1
|
von Leupoldt A, Karachi C, Jelinčić V. Relieving dyspnoea through the brain. Eur Respir J 2024; 64:2401828. [PMID: 39638363 DOI: 10.1183/13993003.01828-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 12/07/2024]
Affiliation(s)
| | - Carine Karachi
- Hôpital Pitié-Salpêtrière, AP-HP Sorbonne, Paris, France
| | | |
Collapse
|
2
|
Pichot V, Corbier C, Chouchou F. The contribution of granger causality analysis to our understanding of cardiovascular homeostasis: from cardiovascular and respiratory interactions to central autonomic network control. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1315316. [PMID: 39175608 PMCID: PMC11338816 DOI: 10.3389/fnetp.2024.1315316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Homeostatic regulation plays a fundamental role in maintenance of multicellular life. At different scales and in different biological systems, this principle allows a better understanding of biological organization. Consequently, a growing interest in studying cause-effect relations between physiological systems has emerged, such as in the fields of cardiovascular and cardiorespiratory regulations. For this, mathematical approaches such as Granger causality (GC) were applied to the field of cardiovascular physiology in the last 20 years, overcoming the limitations of previous approaches and offering new perspectives in understanding cardiac, vascular and respiratory homeostatic interactions. In clinical practice, continuous recording of clinical data of hospitalized patients or by telemetry has opened new applicability for these approaches with potential early diagnostic and prognostic information. In this review, we describe a theoretical background of approaches based on linear GC in time and frequency domains applied to detect couplings between time series of RR intervals, blood pressure and respiration. Interestingly, these tools help in understanding the contribution of homeostatic negative feedback and the anticipatory feedforward mechanisms in homeostatic cardiovascular and cardiorespiratory controls. We also describe experimental and clinical results based on these mathematical tools, consolidating previous experimental and clinical evidence on the coupling in cardiovascular and cardiorespiratory studies. Finally, we propose perspectives allowing to complete the understanding of these interactions between cardiovascular and cardiorespiratory systems, as well as the interplay between brain and cardiac, and vascular and respiratory systems, offering a high integrative view of cardiovascular and cardiorespiratory homeostatic regulation.
Collapse
Affiliation(s)
- Vincent Pichot
- Department of Clinical and Exercise Physiology, SAINBIOSE, Inserm U1059, Saint-Etienne Jean Monnet University, CHU Saint-Etienne, Saint-Etienne, France
| | - Christophe Corbier
- LASPI EA3059, Saint-Etienne Jean Monnet University, Roanne Technology University Institute, Roanne, France
| | - Florian Chouchou
- IRISSE Laboratory EA4075, University of La Réunion, UFR Science de ’Homme et de l’Environnement, Le Tampon, France
| |
Collapse
|
3
|
Bartłomiejczyk P, Llovera Trujillo F, Signerska-Rynkowska J. Analysis of dynamics of a map-based neuron model via Lorenz maps. CHAOS (WOODBURY, N.Y.) 2024; 34:043110. [PMID: 38558045 DOI: 10.1063/5.0188464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Modeling nerve cells can facilitate formulating hypotheses about their real behavior and improve understanding of their functioning. In this paper, we study a discrete neuron model introduced by Courbage et al. [Chaos 17, 043109 (2007)], where the originally piecewise linear function defining voltage dynamics is replaced by a cubic polynomial, with an additional parameter responsible for varying the slope. Showing that on a large subset of the multidimensional parameter space, the return map of the voltage dynamics is an expanding Lorenz map, we analyze both chaotic and periodic behavior of the system and describe the complexity of spiking patterns fired by a neuron. This is achieved by using and extending some results from the theory of Lorenz-like and expanding Lorenz mappings.
Collapse
Affiliation(s)
- Piotr Bartłomiejczyk
- Faculty of Applied Physics and Mathematics & BioTechMed Centre, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Frank Llovera Trujillo
- Doctoral School, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Justyna Signerska-Rynkowska
- Faculty of Applied Physics and Mathematics & BioTechMed Centre, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Dioscuri Centre in Topological Data Analysis, Institute of Mathematics of the Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
| |
Collapse
|
4
|
Oveisgharan S, Yu L, Agrawal S, Nag S, Bennett DA, Buchman AS, Schneider JA. Relation of Motor Impairments to Neuropathologic Changes of Limbic-Predominant Age-Related TDP-43 Encephalopathy in Older Adults. Neurology 2023; 101:e1542-e1553. [PMID: 37604667 PMCID: PMC10585698 DOI: 10.1212/wnl.0000000000207726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic change (LATE-NC) is common and is a major contributor to cognitive decline and Alzheimer dementia in older adults. The objective of the current study was to examine whether LATE-NC was also associated with declining motor function in older adults. METHODS Participants were from 2 longitudinal clinical pathologic studies of aging who did not have dementia at the time of enrollment. Postmortem pathologic examination included immunohistochemical staining for TDP-43 in 8 brain regions, which was summarized as a dichotomous variable indicating advanced LATE-NC stages at which TDP-43 pathology had accumulated in the hippocampus, entorhinal, or neocortical regions. Annual motor testing included maximal inspiratory and expiratory pressures (summarized as respiratory muscle strength), grip and pinch strength (summarized as hand strength), finger tapping speed and the Purdue Pegboard Test (summarized as hand dexterity), and walking 8 feet and turning 360° (summarized as gait function). The severity of parkinsonism was also assessed and summarized as a global parkinsonism score. Global cognition was a summary of standardized scores of 19 neuropsychological tests. We used linear mixed-effect models to examine the associations of LATE-NC with longitudinal changes of motor decline and used multivariate random coefficient models to simultaneously examine the associations of LATE-NC with cognitive and motor decline. RESULTS Among 1,483 participants (mean age at death 90.1 [SD = 6.4] years, 70% women, mean follow-up 7.4 [SD = 3.8] years), LATE-NC was present in 34.0% (n = 504). In separate linear mixed-effect models controlling for demographics and other brain pathologies, LATE-NC was associated with faster decline in respiratory muscle strength (estimate = -0.857, SE = 0.322, p = 0.008) and hand strength (estimate = -0.005, SE = 0.002, p = 0.005) but was not related to hand dexterity, gait function, or parkinsonism. In multivariate random coefficient models including respiratory muscle strength, hand strength, and global cognition as the outcomes, LATE-NC remained associated with a faster respiratory muscle strength decline rate (estimate = -0.021, SE = 0.009, p = 0.023), but the association with hand strength was no longer significant (estimate = -0.002, SE = 0.003, p = 0.390). DISCUSSION Motor impairment, specifically respiratory muscle weakness, may be an unrecognized comorbidity of LATE-NC that highlights the potential association of TDP-43 proteinopathy with noncognitive phenotypes in aging adults.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Sonal Agrawal
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Sukriti Nag
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., L.Y., S.A., S.N., D.A.B., A.S.B., J.A.S.), Department of Neurological Sciences (S.O., L.Y., D.A.B., A.S.B., J.A.S.), and Department of Pathology (S.A., S.N., J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
5
|
Wang Y, Mou YK, Wang HR, Song XY, Wei SZ, Ren C, Song XC. Brain response in asthma: the role of "lung-brain" axis mediated by neuroimmune crosstalk. Front Immunol 2023; 14:1240248. [PMID: 37691955 PMCID: PMC10484342 DOI: 10.3389/fimmu.2023.1240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
In addition to typical respiratory symptoms, patients with asthma are frequently accompanied by cognitive decline, mood disorders (anxiety and depression), sleep disorders, olfactory disorders, and other brain response manifestations, all of which worsen asthma symptoms, form a vicious cycle, and exacerbate the burden on families and society. Therefore, studying the mechanism of neurological symptoms in patients with asthma is necessary to identify the appropriate preventative and therapeutic measures. In order to provide a comprehensive reference for related research, we compiled the pertinent literature, systematically summarized the latest research progress of asthma and its brain response, and attempted to reveal the possible "lung-brain" crosstalk mechanism and treatment methods at the onset of asthma, which will promote more related research to provide asthmatic patients with neurological symptoms new hope.
