1
|
Farah R, Dworetsky A, Coalson RS, Petersen SE, Schlaggar BL, Rosch KS, Horowitz-Kraus T. An executive-functions-based reading training enhances sensory-motor systems integration during reading fluency in children with dyslexia. Cereb Cortex 2024; 34:bhae166. [PMID: 38664864 PMCID: PMC11045473 DOI: 10.1093/cercor/bhae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The Simple View of Reading model suggests that intact language processing and word decoding lead to proficient reading comprehension, with recent studies pointing at executive functions as an important component contributing to reading proficiency. Here, we aimed to determine the underlying mechanism(s) for these changes. Participants include 120 8- to 12-year-old children (n = 55 with dyslexia, n = 65 typical readers) trained on an executive functions-based reading program, including pre/postfunctional MRI and behavioral data collection. Across groups, improved word reading was related to stronger functional connections within executive functions and sensory networks. In children with dyslexia, faster and more accurate word reading was related to stronger functional connections within and between sensory networks. These results suggest greater synchronization of brain systems after the intervention, consistent with the "neural noise" hypothesis in children with dyslexia and support the consideration of including executive functions as part of the Simple View of Reading model.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Faculty of Biomedical Engineering, Technion, Haifa, 3200003, Israel
| | - Ally Dworetsky
- Neurology and Radiology at Washington University Medical School, St Louis, MO, United States
| | - Rebecca S Coalson
- Neurology and Radiology at Washington University Medical School, St Louis, MO, United States
| | - Steven E Petersen
- Department of Neurology, Washington University Medical School, 1 Brookings Dr, St. Louis, MO 63130, United States
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, 707 North Broadway Baltimore, MD 21205, United States
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, MD 21287, United States
| | - Keri S Rosch
- Kennedy Krieger Institute, 707 North Broadway Baltimore, MD 21205, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, MD 21287, United States
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Faculty of Biomedical Engineering, Technion, Haifa, 3200003, Israel
- Kennedy Krieger Institute, 707 North Broadway Baltimore, MD 21205, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Lei VLC, Leong TI, Leong CT, Liu L, Choi CU, Sereno MI, Li D, Huang R. Phase-encoded fMRI tracks down brainstorms of natural language processing with subsecond precision. Hum Brain Mapp 2024; 45:e26617. [PMID: 38339788 PMCID: PMC10858339 DOI: 10.1002/hbm.26617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Natural language processing unfolds information overtime as spatially separated, multimodal, and interconnected neural processes. Existing noninvasive subtraction-based neuroimaging techniques cannot simultaneously achieve the spatial and temporal resolutions required to visualize ongoing information flows across the whole brain. Here we have developed rapid phase-encoded designs to fully exploit the temporal information latent in functional magnetic resonance imaging data, as well as overcoming scanner noise and head-motion challenges during overt language tasks. We captured real-time information flows as coherent hemodynamic waves traveling over the cortical surface during listening, reading aloud, reciting, and oral cross-language interpreting tasks. We were able to observe the timing, location, direction, and surge of traveling waves in all language tasks, which were visualized as "brainstorms" on brain "weather" maps. The paths of hemodynamic traveling waves provide direct evidence for dual-stream models of the visual and auditory systems as well as logistics models for crossmodal and cross-language processing. Specifically, we have tracked down the step-by-step processing of written or spoken sentences first being received and processed by the visual or auditory streams, carried across language and domain-general cognitive regions, and finally delivered as overt speeches monitored through the auditory cortex, which gives a complete picture of information flows across the brain during natural language functioning. PRACTITIONER POINTS: Phase-encoded fMRI enables simultaneous imaging of high spatial and temporal resolution, capturing continuous spatiotemporal dynamics of the entire brain during real-time overt natural language tasks. Spatiotemporal traveling wave patterns provide direct evidence for constructing comprehensive and explicit models of human information processing. This study unlocks the potential of applying rapid phase-encoded fMRI to indirectly track the underlying neural information flows of sequential sensory, motor, and high-order cognitive processes.
