated their subjective experience of arousal to emotionally evocative images while SCRs were measured. They also underwent a separate resting-state fMRI scan. Greater SCR reactivity (an increased number of task-related SCRs) to emotional images and stronger intrinsic salience network connectivity independently predicted more intense experiences of arousal. Salience network connectivity further moderated the effect of SCR reactivity: In individuals with weak salience network connectivity, SCR reactivity more significantly predicted arousal experience, whereas in those with strong salience network connectivity, SCR reactivity played little role in predicting arousal experience. This interaction illustrates the degeneracy in neural mechanisms driving individual differences in arousal experience and highlights the intricate interplay between connectivity in central visceromotor neural circuitry and peripherally expressed autonomic responses in shaping arousal experience.
Collapse
Affiliation(s)
- Chenjie Xia
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | | | - Karen S. Quigley
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA
- Northeastern University, Boston, MA
| | - Lisa Feldman Barrett
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Northeastern University, Boston, MA
| | | |
Collapse
|
21
|
Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 16:709-23. [PMID: 27142636 DOI: 10.3758/s13415-016-0425-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent theoretical and empirical work has highlighted the role of domain-general, large-scale brain networks in generating emotional experiences. These networks are hypothesized to process aspects of emotional experiences that are not unique to a specific emotional category (e.g., "sadness," "happiness"), but rather that generalize across categories. In this article, we examined the dynamic interactions (i.e., changing cohesiveness) between specific domain-general networks across time while participants experienced various instances of sadness, fear, and anger. We used a novel method for probing the network connectivity dynamics between two salience networks and three amygdala-based networks. We hypothesized, and found, that the functional connectivity between these networks covaried with the intensity of different emotional experiences. Stronger connectivity between the dorsal salience network and the medial amygdala network was associated with more intense ratings of emotional experience across six different instances of the three emotion categories examined. Also, stronger connectivity between the dorsal salience network and the ventrolateral amygdala network was associated with more intense ratings of emotional experience across five out of the six different instances. Our findings demonstrate that a variety of emotional experiences are associated with dynamic interactions of domain-general neural systems.
Collapse
|
22
|
A Pontine Region is a Neural Correlate of the Human Affective Processing Network. EBioMedicine 2016; 2:1799-805. [PMID: 26870804 PMCID: PMC4740328 DOI: 10.1016/j.ebiom.2015.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC) between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.
Collapse
|
23
|
Kang D, Liu Y, Miskovic V, Keil A, Ding M. Large-scale functional brain connectivity during emotional engagement as revealed by beta-series correlation analysis. Psychophysiology 2016; 53:1627-1638. [PMID: 27453345 DOI: 10.1111/psyp.12731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/22/2016] [Indexed: 12/23/2022]
Abstract
It has been hypothesized that the medial prefrontal cortex (mPFC) is a hub in the network that mediates appetitive responses whereas the amygdala is thought to mediate both aversive and appetitive processing. Both structures may facilitate adaptive responses to emotional challenge by linking perception, attention, memory, and motor circuits. We provide an initial exploration of these hypotheses by recording simultaneous EEG-fMRI in eleven participants viewing affective pictures. MPFC- and amygdala-seeded functional connectivity maps were generated by applying the beta-series correlation method. The mPFC-seeded correlation map encompassed visual regions, sensorimotor areas, prefrontal cortex, and medial temporal lobe structures, exclusively for pleasant content. For the amygdala-seeded correlation map, a similar set of distributed brain areas appeared in the unpleasant-neutral contrast, with the addition of structures such as the insula and thalamus. A substantially sparser network was recruited for the pleasant-neutral contrast. Using the late positive potential (LPP) to index the intensity of emotional engagement, functional connectivity was found to be stronger in trials with larger LPP. These results demonstrate that mPFC-mediated functional interactions are engaged specifically during appetitive processing, whereas the amygdala is coupled to distinct sets of brain regions during both aversive and appetitive processing. The strength of these interactions varies as a function of the intensity of emotional engagement.