Collapse
Affiliation(s)
- Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
6
|
Varangot-Reille C, Sanger GJ, Andrews PLR, Herranz-Gomez A, Suso-Martí L, de la Nava J, Cuenca-Martínez F. Neural networks involved in nausea in adult humans: A systematic review. Auton Neurosci 2023; 245:103059. [PMID: 36580746 DOI: 10.1016/j.autneu.2022.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Nausea is a common clinical symptom, poorly managed with anti-emetic drugs. To identify potential brain regions which may be therapeutic targets we systematically reviewed brain imaging in subjects reporting nausea. The systematic review followed PRISMA statements with methodological quality (MINORS) and risk of bias (ROBINS-I) assessed. Irrespective of the nauseagenic stimulus the common (but not only) cortical structures activated were the inferior frontal gyrus (IFG), the anterior cingulate cortex (ACC) and the anterior insula (AIns) with some evidence for lateralization (Left-IFG, Right-AIns, Right-ACC). Basal ganglia structures (e.g., putamen) were also consistently activated. Inactivation was rarely reported but occurred mainly in the cerebellum and occipital lobe. During nausea, functional connectivity increased, mainly between the posterior and mid- cingulate cortex. Limitations include, a paucity of studies and stimuli, subject demographics, inconsistent definition and measurement of nausea. Structures implicated in nausea are discussed in the context of knowledge of central pathways for interoception, emotion and autonomic control. Comparisons are made between nausea and other aversive sensations as multimodal aversive conscious experiences.
Collapse
Affiliation(s)
- C Varangot-Reille
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - G J Sanger
- Center for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - P L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - A Herranz-Gomez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - L Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - J de la Nava
- Faculty of Medicine, University of Granada, Granada, Spain
| | - F Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Wang T, Huang X, Wang J. Asthma's effect on brain connectivity and cognitive decline. Front Neurol 2023; 13:1065942. [PMID: 36818725 PMCID: PMC9936195 DOI: 10.3389/fneur.2022.1065942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the changes in dynamic voxel mirror homotopy connection (dVMHC) between cerebral hemispheres in patients with asthma. Methods Our study was designed using a case-control method. A total of 31 subjects with BA and 31 healthy subjects with matching basic information were examined using rsfMRI. We also calculated and obtained the dVMHC value between the cerebral cortexes. Results Compared with the normal control group, the dVMHC of the lingual gyrus (Ling) and the calcarine sulcus (CAL), which represented the visual network (VN), increased significantly in the asthma group, while the dVMHC of the medial superior frontal gyrus (MSFG), the anterior/middle/posterior cingulate gyrus (A/M/PCG), and the supplementary motor area (SMA) of the sensorimotor network decreased significantly in the asthma group. Conclusion This study showed that the ability of emotion regulation and the efficiency of visual and cognitive information processing in patients with BA was lower than in those in the HC group. The dVMHC analysis can be used to sensitively evaluate oxygen saturation, visual function changes, and attention bias caused by emotional disorders in patients with asthma, as well as to predict airway hyperresponsiveness, inflammatory progression, and dyspnea.
Collapse
Affiliation(s)
- Tao Wang
- Medical College of Nanchang University, Nanchang, China,The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China,*Correspondence: Jun Wang ✉
| |
Collapse
|
8
|
Peng Z, Zhang HT, Wang G, Zhang J, Qian S, Zhao Y, Zhang R, Wang W. Cerebral neurovascular alterations in stable chronic obstructive pulmonary disease: a preliminary fMRI study. PeerJ 2022; 10:e14249. [PMID: 36405017 PMCID: PMC9671032 DOI: 10.7717/peerj.14249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Cognitive impairment (CI) is very common in patients with chronic obstructive pulmonary disease (COPD). Cerebral structural and functional abnormalities have been reported in cognitively impaired patients with COPD, and the neurovascular coupling changes are rarely investigated. To address this issue, arterial spin labeling (ASL) and resting-state blood oxygenation level dependent (BOLD) fMRI techniques were used to determine whether any neurovascular changes in COPD patients. Methods Forty-five stable COPD patients and forty gender- and age-matched healthy controls were recruited. Furthermore, resting-state BOLD fMRI and ASL were acquired to calculate degree centrality (DC) and cerebral blood flow (CBF) respectively. The CBF-DC coupling and CBF/DC ratio were compared between the two groups. Results COPD patients showed abnormal CBF, DC and CBF/DC ratio in several regions. Moreover, lower CBF/DC ratio in the left lingual gyrus negatively correlated with naming scores, lower CBF/DC ratio in medial frontal cortex/temporal gyrus positively correlated with the Montreal Cognitive Assessment (MoCA), visuospatial/executive and delayed recall scores. Conclusion These findings may provide new potential insights into neuropathogenesis of cognition decline in stable COPD patients.
Collapse
Affiliation(s)
- Zhaohui Peng
- Department of Nuclear Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Medical Imaging, Changzheng Hospital, Shanghai, China
| | - Hong Tao Zhang
- Institute of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang, Henan, China
| | - Juntao Zhang
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Yajun Zhao
- Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| | - Ruijie Zhang
- Department of Radiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
| | - Wei Wang
- Department of Medical Imaging, Changzheng Hospital, Shanghai, China,Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| |
Collapse
|
9
|
Schottelkotte KM, Crone SA. Forebrain control of breathing: Anatomy and potential functions. Front Neurol 2022; 13:1041887. [PMID: 36388186 PMCID: PMC9663927 DOI: 10.3389/fneur.2022.1041887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The forebrain plays important roles in many critical functions, including the control of breathing. We propose that the forebrain is important for ensuring that breathing matches current and anticipated behavioral, emotional, and physiological needs. This review will summarize anatomical and functional evidence implicating forebrain regions in the control of breathing. These regions include the cerebral cortex, extended amygdala, hippocampus, hypothalamus, and thalamus. We will also point out areas where additional research is needed to better understand the specific roles of forebrain regions in the control of breathing.