Collapse
Affiliation(s)
- Victoria Lai Cheng Lei
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Teng Ieng Leong
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Cheok Teng Leong
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| | - Lili Liu
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| | - Chi Un Choi
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
| | - Martin I. Sereno
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Defeng Li
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Ruey‐Song Huang
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| |
Collapse
|
3
|
Urale PWB, Zhu L, Gough R, Arnold D, Schwarzkopf DS. Extrastriate activity reflects the absence of local retinal input. Conscious Cogn 2023; 114:103566. [PMID: 37639775 DOI: 10.1016/j.concog.2023.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The physiological blind spot corresponds to the optic disc where the retina contains no light-detecting photoreceptor cells. Our perception seemingly fills in this gap in input. Here we suggest that rather than an active process, such perceptual filling-in could instead be a consequence of the integration of visual inputs at higher stages of processing discounting the local absence of retinal input. Using functional brain imaging, we resolved the retinotopic representation of the physiological blind spot in early human visual cortex and measured responses while participants perceived filling-in. Responses in early visual areas simply reflected the absence of visual input. In contrast, higher extrastriate regions responded more to stimuli in the eye containing the blind spot than the fellow eye. However, this signature was independent of filling-in. We argue that these findings agree with philosophical accounts that posit that the concept of filling-in of absent retinal input is unnecessary.
Collapse
Affiliation(s)
- Poutasi W B Urale
- School of Optometry & Vision Science, University of Auckland, New Zealand
| | - Lydia Zhu
- School of Optometry & Vision Science, University of Auckland, New Zealand
| | - Roberta Gough
- School of Optometry & Vision Science, University of Auckland, New Zealand
| | - Derek Arnold
- School of Psychology, University of Queensland, Brisbane, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Dietrich Samuel Schwarzkopf
- School of Optometry & Vision Science, University of Auckland, New Zealand; Experimental Psychology, University College London, United Kingdom.
| |
Collapse
|
4
|
Lei VLC, Leong TI, Leong CT, Liu L, Choi CU, Sereno MI, Li D, Huang RS. Phase-encoded fMRI tracks down brainstorms of natural language processing with sub-second precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542546. [PMID: 37398177 PMCID: PMC10312422 DOI: 10.1101/2023.05.29.542546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The human language system interacts with cognitive and sensorimotor regions during natural language processing. However, where, when, and how these processes occur remain unclear. Existing noninvasive subtraction-based neuroimaging techniques cannot simultaneously achieve the spatial and temporal resolutions required to visualize ongoing information flows across the whole brain. Here we have developed phase-encoded designs to fully exploit the temporal information latent in functional magnetic resonance imaging (fMRI) data, as well as overcoming scanner noise and head-motion challenges during overt language tasks. We captured neural information flows as coherent waves traveling over the cortical surface during listening, reciting, and oral cross-language interpreting. The timing, location, direction, and surge of traveling waves, visualized as 'brainstorms' on brain 'weather' maps, reveal the functional and effective connectivity of the brain in action. These maps uncover the functional neuroanatomy of language perception and production and motivate the construction of finer-grained models of human information processing.
Collapse
Affiliation(s)
| | - Teng Ieng Leong
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheok Teng Leong
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Lili Liu
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chi Un Choi
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Defeng Li
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
5
|
Sereno MI, Sood MR, Huang RS. Topological Maps and Brain Computations From Low to High. Front Syst Neurosci 2022; 16:787737. [PMID: 35747394 PMCID: PMC9210993 DOI: 10.3389/fnsys.2022.787737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
We first briefly summarize data from microelectrode studies on visual maps in non-human primates and other mammals, and characterize differences among the features of the approximately topological maps in the three main sensory modalities. We then explore the almost 50% of human neocortex that contains straightforward topological visual, auditory, and somatomotor maps by presenting a new parcellation as well as a movie atlas of cortical area maps on the FreeSurfer average surface, fsaverage. Third, we review data on moveable map phenomena as well as a recent study showing that cortical activity during sensorimotor actions may involve spatially locally coherent traveling wave and bump activity. Finally, by analogy with remapping phenomena and sensorimotor activity, we speculate briefly on the testable possibility that coherent localized spatial activity patterns might be able to ‘escape’ from topologically mapped cortex during ‘serial assembly of content’ operations such as scene and language comprehension, to form composite ‘molecular’ patterns that can move across some cortical areas and possibly return to topologically mapped cortex to generate motor output there.