Collapse
Affiliation(s)
- Daesung Kang
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Yuelu Liu
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Vladimir Miskovic
- Department of Psychology and Center for Affective Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Andreas Keil
- Department of Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA.
| | - Mingzhou Ding
- The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
24
|
Ebisch SJH, Salone A, Martinotti G, Carlucci L, Mantini D, Perrucci MG, Saggino A, Romani GL, Di Giannantonio M, Northoff G, Gallese V. Integrative Processing of Touch and Affect in Social Perception: An fMRI Study. Front Hum Neurosci 2016; 10:209. [PMID: 27242474 PMCID: PMC4861868 DOI: 10.3389/fnhum.2016.00209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Abstract
Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneously depicting facial expressions of emotion and tactile sensations that could be either congruent or incongruent. Confounding effects due to affective valence, inhibitory top-down influences, cross-modal integration, and conflict processing were minimized. The results showed that the perception of congruent, compared to incongruent stimuli, elicited enhanced neural activity in a set of brain regions including left amygdala, bilateral posterior cingulate cortex (PCC), and left superior parietal cortex. These congruency effects did not differ as a function of emotion or sensation. A complementary task-related functional interaction analysis preliminarily suggested that amygdala activity depended on previous processing stages in fusiform gyrus and PCC. The findings provide support for the integrative processing of social information about others' feelings from manifold bodily sources (sensory-affective information) in amygdala and PCC. Given that the congruent stimuli were also judged as being more self-related and more familiar in terms of personal experience in an independent sample of participants, we speculate that such integrative processing might be mediated by the linking of external stimuli with self-experience. Finally, the prediction of task-related responses in amygdala by intrinsic functional connectivity between amygdala and PCC during a task-free state implies a neuro-functional basis for an individual predisposition for the integrative processing of social stimulus content.
Collapse
Affiliation(s)
- Sjoerd J H Ebisch
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Anatolia Salone
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Leonardo Carlucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Dante Mantini
- Department of Health Sciences and Technology, ETH ZurichZurich, Switzerland; Department of Experimental Psychology, University of Oxford, OxfordUK; Research Center for Motor Control and Neuroplasticity, KU LeuvenLeuven, Belgium
| | - Mauro G Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Aristide Saggino
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences and Institute of Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara Chieti, Italy
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | - Vittorio Gallese
- Section of Physiology, Department of Neuroscience, University of ParmaParma, Italy; Institute of Philosophy, School of Advanced Study, University of LondonLondon, UK
| |
Collapse
|
25
|
A ventral salience network in the macaque brain. Neuroimage 2016; 132:190-197. [PMID: 26899785 DOI: 10.1016/j.neuroimage.2016.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Successful navigation of the environment requires attending and responding efficiently to objects and conspecifics with the potential to benefit or harm (i.e., that have value). In humans, this function is subserved by a distributed large-scale neural network called the "salience network". We have recently demonstrated that there are two anatomically and functionally dissociable salience networks anchored in the dorsal and ventral portions of the human anterior insula (Touroutoglou et al., 2012). In this paper, we test the hypothesis that these two subnetworks exist in rhesus macaques (Macaca mulatta). We provide evidence that a homologous ventral salience network exists in macaques, but that the connectivity of the dorsal anterior insula in macaques is not sufficiently developed as a dorsal salience network. The evolutionary implications of these finding are considered.
Collapse
|
26
|
fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-5611-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Petrican R, Saverino C, Shayna Rosenbaum R, Grady C. Inter-individual differences in the experience of negative emotion predict variations in functional brain architecture. Neuroimage 2015; 123:80-8. [PMID: 26302674 PMCID: PMC4898956 DOI: 10.1016/j.neuroimage.2015.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/23/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Current evidence suggests that two spatially distinct neuroanatomical networks, the dorsal attention network (DAN) and the default mode network (DMN), support externally and internally oriented cognition, respectively, and are functionally regulated by a third, frontoparietal control network (FPC). Interactions among these networks contribute to normal variations in cognitive functioning and to the aberrant affective profiles present in certain clinical conditions, such as major depression. Nevertheless, their links to non-clinical variations in affective functioning are still poorly understood. To address this issue, we used fMRI to measure the intrinsic functional interactions among these networks in a sample of predominantly younger women (N=162) from the Human Connectome Project. Consistent with the previously documented dichotomous motivational orientations (i.e., withdrawal versus approach) associated with sadness versus anger, we hypothesized that greater sadness would predict greater DMN (rather than DAN) functional dominance, whereas greater anger would predict the opposite. Overall, there was evidence of greater DAN (rather than DMN) functional dominance, but this pattern was modulated by current experience of specific negative emotions, as well as subclinical depressive and anxiety symptoms. Thus, greater levels of currently experienced sadness and subclinical depression independently predicted weaker DAN functional dominance (i.e., weaker DAN-FPC functional connectivity), likely reflecting reduced goal-directed attention towards the external perceptual environment. Complementarily, greater levels of currently experienced anger and subclinical anxiety predicted greater DAN functional dominance (i.e., greater DAN-FPC functional connectivity and, for anxiety only, also weaker DMN-FPC coupling). Our findings suggest that distinct affective states and subclinical mood symptoms have dissociable neural signatures, reflective of the symbiotic relationship between cognitive processes and emotional states.