Collapse
Affiliation(s)
- Karl M. Schottelkotte
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Abstract
The clinical term dyspnea (a.k.a. breathlessness or shortness of breath) encompasses at least three qualitatively distinct sensations that warn of threats to breathing: air hunger, effort to breathe, and chest tightness. Air hunger is a primal homeostatic warning signal of insufficient alveolar ventilation that can produce fear and anxiety and severely impacts the lives of patients with cardiopulmonary, neuromuscular, psychological, and end-stage disease. The sense of effort to breathe informs of increased respiratory muscle activity and warns of potential impediments to breathing. Most frequently associated with bronchoconstriction, chest tightness may warn of airway inflammation and constriction through activation of airway sensory nerves. This chapter reviews human and functional brain imaging studies with comparison to pertinent neurorespiratory studies in animals to propose the interoceptive networks underlying each sensation. The neural origins of their distinct sensory and affective dimensions are discussed, and areas for future research are proposed. Despite dyspnea's clinical prevalence and impact, management of dyspnea languishes decades behind the treatment of pain. The neurophysiological bases of current therapeutic approaches are reviewed; however, a better understanding of the neural mechanisms of dyspnea may lead to development of novel therapies and improved patient care.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States; Faculty of Health Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
11
|
Vafaee F, Shirzad S, Shamsi F, Boskabady MH. Neuroscience and treatment of asthma, new therapeutic strategies and future aspects. Life Sci 2021; 292:120175. [PMID: 34826435 DOI: 10.1016/j.lfs.2021.120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Asthma is an airway inflammatory disease that is affected by neurological and psychological factors. The aim of present review is to investigating the relationship between neural functions and neurobiological changes and asthma symptoms. MAIN METHODS The information in this article is provided from articles published in English and reputable database using appropriate keywords from 1970 to October 2020. KEY FINDINGS The symptoms of asthma such as cough, difficult breathing, and mucus secretion get worse when a person is suffering from stress, anxiety, and depression. The function of the insula, anterior cingulate cortex, and hypothalamic-pituitary-adrenal axis changes in response to stress and psychological disease; then the stress hormones are produced from neuroendocrine system, which leads to asthma exacerbation. The evidence represents that psychological therapies or neurological rehabilitation reduces the inflammation through modulating the activity of neurocircuitry and the function of brain centers involved in asthma. Moreover, the neurotrophins and neuropeptides are the key mediators in the neuro-immune interactions, which secrete from the airway nerves in response to brain signals, and they could be the target of many new therapies in asthma. SIGNIFICANCE This review provides an insight into the vital role of the central and peripheral nervous system in development and exacerbation of asthma and provides practical approaches and strategies on neural networks to improve the airway inflammation and asthma severity.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Huang CC, Lai YR, Wu FA, Kuo NY, Cheng BC, Tsai NW, Kung CT, Chiang YF, Lu CH. Detraining Effect on Pulmonary and Cardiovascular Autonomic Function and Functional Outcomes in Patients With Parkinson's Disease After Respiratory Muscle Training: An 18-Month Follow-Up Study. Front Neurol 2021; 12:735847. [PMID: 34744975 PMCID: PMC8566819 DOI: 10.3389/fneur.2021.735847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The effect of 3-month respiratory muscle training (RMT) on pulmonary and autonomic function and functional outcomes has been demonstrated in patients with Parkinson's disease (PD); however, there is a paucity of information on the durability of the training effect. In this study, we monitored the pulmonary and cardiovascular autonomic function and clinical severity scales until 18 months after the cessation of RMT to elucidate the detraining effect after RMT. Methods: All patients with PD receiving RMT were assessed with clinical severity scales as well as pulmonary and autonomic function tests at four different stages (baseline on enrollment, immediately after 3 months of RMT, and 6 and 18 months after cessation of RMT). A control group of PD patients who did not receive RMT was also recruited for comparison. Pulmonary function parameters, including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximum inspiratory pressure (MIP), and maximum expiratory pressure (MEP), were assessed. Cardiovascular autonomic function was assessed using measures including heart rate response to deep breathing (HRDB), Valsalva ratio, and baroreflex sensitivity. Clinical severity scores were also measured using the Hoehn and Yahr staging and the Unified Parkinson's Disease Rating Scale (UPDRS). Results: The results showed significant improvements in MIP, MEP, HRDB, and UPDRS immediately after RMT. Despite some decay, the improvements in pulmonary function (MIP and MEP) and functional outcomes (UPDRS) remained significant until 6 months of detraining (9 months after enrollment). However, the improvement in cardiovascular autonomic function (HRDB) was reversed after 6 months of detraining. Conclusions: Based on these findings, we recommend that RMT may be repeated after at least 6 months after previous session (9 months after enrollment) for patients with PD to maintain optimal therapeutic effects.
Collapse
Affiliation(s)
- Chih-Cheng Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yun-Ru Lai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-An Wu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Ying Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Fang Chiang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen, China
| |
Collapse
|
13
|
Palkovic B, Marchenko V, Zuperku EJ, Stuth EAE, Stucke AG. Multi-Level Regulation of Opioid-Induced Respiratory Depression. Physiology (Bethesda) 2021; 35:391-404. [PMID: 33052772 DOI: 10.1152/physiol.00015.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioids depress minute ventilation primarily by reducing respiratory rate. This results from direct effects on the preBötzinger Complex as well as from depression of the Parabrachial/Kölliker-Fuse Complex, which provides excitatory drive to preBötzinger Complex neurons mediating respiratory phase-switch. Opioids also depress awake drive from the forebrain and chemodrive.
Collapse
Affiliation(s)
- Barbara Palkovic
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Edward J Zuperku
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Astrid G Stucke
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Moy ML, Daniel RA, Cruz Rivera PN, Mongiardo MA, Goldstein RL, Higgins DM, Salat DH. Co-occurrence of pain and dyspnea in Veterans with COPD: Relationship to functional status and a pilot study of neural correlates using structural and functional magnetic resonance imaging. PLoS One 2021; 16:e0254653. [PMID: 34265003 PMCID: PMC8282042 DOI: 10.1371/journal.pone.0254653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Persons with COPD experience co-occurring dyspnea and pain. Little is known about the relationship between symptom co-occurrence with physical activity (PA) and exercise. Novel diagnostic tools are needed for accurate symptom discrimination. In this secondary analysis, we examined relationships between baseline assessments of pain, dyspnea, objectively measured PA, and exercise capacity in persons with COPD who previously enrolled in three PA studies. Pain was assessed with the bodily pain domain of the Veterans RAND-36 (VR-36), and dyspnea with the modified Medical Research Council (mMRC) scale. Average daily step count was assessed with the Omron HJ-720ITC or FitBit Zip pedometer, and exercise capacity with 6-minute walk test (6MWT). We also conducted a pilot neuroimaging study. Neuroimaging data were acquired on a Siemens 3-Tesla Magnetom Prismafit whole-body scanner. Analysis of variance assessed trends in daily step count and 6MWT distance across categories of co-occurring pain and dyspnea. General linear models examined relationships between cortical thickness and resting state functional connectivity (fc) with symptoms and functional status. In 373 Veterans, 98% were male with mean age 70.5± 8.3 years and FEV1% predicted 59 ± 21%. Compared to those with no co-occurrence of pain and dyspnea, those with co-occurrence walked 1,291-1,444 fewer steps per day and had an 80-85 m lower 6MWT distance. Ten males participated in the pilot neuroimaging study. Predominant findings were that lower cortical thickness and greater fc were associated with higher pain and dyspnea, p<0.05. Greater cortical thickness and lower fc were associated with higher daily step count and 6MWT distance, p<0.05. Regional patterns of associations differed for pain and dyspnea, suggesting that cortical thickness and fc may discriminate symptoms. Co-occurring dyspnea and pain in COPD are associated with significant reductions in PA and exercise capacity. It may be feasible for neuroimaging markers to discriminate between pain and dyspnea.