Collapse
Affiliation(s)
- Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
- *Correspondence: Martin I. Sereno,
| | - Mariam Reeny Sood
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
6
|
Rima S, Schmid MC. Reading Specific Small Saccades Predict Individual Phonemic Awareness and Reading Speed. Front Neurosci 2021; 15:663242. [PMID: 34966251 PMCID: PMC8710594 DOI: 10.3389/fnins.2021.663242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Small fixational eye-movements are a fundamental aspect of vision and thought to reflect fine shifts in covert attention during active viewing. While the perceptual benefits of these small eye movements have been demonstrated during a wide range of experimental tasks including during free viewing, their function during reading remains surprisingly unclear. Previous research demonstrated that readers with increased microsaccade rates displayed longer reading speeds. To what extent increased fixational eye movements are, however, specific to reading and might be indicative of reading skill deficits remains, however, unknown. To address this topic, we compared the eye movement scan paths of 13 neurotypical individuals and 13 subjects diagnosed with developmental dyslexia during short story reading and free viewing of natural scenes. We found that during reading only, dyslexics tended to display small eye movements more frequently compared to neurotypicals, though this effect was not significant at the population level, as it could also occur in slow readers not diagnosed as dyslexics. In line with previous research, neurotypical readers had twice as many regressive compared to progressive microsaccades, which did not occur during free viewing. In contrast, dyslexics showed similar amounts of regressive and progressive small fixational eye movements during both reading and free viewing. We also found that participants with smaller fixational saccades from both neurotypical and dyslexic samples displayed reduced reading speeds and lower scores during independent tests of reading skill. Slower readers also displayed greater variability in the landing points and temporal occurrence of their fixational saccades. Both the rate and spatio-temporal variability of fixational saccades were associated with lower phonemic awareness scores. As none of the observed differences between dyslexics and neurotypical readers occurred during control experiments with free viewing, the reported effects appear to be directly related to reading. In summary, our results highlight the predictive value of small saccades for reading skill, but not necessarily for developmental dyslexia.
Collapse
Affiliation(s)
- Samy Rima
- Department of Sport and Neuroscience, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael C Schmid
- Department of Sport and Neuroscience, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S. Multisensory integration in cortical regions responding to locomotion-related visual and somatomotor signals. Neuroimage 2021; 244:118581. [PMID: 34543763 DOI: 10.1016/j.neuroimage.2021.118581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
During real-world locomotion, in order to be able to move along a path or avoid an obstacle, continuous changes in self-motion direction (i.e. heading) are needed. Control of heading changes during locomotion requires the integration of multiple signals (i.e., visual, somatomotor, vestibular). Recent fMRI studies have shown that both somatomotor areas (human PEc [hPEc], human PE [hPE], primary somatosensory cortex [S-I]) and egomotion visual regions (cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) respond to either leg movements and egomotion-compatible visual stimulations, suggesting a role in the analysis of both visual attributes of egomotion and somatomotor signals with the aim of guiding locomotion. However, whether these regions are able to integrate egomotion-related visual signals with somatomotor inputs coming from leg movements during heading changes remains an open question. Here we used a combined approach of individual functional localizers and task-evoked activity by fMRI. In thirty subjects we first localized three egomotion areas (CSv, pCi, PIC) and three somatomotor regions (S-I, hPE, hPEc). Then, we tested their responses in a multisensory integration experiment combining visual and somatomotor signals relevant to locomotion in congruent or incongruent trials. We used an fMR-adaptation paradigm to explore the sensitivity to the repeated presentation of these bimodal stimuli in the six regions of interest. Results revealed that hPE, S-I and CSv showed an adaptation effect regardless of congruency, while PIC, pCi and hPEc showed sensitivity to congruency. PIC exhibited a preference for congruent trials compared to incongruent trials. Areas pCi and hPEc exhibited an adaptation effect only for congruent and incongruent trials, respectively. PIC, pCi and hPEc sensitivity to the congruency relationship between visual (locomotion-compatible) cues and (leg-related) somatomotor inputs suggests that these regions are involved in multisensory integration processes, likely in order to guide/adjust leg movements during heading changes.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| |
Collapse
|
8
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
9
|
de Haas B, Sereno MI, Schwarzkopf DS. Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity. J Neurosci 2021; 41:5511-5521. [PMID: 34016715 PMCID: PMC8221599 DOI: 10.1523/jneurosci.2415-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."