Collapse
Affiliation(s)
| | - Cristina Saverino
- Toronto Rehabilitation Institute, University of Toronto, Toronto, ON M5G 2A2, Canada
| | - R Shayna Rosenbaum
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada; Department of Psychology, York University, Toronto, ON M6A 2E1, Canada
| | - Cheryl Grady
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada; Department of Psychology and Psychiatry, University of Toronto, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
28
|
Petersen N, Touroutoglou A, Andreano JM, Cahill L. Oral contraceptive pill use is associated with localized decreases in cortical thickness. Hum Brain Mapp 2015; 36:2644-54. [PMID: 25832993 DOI: 10.1002/hbm.22797] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 01/10/2023] Open
Abstract
Oral contraceptive pills (OCs), which are used to prevent pregnancy by the majority of women in the United States, contain steroid hormones that may affect the brain's structure and function. In this investigation, we tested the hypothesis that OC use is associated with differences in brain structure using a hypothesis-driven, surface-based approach. In 90 women, (44 OC users, 46 naturally-cycling women), we compared the cortical thickness of brain regions that participate in the salience network and the default mode network, as well as the volume of subcortical regions in these networks. We found that OC use was associated with significantly lower cortical thickness measurements in the lateral orbitofrontal cortex and the posterior cingulate cortex. These regions are believed to be important for responding to rewards and evaluating internal states/incoming stimuli, respectively. Further investigations are needed to determine if cortical thinning in these regions are associated with behavioral changes, and also to identify whether OC use is causally or only indirectly related to these changes in brain morphology.
Collapse
Affiliation(s)
- Nicole Petersen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California.,Department of Neurobiology and Behavior, Bonney Research Laboratory, University of California, Irvine, California
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Massachusetts.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Massachusetts.,Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Joseph M Andreano
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Massachusetts.,Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Larry Cahill
- Department of Neurobiology and Behavior, Bonney Research Laboratory, University of California, Irvine, California
| |
Collapse
|
29
|
Touroutoglou A, Lindquist KA, Dickerson BC, Barrett LF. Intrinsic connectivity in the human brain does not reveal networks for 'basic' emotions. Soc Cogn Affect Neurosci 2015; 10:1257-65. [PMID: 25680990 DOI: 10.1093/scan/nsv013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/09/2015] [Indexed: 11/14/2022] Open
Abstract
We tested two competing models for the brain basis of emotion, the basic emotion theory and the conceptual act theory of emotion, using resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). The basic emotion view hypothesizes that anger, sadness, fear, disgust and happiness each arise from a brain network that is innate, anatomically constrained and homologous in other animals. The conceptual act theory of emotion hypothesizes that an instance of emotion is a brain state constructed from the interaction of domain-general, core systems within the brain such as the salience, default mode and frontoparietal control networks. Using peak coordinates derived from a meta-analysis of task-evoked emotion fMRI studies, we generated a set of whole-brain rs-fcMRI 'discovery' maps for each emotion category and examined the spatial overlap in their conjunctions. Instead of discovering a specific network for each emotion category, variance in the discovery maps was accounted for by the known domain-general network. Furthermore, the salience network is observed as part of every emotion category. These results indicate that specific networks for each emotion do not exist within the intrinsic architecture of the human brain and instead support the conceptual act theory of emotion.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Athinoula A. Martinos Center for Biomedical Imaging, and Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,USA,
| | - Kristen A Lindquist
- Department of Psychology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, and Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA, and
| | - Lisa Feldman Barrett
- Athinoula A. Martinos Center for Biomedical Imaging, and Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,USA, Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|