Collapse
Affiliation(s)
- Marilyn L. Moy
- Pulmonary, Critical Care, and Sleep Medicine Service, VA Boston Healthcare System, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Rinu A. Daniel
- Boston University School of Medicine, Boston, MA, United States of America
| | - Paola N. Cruz Rivera
- Pulmonary, Critical Care, and Sleep Medicine Service, VA Boston Healthcare System, Boston, MA, United States of America
| | - Maria A. Mongiardo
- Pulmonary, Critical Care, and Sleep Medicine Service, VA Boston Healthcare System, Boston, MA, United States of America
| | - Rebekah L. Goldstein
- Pulmonary, Critical Care, and Sleep Medicine Service, VA Boston Healthcare System, Boston, MA, United States of America
| | - Diana M. Higgins
- Boston University School of Medicine, Boston, MA, United States of America
- Anesthesiology, Critical Care, and Pain Medicine Service, VA Boston Healthcare System, Boston, MA, United States of America
| | - David H. Salat
- Harvard Medical School, Boston, MA, United States of America
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
15
|
Kassinopoulos M, Harper RM, Guye M, Lemieux L, Diehl B. Altered Relationship Between Heart Rate Variability and fMRI-Based Functional Connectivity in People With Epilepsy. Front Neurol 2021; 12:671890. [PMID: 34177777 PMCID: PMC8223068 DOI: 10.3389/fneur.2021.671890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Disruptions in central autonomic processes in people with epilepsy have been studied through evaluation of heart rate variability (HRV). Decreased HRV appears in epilepsy compared to healthy controls, suggesting a shift in autonomic balance toward sympathetic dominance; recent studies have associated HRV changes with seizure severity and outcome of interventions. However, the processes underlying these autonomic changes remain unclear. We examined the nature of these changes by assessing alterations in whole-brain functional connectivity, and relating those alterations to HRV. Methods: We examined regional brain activity and functional organization in 28 drug-resistant epilepsy patients and 16 healthy controls using resting-state functional magnetic resonance imaging (fMRI). We employed an HRV state-dependent functional connectivity (FC) framework with low and high HRV states derived from the following four cardiac-related variables: 1. RR interval, 2. root mean square of successive differences (RMSSD), 4. low-frequency HRV (0.04-0.15 Hz; LF-HRV) and high-frequency HRV (0.15-0.40 Hz; HF-HRV). The effect of group (epilepsy vs. controls), HRV state (low vs. high) and the interactions of group and state were assessed using a mixed analysis of variance (ANOVA). We assessed FC within and between 7 large-scale functional networks consisting of cortical regions and 4 subcortical networks, the amygdala, hippocampus, basal ganglia and thalamus networks. Results: Consistent with previous studies, decreased RR interval (increased heart rate) and decreased HF-HRV appeared in people with epilepsy compared to healthy controls. For both groups, fluctuations in heart rate were positively correlated with BOLD activity in bilateral thalamus and regions of the cerebellum, and negatively correlated with BOLD activity in the insula, putamen, superior temporal gyrus and inferior frontal gyrus. Connectivity strength in patients between right thalamus and ventral attention network (mainly insula) increased in the high LF-HRV state compared to low LF-HRV; the opposite trend appeared in healthy controls. A similar pattern emerged for connectivity between the thalamus and basal ganglia. Conclusion: The findings suggest that resting connectivity patterns between the thalamus and other structures underlying HRV expression are modified in people with drug-resistant epilepsy compared to healthy controls.
Collapse
Affiliation(s)
- Michalis Kassinopoulos
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Buckinghamshire, United Kingdom
| | - Ronald M. Harper
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Buckinghamshire, United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society, Buckinghamshire, United Kingdom
| |
Collapse
|
16
|
Jelinčić V, Van Diest I, Torta DM, von Leupoldt A. The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology 2021; 59:e13844. [PMID: 34009644 DOI: 10.1111/psyp.13844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Dyspnea or breathlessness is a symptom occurring in multiple acute and chronic illnesses, however, the understanding of the neural mechanisms underlying its subjective experience is limited. In this topical review, we propose neural oscillatory dynamics and cross-frequency coupling as viable candidates for a neural mechanism underlying respiratory perception, and a technique warranting more attention in respiration research. With the evidence for the potential of neural oscillations in the study of normal and disordered breathing coming from disparate research fields with a limited history of interdisciplinary collaboration, the main objective of the review was to converge the existing research and suggest future directions. The existing findings show that distinct limbic and cortical activations, as measured by hemodynamic responses, underlie dyspnea, however, the time-scale of these activations is not well understood. The recent findings of oscillatory neural activity coupled with the respiratory rhythm could provide the solution to this problem, however, more research with a focus on dyspnea is needed. We also touch on the findings of distinct spectral patterns underlying the changes in breathing due to experimental manipulations, meditation and disease. Subsequently, we suggest general research directions and specific research designs to supplement the current knowledge using neural oscillation techniques. We argue for the benefits of interdisciplinary collaboration and the converging of neuroimaging and behavioral methods to best explain the emergence of the subjective and aversive individual experience of dyspnea.
Collapse
Affiliation(s)
- Valentina Jelinčić
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Ilse Van Diest
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Finnegan SL, Harrison OK, Harmer CJ, Herigstad M, Rahman NM, Reinecke A, Pattinson KTS. Breathlessness in COPD: linking symptom clusters with brain activity. Eur Respir J 2021; 58:13993003.04099-2020. [PMID: 33875493 PMCID: PMC8607925 DOI: 10.1183/13993003.04099-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/04/2021] [Indexed: 11/11/2022]
Abstract
Background Current models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants. Methods A cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain–behaviour–breathlessness links. Results We successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared with the high symptom burden group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception). Conclusions This is the largest functional neuroimaging study of COPD to date, and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multimodal models of breathlessness in identifying behavioural phenotypes and for advancing understanding of differences in breathlessness burden. Towards individualised treatments for chronic breathlessness with functional neuroimaging: revealing the factors underlying the breathlessness experience in COPDhttps://bit.ly/3a8fXPt
Collapse
Affiliation(s)
- Sarah L Finnegan
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olivia K Harrison
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Catherine J Harmer
- Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Mari Herigstad
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Najib M Rahman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea Reinecke
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Kyle T S Pattinson
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Zhou X, Ma N, Song B, Wu Z, Liu G, Liu L, Yu L, Feng J. Optimal Organization of Functional Connectivity Networks for Segregation and Integration With Large-Scale Critical Dynamics in Human Brains. Front Comput Neurosci 2021; 15:641335. [PMID: 33867963 PMCID: PMC8044315 DOI: 10.3389/fncom.2021.641335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 12/04/2022] Open
Abstract