Collapse
Affiliation(s)
- Benjamin de Haas
- Department of Psychology, Justus Liebig Universität, 35394 Giessen, Germany
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
| | - Martin I Sereno
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- SDSU Imaging Center, San Diego State University, San Diego, California 92182
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
11
|
Tamè L, Tucciarelli R, Sadibolova R, Sereno MI, Longo MR. Reconstructing neural representations of tactile space. Neuroimage 2021; 229:117730. [PMID: 33454399 DOI: 10.1016/j.neuroimage.2021.117730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023] Open
Abstract
Psychophysical experiments have demonstrated large and highly systematic perceptual distortions of tactile space. Such a space can be referred to our experience of the spatial organisation of objects, at representational level, through touch, in analogy with the familiar concept of visual space. We investigated the neural basis of tactile space by analysing activity patterns induced by tactile stimulation of nine points on a 3 × 3 square grid on the hand dorsum using functional magnetic resonance imaging. We used a searchlight approach within pre-defined regions of interests to compute the pairwise Euclidean distances between the activity patterns elicited by tactile stimulation. Then, we used multidimensional scaling to reconstruct tactile space at the neural level and compare it with skin space at the perceptual level. Our reconstructions of the shape of skin space in contralateral primary somatosensory and motor cortices reveal that it is distorted in a way that matches the perceptual shape of skin space. This suggests that early sensorimotor areas critically contribute to the distorted internal representation of tactile space on the hand dorsum.
Collapse
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; School of Psychology, University of Kent, Canterbury CT2 7NP, UK.
| | - Raffaele Tucciarelli
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Renata Sadibolova
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; Department of Psychology, Goldsmith, University of London, London, UK
| | - Martin I Sereno
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK; University College London, University of London, London, UK; San Diego State University, San Diego, USA
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK.
| |
Collapse
|
12
|
Shain C, Blank IA, van Schijndel M, Schuler W, Fedorenko E. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia 2020; 138:107307. [PMID: 31874149 PMCID: PMC7140726 DOI: 10.1016/j.neuropsychologia.2019.107307] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain's response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.
Collapse
Affiliation(s)
| | - Idan Asher Blank
- University of California Los Angeles, 90024, USA; Massachusetts Institute of Technology, 02139, USA.
| | | | - William Schuler
- The Ohio State University, 43210, USA; Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| | - Evelina Fedorenko
- Massachusetts General Hospital, Program in Speech and Hearing Bioscience and Technology, 02115, USA.
| |
Collapse
|
13
|
Abstract
Facial affect recognition deficits following traumatic brain injury (TBI) have been well documented, as has their relationship with impairment in several other cognitive domains. However, little is known about the neurobiological mechanisms underlying affect recognition deficits, in particular mechanisms underlying different aspects of facial affect recognition (e.g., perceptual and interpretive processes). In the current study, 33 adults with moderate-to-severe TBI and 24 demographically matched healthy comparison (HC) participants completed an fMRI facial affect recognition study. While in the scanner, participants were asked to match the affect of a target face to either (a) one of two faces differing in affect (perceptual condition) or (b) one of two written affect labels (interpretative condition). In both groups we found activations in regions typically involved in affect recognition. Our results revealed that in the perceptual condition individuals with TBI tended to activate the left dorsolateral prefrontal cortex less than HCs, and within the HC group individuals with higher perceptual affect recognition scores showed higher levels of activation in the same brain region. Individuals with TBI who were specifically impaired at interpretative affect recognition showed less activation than HCs in the right fusiform gyrus. Moreover, in the labeling condition individuals with TBI tended to de-activate medial prefrontal regions less than HCs. A region of interest analysis revealed that individuals with TBI showed significantly less activation than HCs in the FFA for all the contrasts of interest. Our results suggest involvement of several brain regions in facial affect recognition impairment post TBI, and provide neurobiological support for the notion that distinct aspects of facial affect recognition can be differentially impaired following TBI.