The optimal organization for functional segregation and integration in brain is made evident by the “small-world” feature of functional connectivity (FC) networks and is further supported by the loss of this feature that has been described in many types of brain disease. However, it remains unknown how such optimally organized FC networks arise from the brain's structural constrains. On the other hand, an emerging literature suggests that brain function may be supported by critical neural dynamics, which is believed to facilitate information processing in brain. Though previous investigations have shown that the critical dynamics plays an important role in understanding the relation between whole brain structural connectivity and functional connectivity, it is not clear if the critical dynamics could be responsible for the optimal FC network configuration in human brains. Here, we show that the long-range temporal correlations (LRTCs) in the resting state fMRI blood-oxygen-level-dependent (BOLD) signals are significantly correlated with the topological matrices of the FC brain network. Using structure-dynamics-function modeling approach that incorporates diffusion tensor imaging (DTI) data and simple cellular automata dynamics, we showed that the critical dynamics could optimize the whole brain FC network organization by, e.g., maximizing the clustering coefficient while minimizing the characteristic path length. We also demonstrated with a more detailed excitation-inhibition neuronal network model that loss of local excitation-inhibition (E/I) balance causes failure of critical dynamics, therefore disrupting the optimal FC network organization. The results highlighted the crucial role of the critical dynamics in forming an optimal organization of FC networks in the brain and have potential application to the understanding and modeling of abnormal FC configurations in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xinchun Zhou
- Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Ningning Ma
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, China
| | - Benseng Song
- Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Zhixi Wu
- Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Liwei Liu
- College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, China
| | - Lianchun Yu
- Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, China.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhang Y, Kong Y, Yang Y, Yin Y, Hou Z, Xu Z, Yuan Y. Asthma-Specific Temporal Variability Reveals the Effect of Group Cognitive Behavior Therapy in Asthmatic Patients. Front Neurol 2021; 12:615820. [PMID: 33776882 PMCID: PMC7994749 DOI: 10.3389/fneur.2021.615820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Group cognitive behavior therapy (GCBT) is a successful therapy for asthma. However, the neural biomarker of GCBT which could be used in clinic remains unclear. The temporal variability is a novel concept to characterize the dynamic functional connectivity (FC), which has many advantages as biomarker. Therefore, the aim of this study is to explore the potential difference of temporal variability between asthmatic patients and healthy controls, then determine the different patterns of temporal variability between pre- and post-treatment group and reveal the relationship between the variability and the symptoms improvement reduced by GCBT. Methods: At baseline, 40 asthmatic patients and 40 matched controls received resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments. After 8 weeks of GCBT treatment, 17 patients received fMRI scans, and assessments again. Temporal variability at baseline and post-treatment were calculated for further analysis. Results: Compared with controls, asthmatic patients showed widespread decreases in temporal variability. Moreover, the variability in both right caudate and left putamen were positively correlated with asthma control level. After GCBT, asthma control level and depression of patients were improved. Meanwhile, compared with pre-GCBT, patients after treatment showed lower variability in left opercular of Rolandic, right parahippocampal gyrus and right lingual gyrus, as well as higher variability in left temporal pole. Variability in regions which were found abnormal at baseline did not exhibit significant differences between post-GCBT and controls. Conclusions: Asthma-specific changes of dynamic functional connectivity may serve as promising underpinnings of GCBT for asthma. Clinical Trial Registration: http://www.chictr.org.cn/index.aspx, identifier: Chi-CTR-15007442.
Collapse
Affiliation(s)
- Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Youyong Kong
- Lab of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Ministry of Education, Southeast University, Nanjing, China
| | - Yuan Yang
- Department of Respiratory, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingyin Yin
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Abstract
The sensation that develops as a long breath hold continues is what this article is about. We term this sensation of an urge to breathe "air hunger." Air hunger, a primal sensation, alerts us to a failure to meet an urgent homeostatic need maintaining gas exchange. Anxiety, frustration, and fear evoked by air hunger motivate behavioral actions to address the failure. The unpleasantness and emotional consequences of air hunger make it the most debilitating component of clinical dyspnea, a symptom associated with respiratory, cardiovascular, and metabolic diseases. In most clinical populations studied, air hunger is the predominant form of dyspnea (colloquially, shortness of breath). Most experimental subjects can reliably quantify air hunger using rating scales, that is, there is a consistent relationship between stimulus and rating. Stimuli that increase air hunger include hypercapnia, hypoxia, exercise, and acidosis; tidal expansion of the lungs reduces air hunger. Thus, the defining experimental paradigm to evoke air hunger is to elevate the drive to breathe while mechanically restricting ventilation. Functional brain imaging studies have shown that air hunger activates the insular cortex (an integration center for perceptions related to homeostasis, including pain, food hunger, and thirst), as well as limbic structures involved with anxiety and fear. Although much has been learned about air hunger in the past few decades, much remains to be discovered, such as an accepted method to quantify air hunger in nonhuman animals, fundamental questions about neural mechanisms, and adequate and safe methods to mitigate air hunger in clinical situations. © 2021 American Physiological Society. Compr Physiol 11:1449-1483, 2021.
Collapse
Affiliation(s)
- Robert B Banzett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Lansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Andrew P Binks
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|
21
|
Li H, Xin H, Yu J, Yu H, Zhang J, Wang W, Peng D. Abnormal intrinsic functional hubs and connectivity in stable patients with COPD: a resting-state MRI study. Brain Imaging Behav 2021; 14:573-585. [PMID: 31187474 PMCID: PMC7160072 DOI: 10.1007/s11682-019-00130-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) affects a large population and is closely associated with cognitive impairment. However, the mechanisms of cognitive impairment in COPD patients have not been unraveled. This study investigated the change in patterns of intrinsic functional hubs using a degree centrality (DC) analysis. The connectivity between these abnormal hubs with the remaining brain was also investigated using functional connectivity (FC). Nineteen stable patients with COPD and 20 normal controls(NC) underwent functional magnetic resonance imaging (MRI) examinations and clinical and neuropsychologic assessments. We measured the voxel-wise DC across the whole brain gray matter and the seed-based FC between these abnormal hubs in the remaining brain matter; the group difference was calculated. A partial correlation analysis was performed to assess the relationship between the abnormal DC and clinical variables in COPD patients. Compared to NC, the patients with COPD exhibited significantly decreased DC in the right lingual gyrus (LG), bilateral supplementary motor area (SMA), and right paracentral lobule (PCL). A further seed-based FC analysis found that COPD patients demonstrated significantly decreased FC between these abnormal hubs in several brain areas, including the left cerebellum anterior lobe, left lingual gyrus, left fusiform gyrus, right insula, right inferior frontal gyrus, limbic lobe, cingulate gyrus, left putamen, lentiform nucleus, right precuneus, and right paracentral lobule. A partial correlation analysis showed that the decreased DC in the right PCL was positively correlated with the FEV1 and FEV1/FVC, and the decreased DC in the SMA was positively correlated with naming and pH in COPD patients. This study demonstrates that there are intrinsic functional hubs and connectivity alterations that may reflect the aberrant information communication in the brain of COPD patients. These findings may help provide new insight for understanding the mechanisms of COPD-related cognitive impairment from whole brain functional connections.
Collapse
Affiliation(s)
- Haijun Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Huizhen Xin
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jingjing Yu
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghui Yu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Zhang
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenjing Wang
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
22
|
Jung JY, Park CA, Lee YB, Kang CK. Investigation of Functional Connectivity Differences between Voluntary Respirations via Mouth and Nose Using Resting State fMRI. Brain Sci 2020; 10:brainsci10100704. [PMID: 33022977 PMCID: PMC7599777 DOI: 10.3390/brainsci10100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
The problems of mouth breathing have been well-studied, but the neural correlates of functional connectivity (FC) still remain unclear. We examined the difference in FC between the two types of breathing. For our study, 21 healthy subjects performed voluntary mouth and nasal breathing conditions during a resting state functional magnetic resonance imaging (fMRI). The region of interest (ROI) analysis of FC in fMRI was conducted using a MATLAB-based imaging software. The resulting analysis showed that mouth breathing had widespread connections and more left lateralization. Left inferior temporal gyrus had the most left lateralized connections in mouth breathing condition. Furthermore, the central opercular cortex FC showed a significant relationship with mouth breathing. For nasal breathing, the sensorimotor area had symmetry FC pattern. These findings suggest that various FCs difference appeared between two breathing conditions. The impacts of these differences need to be more investigated to find out potential link with cognitive decline in mouth breathing syndrome.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Korea;
| | - Chan-A Park
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Korea;
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Chang-Ki Kang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21936, Korea
- Correspondence: ; Tel.: +82-32-820-4110
| |
Collapse
|
23
|
Yu J, Wang W, Peng D, Luo J, Xin H, Yu H, Zhang J, Li L, Li H. Intrinsic low-frequency oscillation changes in multiple-frequency bands in stable patients with chronic obstructive pulmonary disease. Brain Imaging Behav 2020; 15:1922-1933. [PMID: 32880076 DOI: 10.1007/s11682-020-00385-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal local spontaneous brain activity during the resting state has been observed in chronic obstructive pulmonary disease (COPD). However, it is still largely unclear whether the abnormalities are related to specific frequency bands. Our purpose was to explore intrinsic neural activity changes in different frequency bands by using the amplitude of low-frequency fluctuation (ALFF) method in stable COPD patients. Nineteen stable COPD patients and twenty gender-, age- and education-matched normal controls (NCs) underwent functional magnetic resonance imaging scans, cognitive function tests and lung function tests. Two different frequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) were calculated and analyzed for frequency-dependent intrinsic neural activity by using the ALFF method. A two-way analysis of variance test was used to compare the main effects of the groups and the frequency bands in the ALFF method. Further post-hoc t-tests were used to compare the differences between COPD patients and NCs in terms of the different frequency bands. A Pearson's correlation analysis was performed to explore the relationship between the altered ALFF brain areas in the different frequency bands and the clinical evaluations in the COPD patients. There were main effects of the groups including significantly higher ALFF values in the right superior temporal gyrus (STG), the bilateral cerebellum posterior lobe (CPL), the right lingual gyrus (LG) and the right brainstem, and as well as significantly decreased ALFF values in the right inferior parietal lobule (IPL) and the angular. The main effect of frequency was demonstrated in the CPL, the STG, the prefrontal cortex and the middle cingulate gyrus. Furthermore, COPD patients exhibited more widespread alterations in intrinsic brain activity in the slow-5 band than in the slow-4 band. Moreover, the abnormal intrinsic brain activity in the slow-4 and slow-5 bands were associated with PaCO2 in COPD patients. These current results indicated that COPD patients showed abnormal intrinsic brain activity in two different frequency bands, and abnormal intrinsic neuronal activity in different brain regions could be better detected by slow-5 band. These observations may provide a neoteric view into understanding the local neural psychopathology in stable COPD patients.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjing Wang
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Luo
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huizhen Xin
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Honghui Yu
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Zhang
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Lan Li
- Jiangxi Provincial Institute of Parasitic Diseases Control, No.239, Gaoxin two road, Qingshanhu District, Nanchang, 330096, Jiangxi Province, People's Republic of China.
| | - Haijun Li
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
24
|
Reijnders T, Troosters T, Janssens W, Gosselink R, Langer D, Davenport PW, von Leupoldt A. Brain Activations to Dyspnea in Patients With COPD. Front Physiol 2020; 11:7. [PMID: 32038311 PMCID: PMC6992658 DOI: 10.3389/fphys.2020.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
We compared the perception and neural processing of respiratory sensations between 20 COPD patients and 20 healthy controls by means of respiratory-related evoked potentials (RREP) in the electroencephalogram (EEG). RREPs were induced by short inspiratory occlusions while 129-channel EEG was measured. COPD patients rated the occlusions as more intense and unpleasant (p's < 0.001) and showed higher mean amplitudes for the RREP components P1 (p = 0.0004), N1 (p = 0.024), P2 (p = 0.019), and P3 (p = 0.018). Our results indicate that COPD patients demonstrate greater perception and neural processing of respiratory sensations, which presumably reflects the highly aversive and attention-demanding character of these sensations for COPD patients.
Collapse
Affiliation(s)
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Chronic Disease, Metabolism and Aging, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Department of Chronic Disease, Metabolism and Aging, KU Leuven, Leuven, Belgium.,Respiratory Division, University Hospital Leuven, Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Daniel Langer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
25
|
Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson's Disease after Respiratory Muscle Training. J Clin Med 2020; 9:jcm9020316. [PMID: 31979103 PMCID: PMC7074532 DOI: 10.3390/jcm9020316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Both pulmonary function and autonomic function are impaired in patients with Parkinson’s diseases (PD). This study tested the hypothesis that respiratory muscle training (RMT) can not only improve pulmonary function, but also simultaneously improve cardiovascular autonomic function and short-term functional outcomes in patients with PD. Pulmonary function was measured by the forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximum inspiratory pressures (MIP), and maximum expiratory pressures (MEP). Cardiovascular autonomic function was measured by the heart rate response to deep breathing (HRDB), Valsalva ratio, baroreflex sensitivity, and spectral analysis. The functional and severity scores were measured by the Hoehn and Yahr stage and Unified Parkinson’s Disease Rating Scale (UPDRS). These measures were evaluated in patients with PD before and after 3 months of RMT, compared with a control group of PD patients without RMT. The results showed significant improvement of clinical scores (total UPDRS and UPDRS I, II and III) after RMT (p < 0.0001). Concerning pulmonary function, the parameters of MIP and MEP improved significantly. The parameters of cardiovascular function also improved after RMT, although only HRDB reached statistical significance. Based on the results of our study, RMT can not only improve both pulmonary and cardiovascular autonomic function, but can also improve short-term functional outcomes in patients with PD.
Collapse
|
26
|
Shahsavarani S, Abraham IT, Zimmerman BJ, Baryshnikov YM, Husain FT. Comparing Cyclicity Analysis With Pre-established Functional Connectivity Methods to Identify Individuals and Subject Groups Using Resting State fMRI. Front Comput Neurosci 2020; 13:94. [PMID: 32038211 PMCID: PMC6984040 DOI: 10.3389/fncom.2019.00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
The resting state fMRI time series appears to have cyclic patterns, which indicates presence of cyclic interactions between different brain regions. Such interactions are not easily captured by pre-established resting state functional connectivity methods including zero-lag correlation, lagged correlation, and dynamic time warping distance. These methods formulate the functional interaction between different brain regions as similar temporal patterns within the time series. To use information related to temporal ordering, cyclicity analysis has been introduced to capture pairwise interactions between multiple time series. In this study, we compared the efficacy of cyclicity analysis with aforementioned similarity-based techniques in representing individual-level and group-level information. Additionally, we investigated how filtering and global signal regression interacted with these techniques. We obtained and analyzed fMRI data from patients with tinnitus and neurotypical controls at two different days, a week apart. For both patient and control groups, we found that the features generated by cyclicity and correlation (zero-lag and lagged) analyses were more reliable than the features generated by dynamic time warping distance in identifying individuals across visits. The reliability of all features, except those generated by dynamic time warping, improved as the global signal was regressed. Nevertheless, removing fluctuations >0.1 Hz deteriorated the reliability of all features. These observations underscore the importance of choosing appropriate preprocessing steps while evaluating different analytical methods in describing resting state functional interactivity. Further, using different machine learning techniques including support vector machines, discriminant analyses, and convolutional neural networks, our results revealed that the manifestation of the group-level information within all features was not sufficient enough to dissociate tinnitus patients from controls with high sensitivity and specificity. This necessitates further investigation regarding the representation of group-level information within different features to better identify tinnitus-related alternation in the functional organization of the brain. Our study adds to the growing body of research on developing diagnostic tools to identify neurological disorders, such as tinnitus, using resting state fMRI data.