Collapse
|
14
|
Chen CF, Kreutz-Delgado K, Sereno MI, Huang RS. Unraveling the spatiotemporal brain dynamics during a simulated reach-to-eat task. Neuroimage 2019; 185:58-71. [PMID: 30315910 PMCID: PMC6325169 DOI: 10.1016/j.neuroimage.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
The reach-to-eat task involves a sequence of action components including looking, reaching, grasping, and feeding. While cortical representations of individual action components have been mapped in human functional magnetic resonance imaging (fMRI) studies, little is known about the continuous spatiotemporal dynamics among these representations during the reach-to-eat task. In a periodic event-related fMRI experiment, subjects were scanned while they reached toward a food image, grasped the virtual food, and brought it to their mouth within each 16-s cycle. Fourier-based analysis of fMRI time series revealed periodic signals and noise distributed across the brain. Independent component analysis was used to remove periodic or aperiodic motion artifacts. Time-frequency analysis was used to analyze the temporal characteristics of periodic signals in each voxel. Circular statistics was then used to estimate mean phase angles of periodic signals and select voxels based on the distribution of phase angles. By sorting mean phase angles across regions, we were able to show the real-time spatiotemporal brain dynamics as continuous traveling waves over the cortical surface. The activation sequence consisted of approximately the following stages: (1) stimulus related activations in occipital and temporal cortices; (2) movement planning related activations in dorsal premotor and superior parietal cortices; (3) reaching related activations in primary sensorimotor cortex and supplementary motor area; (4) grasping related activations in postcentral gyrus and sulcus; (5) feeding related activations in orofacial areas. These results suggest that phase-encoded design and analysis can be used to unravel sequential activations among brain regions during a simulated reach-to-eat task.
Collapse
Affiliation(s)
- Ching-Fu Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kenneth Kreutz-Delgado
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA; Institute for Neural Computation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Martin I Sereno
- Department of Psychology and Neuroimaging Center, San Diego State University, San Diego, CA, 92182, USA; Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Ruey-Song Huang
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Van Essen DC, Glasser MF. Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans. Neuron 2018; 99:640-663. [PMID: 30138588 PMCID: PMC6149530 DOI: 10.1016/j.neuron.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The cerebral cortex in mammals contains a mosaic of cortical areas that differ in function, architecture, connectivity, and/or topographic organization. A combination of local connectivity (within-area microcircuitry) and long-distance (between-area) connectivity enables each area to perform a unique set of computations. Some areas also have characteristic within-area mesoscale organization, reflecting specialized representations of distinct types of information. Cortical areas interact with one another to form functional networks that mediate behavior, and each area may be a part of multiple, partially overlapping networks. Given their importance to the understanding of brain organization, mapping cortical areas across species is a major objective of systems neuroscience and has been a century-long challenge. Here, we review recent progress in multi-modal mapping of mouse and nonhuman primate cortex, mainly using invasive experimental methods. These studies also provide a neuroanatomical foundation for mapping human cerebral cortex using noninvasive neuroimaging, including a new map of human cortical areas that we generated using a semiautomated analysis of high-quality, multimodal neuroimaging data. We contrast our semiautomated approach to human multimodal cortical mapping with various extant fully automated human brain parcellations that are based on only a single imaging modality and offer suggestions on how to best advance the noninvasive brain parcellation field. We discuss the limitations as well as the strengths of current noninvasive methods of mapping brain function, architecture, connectivity, and topography and of current approaches to mapping the brain's functional networks.
Collapse
Affiliation(s)
- David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Luke's Hospital, St. Louis, MO 63107, USA.
| |
Collapse
|
16
|
The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc Natl Acad Sci U S A 2018; 115:E6356-E6365. [PMID: 29925602 DOI: 10.1073/pnas.1801582115] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Localizing human brain functions is a long-standing goal in systems neuroscience. Toward this goal, neuroimaging studies have traditionally used volume-based smoothing, registered data to volume-based standard spaces, and reported results relative to volume-based parcellations. A novel 360-area surface-based cortical parcellation was recently generated using multimodal data from the Human Connectome Project, and a volume-based version of this parcellation has frequently been requested for use with traditional volume-based analyses. However, given the major methodological differences between traditional volumetric and Human Connectome Project-style processing, the utility and interpretability of such an altered parcellation must first be established. By starting from automatically generated individual-subject parcellations and processing them with different methodological approaches, we show that traditional processing steps, especially volume-based smoothing and registration, substantially degrade cortical area localization compared with surface-based approaches. We also show that surface-based registration using features closely tied to cortical areas, rather than to folding patterns alone, improves the alignment of areas, and that the benefits of high-resolution acquisitions are largely unexploited by traditional volume-based methods. Quantitatively, we show that the most common version of the traditional approach has spatial localization that is only 35% as good as the best surface-based method as assessed using two objective measures (peak areal probabilities and "captured area fraction" for maximum probability maps). Finally, we demonstrate that substantial challenges exist when attempting to accurately represent volume-based group analysis results on the surface, which has important implications for the interpretability of studies, both past and future, that use these volume-based methods.