Collapse
Affiliation(s)
- Somayeh Shahsavarani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ivan T Abraham
- Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Benjamin J Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yuliy M Baryshnikov
- Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Mathematics, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
27
|
The effect of anxiety on brain activation patterns in response to inspiratory occlusions: an fMRI study. Sci Rep 2019; 9:15045. [PMID: 31636310 PMCID: PMC6803655 DOI: 10.1038/s41598-019-51396-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Respiratory sensations such as breathlessness are prevalent in many diseases and are amplified by increased levels of anxiety. Cortical activation in response to inspiratory occlusions in high- and low-anxious individuals was found different in previous studies using the respiratory-related evoked potential method. However, specific brain areas showed different activation patterns remained unknown in these studies. Therefore, the purpose of this study was to compare cortical and subcortical neural substrates of respiratory sensation in response to inspiratory mechanical occlusion stimuli between high- and low-anxious individuals using functional magnetic resonance imaging (fMRI). In addition, associations between brain activation patterns and levels of anxiety, and breathlessness were examined. Thirty-four (17 high- and 17 low-anxious) healthy non-smoking adults with normal lung function completed questionnaires on anxiety (State Trait Anxiety Inventory - State), and participated in a transient inspiratory occlusion fMRI experiment. The participants breathed with a customized face-mask while respiration was repeatedly interrupted by a transient inspiratory occlusion of 150-msec, delivered every 2 to 4 breaths. Breathlessness was assessed by self-report. At least 32 occluded breaths were collected for data analysis. The results showed that compared to the low-anxious group, the high-anxious individuals demonstrated significantly greater neural activations in the hippocampus, insula, and middle cingulate gyrus in response to inspiratory occlusions. Moreover, a significant relationship was found between anxiety levels and activations of the right inferior parietal gyrus, and the right precuneus. Additionally, breathlessness levels were significantly associated with activations of the bilateral thalamus, bilateral insula and bilateral cingulate gyrus. The above evidences support stronger recruitment of emotion-related cortical and subcortical brain areas in higher anxious individuals, and thus these areas play an important role in respiratory mechanosensation mediated by anxiety.
Collapse
|
28
|
Li Q, Xi Y, Zhang M, Liu L, Tang X. Distinct Mechanism of Audiovisual Integration With Informative and Uninformative Sound in a Visual Detection Task: A DCM Study. Front Comput Neurosci 2019; 13:59. [PMID: 31555115 PMCID: PMC6727739 DOI: 10.3389/fncom.2019.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 02/03/2023] Open
Abstract
Previous studies have shown that task-irrelevant auditory information can provide temporal clues for the detection of visual targets and improve visual perception; such sounds are called informative sounds. The neural mechanism of the integration of informative sound and visual stimulus has been investigated extensively, using behavioral measurement or neuroimaging methods such as functional magnetic resonance imaging (fMRI) and event-related potential (ERP), but the dynamic processes of audiovisual integration cannot be characterized formally in terms of directed neuronal coupling. The present study adopts dynamic causal modeling (DCM) of fMRI data to identify changes in effective connectivity in the hierarchical brain networks that underwrite audiovisual integration and memory. This allows us to characterize context-sensitive changes in neuronal coupling and show how visual processing is contextualized by the processing of informative and uninformative sounds. Our results show that audiovisual integration with informative and uninformative sounds conforms to different optimal models in the two conditions, indicating distinct neural mechanisms of audiovisual integration. The findings also reveal that a sound is uninformative owing to low-level automatic audiovisual integration and informative owing to integration in high-level cognitive processes.
Collapse
Affiliation(s)
- Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yang Xi
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China.,School of Computer Science, Northeast Electric Power University, Jilin, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyu Tang
- School of Psychology, Liaoning Normal University, Dalian, China
| |
Collapse
|
29
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Abstract
Respiratory failure is common during acute exacerbation of chronic obstructive pulmonary disease (AE-COPD). Phrenic nerve conduction (PNC), transcranial magnetic stimulation (TMS), and cervical magnetic stimulation (CMS) are of great value in identifying the feature and site of AE-COPD.PNC, TMS, and CMS were performed in 20 AE-COPD patients with respiratory failure, and re-examined after weaning. Latencies and amplitudes of the diaphragmatic compound muscle action potential (dCMAP), motor evoked potential of the diaphragm (dMEP) evoked by TMS and CMS, and central motor conduction time (CMCT) were measured. Blood gas analysis and serum electrolyte levels were also evaluated. The results were compared with those from 20 healthy subjects.AE-COPD patients showed prolonged CMCT and latencies of dCMAP and dMEP, decreased amplitudes of dCMAP and dMEP evoked by CMS, while CMCT and the latency of dMEP evoked by TMS were shortened after weaning. Significant correlation was identified between arterial blood gas analysis, serum electrolyte levels, disease duration, the duration of mechanical ventilation and the electrophysiological findings in AE-COPD patients prior to weaning.The central and peripheral respiratory pathway is involved in AE-COPD. Central respiratory pathway function is improved after weaning in AE-COPD patients with respiratory failure.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, Third Central Hospital of Tianjin
- Tianjin Institute of Hepatobiliary Disease
- Tianjin Key Laboratory of Artificial Cell
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Na Liu
- Department of Neurology, Third Central Hospital of Tianjin
- Tianjin Institute of Hepatobiliary Disease
- Tianjin Key Laboratory of Artificial Cell
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Zhecheng Zhang
- Department of Neurology, Third Central Hospital of Tianjin
- Tianjin Institute of Hepatobiliary Disease
- Tianjin Key Laboratory of Artificial Cell
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| |
Collapse
|
31
|
Morélot‐Panzini C. Respiratory‐related cortical activity in patients with COPD and aged normal individuals: towards a different vision of dyspnoea? J Physiol 2018; 596:6137-6138. [DOI: 10.1113/jp276761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Capucine Morélot‐Panzini
- AP‐HPGroupe Hospitalier Pitié‐Salpêtrière Charles FoixService de PneumologieMédecine Intensive et Réanimation, (Département “R3S”) F‐75013 Paris France
- Sorbonne UniversitéINSERM UMRS1158 Neurophysiologie respiratoire expérimentale et clinique F‐75005 Paris France
| |
Collapse
|
32
|
Noto T, Zhou G, Schuele S, Templer J, Zelano C. Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox. Chem Senses 2018; 43:583-597. [PMID: 29985980 PMCID: PMC6150778 DOI: 10.1093/chemse/bjy045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nasal inhalation is the basis of olfactory perception and drives neural activity in olfactory and limbic brain regions. Therefore, our ability to investigate the neural underpinnings of olfaction and respiration can only be as good as our ability to characterize features of respiratory behavior. However, recordings of natural breathing are inherently nonstationary, nonsinusoidal, and idiosyncratic making feature extraction difficult to automate. The absence of a freely available computational tool for characterizing respiratory behavior is a hindrance to many facets of olfactory and respiratory neuroscience. To solve this problem, we developed BreathMetrics, an open-source tool that automatically extracts the full set of features embedded in human nasal airflow recordings. Here, we rigorously validate BreathMetrics' feature estimation accuracy on multiple nasal airflow datasets, intracranial electrophysiological recordings of human olfactory cortex, and computational simulations of breathing signals. We hope this tool will allow researchers to ask new questions about how respiration relates to body, brain, and behavior.