Collapse
|
17
|
Kuehn E, Dinse J, Jakobsen E, Long X, Schäfer A, Bazin PL, Villringer A, Sereno MI, Margulies DS. Body Topography Parcellates Human Sensory and Motor Cortex. Cereb Cortex 2018; 27:3790-3805. [PMID: 28184419 PMCID: PMC6248394 DOI: 10.1093/cercor/bhx026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.
Collapse
Affiliation(s)
- Esther Kuehn
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Psychology and Language Sciences, University College London, London WC1H 0DG, UK.,Center for Behavioral Brain Sciences Magdeburg, Magdeburg 39106, Germany.,Aging and Cognition Research Group, DZNE, Magdeburg 39106, Germany
| | - Juliane Dinse
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Faculty of Computer Science, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - Estrid Jakobsen
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Xiangyu Long
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Andreas Schäfer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Martin I Sereno
- Department of Psychology and Language Sciences, University College London, LondonWC1H 0DG, UK
| | - Daniel S Margulies
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
18
|
Sood MR, Toornstra A, Sereno MI, Boland M, Filaretti D, Sood A. A Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education Solution. JMIR Res Protoc 2018; 7:e135. [PMID: 29773528 PMCID: PMC5981053 DOI: 10.2196/resprot.9583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Background Dyslexia, a specific learning difficulty and a disability as defined in the Equality Act 2010, is a lifelong condition that affects a child from the start of education. Dyslexia is characterized by difficulties in language processing (reading, spelling, and writing) which do not correspond with the child’s general intellectual abilities. Although dyslexia cannot be cured, there is a consensus that interventions are more effective and have greater impact the earlier they are administered. Effective interventions start with diagnosis. Currently, formal diagnosis requires an assessment by a dyslexia specialist or educational psychologist. These assessments are expensive and are not easy for a non-specialist teacher or parent to interpret. Consequently, formal assessments are normally performed at a much later age, when interventions are less likely to be effective. Combining the latest in scientific research, expertise of dyslexia practitioners and real-time interactivity facilitated by digital technologies, we aim to provide a cost-effective and convenient solution that focuses on early dyslexia detection and management. Objective We discuss the rationale and protocol for the design and development of a digital health solution aimed at improving the early detection, monitoring and management of dyslexia (DIMMAND) in young children (4-8 years). The primary objective is to create a game-based digital solution aimed at children, parents, and teachers that firstly assesses, then monitors and manages progress in a convenient, cost-effective and private environment. Methods The proposed solution will be designed and developed in phases. In the initial phase, the full functional specification of the games that constitute the app will be designed, together with the overall architecture of the solution. Prototype proof-of-concept implementation for few of these games, and commercialization strategies will also be developed. The follow-on phases will see the design implemented into a validated solution. Results In the initial phase, we worked closely with dyslexia specialists, adult dyslexics, teachers of special-needs children, parents of dyslexic children, and senior dyslexia representatives for large organizations. These interactions provided insights into the range of language difficulties faced by dyslexics, which solutions are used by teachers and professionals, and an overall understanding of the market. We comprehensively defined the ethical, privacy, and data security issues. The detailed design spec of the games, the methodology to be followed to interpret the results, and flow diagrams illustrating how the game screens will be presented was completed. As proof of concept, a few reading, visual, and auditory games were developed and successfully tested by stakeholders on different digital devices. The stakeholders provided regular feedback and confirmed the viability of our game-based solution. Conclusions DIMMAND has the potential to provide significant positive health care and economic impact. It is expected to reduce intervention costs, improve dyslexia detection at an early age and aid self-management. Registered Report Identifier RR1-10.2196/9583
Collapse
Affiliation(s)
| | - Annet Toornstra
- Work and Social Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Martin I Sereno
- Department of Psychology, College of Sciences, San Diego State University, San Diego, CA, United States
| | - Mark Boland
- Synergation Limited, Middlesex, United Kingdom
| | | | - Anuj Sood
- Synergation Limited, Middlesex, United Kingdom
| |
Collapse
|
19
|
Holmes NP, Tamè L. Multisensory Perception: Magnetic Disruption of Attention in Human Parietal Lobe. Curr Biol 2018; 28:R259-R261. [DOI: 10.1016/j.cub.2018.01.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Fischl B, Sereno MI. Microstructural parcellation of the human brain. Neuroimage 2018; 182:219-231. [PMID: 29496612 DOI: 10.1016/j.neuroimage.2018.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.