Collapse
Affiliation(s)
- Torben Noto
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward, Chicago, IL, USA
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward, Chicago, IL, USA
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward, Chicago, IL, USA
| | - Jessica Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward, Chicago, IL, USA
| |
Collapse
|
33
|
Wang W, Li H, Peng D, Luo J, Xin H, Yu H, Yu J. Abnormal intrinsic brain activities in stable patients with COPD: a resting-state functional MRI study. Neuropsychiatr Dis Treat 2018; 14:2763-2772. [PMID: 30425494 PMCID: PMC6200435 DOI: 10.2147/ndt.s180325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The majority of previous neuroimaging studies have reported both structural and functional changes in COPD, whereas the intrinsic low-frequency oscillations changes and the relationship between the abnormal brain regions and the clinical performances remain unknown. The present study was conducted with the aim of evaluating the intrinsic brain activity in COPD patients using the amplitude of low-frequency fluctuation (ALFF) method. METHODS All participants, including 19 stable patients with COPD and 20 normal controls (NCs) matched in age, sex, and education, underwent resting-state functional MRI scans and performed cognitive function tests and respiratory functions tests. The local spontaneous brain activity was examined using the voxel-wise ALFF. Pearson's correlation analysis was used to investigate the relationships between the brain regions with altered ALFF signal values and the clinical features in COPD patients. RESULTS Compared with the NCs, COPD patients showed significantly lower cognitive function scores. Also, lower ALFF areas in the cluster of the posterior cingulate cortex (PCC) and precuneus, as well as a higher ALFF area in the brainstem were also found in COPD patients. The mean ALFF values in the PCC, precuneus, and brainstem showed high sensitivity and specificity in operating characteristic curves analysis, which might have the ability to distinguish COPD from NCs. Meanwhile, the mean signal values of the lower ALFF cluster displayed significant positive correlations with FEV1/FVC proportion and significant negative correlation with PaCO2; the higher ALFF cluster showed significant positive correlation with FEV1 proportion in COPD. CONCLUSION According to the results of the present study, the COPD patients showed abnormal intrinsic brain activities in the precuneus, PCC, and brainstem, which might provide useful information to better understand the underlying pathophysiology of cognitive impairment.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juan Luo
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Huizhen Xin
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghui Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Yu
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
34
|
Charususin N, Dacha S, Gosselink R, Decramer M, Von Leupoldt A, Reijnders T, Louvaris Z, Langer D. Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review. Expert Rev Respir Med 2017; 12:67-79. [DOI: 10.1080/17476348.2018.1398084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Noppawan Charususin
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Physical Therapy, Thammasat University, Pathumthani, Thailand
| | - Sauwaluk Dacha
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Rik Gosselink
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Marc Decramer
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
| | - Andreas Von Leupoldt
- Department of Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Reijnders
- Department of Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Zafeiris Louvaris
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, “M. Simou, and G.P. Livanos Laboratories”, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniel Langer
- Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Ma S, Jiang S, Peng R, Zhu Q, Sun H, Li J, Jia X, Goldberg I, Yu L, Luo C. Altered Local Spatiotemporal Consistency of Resting-State BOLD Signals in Patients with Generalized Tonic-Clonic Seizures. Front Comput Neurosci 2017; 11:90. [PMID: 29033811 PMCID: PMC5627153 DOI: 10.3389/fncom.2017.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to evaluate the spatiotemporal Consistency of spontaneous activities in local brain regions in patients with generalized tonic-clonic seizures (GTCS). The resting-state fMRI data were acquired from nineteen patients with GTCS and twenty-two matched healthy subjects. FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) metric was used to analyze the spontaneous activity in whole brain. The FOCA difference between two groups were detected using a two sample t-test analysis. Correlations between the FOCA values and features of seizures were analyzed. The findings of this study showed that patients had significantly increased FOCA in motor-related cortex regions, including bilateral supplementary motor area, paracentral lobule, precentral gyrus and left basal ganglia, as well as a substantial reduction of FOCA in regions of default mode network (DMN) and parietal lobe. In addition, several brain regions in DMN demonstrated more reduction with longer duration of epilepsy and later onset age, and the motor-related regions showed higher FOCA value in accompany with later onset age. These findings implicated the abnormality of motor-related cortical network in GTCS which were associated with the genesis and propagation of epileptiform activity. And the decreased FOCA in DMN might reflect the intrinsic disturbance of brain activity. Moreover, our study supported that the FOCA might be potential tool to investigate local brain spontaneous activity related with the epileptic activity, and to provide important insights into understanding the underlying pathophysiological mechanisms of GTCS.
Collapse
Affiliation(s)
- Shuai Ma
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Peng
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhu
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongbin Sun
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jianfu Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Jia
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ilan Goldberg
- Neurology Department, Wolfson Medical Center, Holon, Israel
| | - Liang Yu
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
Abnormal Functional Connectivity of Ventral Anterior Insula in Asthmatic Patients with Depression. Neural Plast 2017; 2017:7838035. [PMID: 28680706 PMCID: PMC5478859 DOI: 10.1155/2017/7838035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the underlying mechanism of depression in asthmatic patients, the ReHo in the insula and its FC was used to probe the differences between depressed asthmatic (DA) and nondepressed asthmatic (NDA) patients. Methods 18 DA patients, 24 NDA patients, and 60 healthy controls (HCs) received resting-state fMRI scan, severity of depression, and asthma control assessment. Results DA patients showed increased FC between the left ventral anterior insula (vAI) and the left middle temporal gyrus compared with both NDA and HC groups. In addition, compared with HCs, the DA and NDA patients both exhibited increased FC between the left vAI and the right anterior cingulate cortex (ACC), decreased FC between the left vAI and the bilateral parietal lobe, and increased FC between the right vAI and the left putamen and the right caudate, respectively. Furthermore, the increased FC between the left vAI and the right ACC could differentiate HCs from both DA and NDA patients, and the increased FC between the right vAI and both the left putamen and the right caudate could separate NDA patients from HCs. Conclusions This study confirmed that abnormal vAI FC may be involved in the neuropathology of depression in asthma. The increased FC between the left vAI and the left MTG could distinguish DA from the NDA and HC groups.
Collapse
|
37
|
Scioscia G, Blanco I, Arismendi E, Burgos F, Gistau C, Foschino Barbaro MP, Celli B, O'Donnell DE, Agustí A. Different dyspnoea perception in COPD patients with frequent and infrequent exacerbations. Thorax 2016; 72:117-121. [DOI: 10.1136/thoraxjnl-2016-208332] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/17/2023]
|