Collapse
Affiliation(s)
- Bruce Fischl
- Department of Radiology, Harvard Medical School, United States; Athinoula A. Martinos Center for Biomedical Imaging Mass, General Hospital, United States; Division of Health Sciences and Technology and Engineering and Computer Science MIT, Cambridge, MA, United States.
| | - Martin I Sereno
- Department of Psychology, SDSU Imaging Center, San Diego State University, San Diego, CA 92182, United States.
| |
Collapse
|
21
|
Visually-Driven Maps in Area 3b. J Neurosci 2018; 38:1295-1310. [PMID: 29301873 DOI: 10.1523/jneurosci.0491-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
Sensory perception relies on the precise neuronal encoding of modality-specific environmental features in primary sensory cortices. Some studies have reported the penetration of signals from other modalities even into early sensory areas. So far, no comprehensive account of maps induced by "foreign sources" exists. We addressed this question using surface-based topographic mapping techniques applied to ultra-high resolution fMRI neuroimaging data, measured in female participants. We show that fine-grained finger maps in human primary somatosensory cortex, area 3b, are somatotopically activated not only during tactile mechanical stimulation, but also when viewing the same fingers being touched. Visually-induced maps were weak in amplitude, but overlapped with the stronger tactile maps tangential to the cortical sheet when finger touches were observed in both first- and third-person perspectives. However, visually-induced maps did not overlap tactile maps when the observed fingers were only approached by an object but not actually touched. Our data provide evidence that "foreign source maps" in early sensory cortices are present in the healthy human brain, that their arrangement is precise, and that their induction is feature-selective. The computations required to generate such specific responses suggest that counterflow (feedback) processing may be much more spatially specific than has been often assumed.SIGNIFICANCE STATEMENT Using ultra-high field fMRI, we provide empirical evidence that viewing touches activates topographically aligned single finger maps in human primary somatosensory cortical area 3b. This shows that "foreign source maps" in early sensory cortices are topographic, precise, and feature-selective in healthy human participants with intact sensory pathways.
Collapse
|
22
|
Savopoulos P, Lindell AK. Repetition priming reveals hemispheric differences in compound word processing. JOURNAL OF COGNITIVE PSYCHOLOGY 2018. [DOI: 10.1080/20445911.2017.1391269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Priscilla Savopoulos
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Annukka K. Lindell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
23
|
Carey D, Krishnan S, Callaghan MF, Sereno MI, Dick F. Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract. Cereb Cortex 2018; 27:265-278. [PMID: 28069761 PMCID: PMC5808730 DOI: 10.1093/cercor/bhw393] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Speech articulation requires precise control of and coordination between the effectors of the vocal tract (e.g., lips, tongue, soft palate, and larynx). However, it is unclear how the cortex represents movements of and contact between these effectors during speech, or how these cortical responses relate to inter-regional anatomical borders. Here, we used phase-encoded fMRI to map somatomotor representations of speech articulations. Phonetically trained participants produced speech phones, progressing from front (bilabial) to back (glottal) place of articulation. Maps of cortical myelin proxies (R1 = 1/T1) further allowed us to situate functional maps with respect to anatomical borders of motor and somatosensory regions. Across participants, we found a consistent topological map of place of articulation, spanning the central sulcus and primary motor and somatosensory areas, that moved from lateral to inferior as place of articulation progressed from front to back. Phones produced at velar and glottal places of articulation activated the inferior aspect of the central sulcus, but with considerable across-subject variability. R1 maps for a subset of participants revealed that articulator maps extended posteriorly into secondary somatosensory regions. These results show consistent topological organization of cortical representations of the vocal apparatus in the context of speech behavior.
Collapse
Affiliation(s)
- Daniel Carey
- Department of Psychology, Royal Holloway, University of London, London, TW20 0EX, UK.,The Irish Longitudinal Study on Ageing, Department of Medical Gerontology, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK
| | - Saloni Krishnan
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK
| | - Martin I Sereno
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London, WC1H 0AP, UK.,Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London, WC1H 0AP, UK.,Department of Psychology, College of Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4611, USA
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London, WC1H 0AP, UK
| |
Collapse
|