1
|
Baykan C, Zhu X, Zinchenko A, Shi Z. Blocked versus interleaved: How range contexts modulate time perception and its EEG signatures. Psychophysiology 2024; 61:e14585. [PMID: 38594873 DOI: 10.1111/psyp.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Accurate time perception is a crucial element in a wide range of cognitive tasks, including decision-making, memory, and motor control. One commonly observed phenomenon is that when given a range of time intervals to consider, people's estimates often cluster around the midpoint of those intervals. Previous studies have suggested that the range of these intervals can also influence our judgments, but the neural mechanisms behind this "range effect" are not yet understood. We used both behavioral tests and electroencephalographic (EEG) measures to understand how the range of sample time intervals affects the accuracy of people's subsequent time estimates. Study participants were exposed to two different setups: In the "blocked-range" (BR) session, short and long intervals were presented in separate blocks, whereas in the "interleaved-range" (IR) session, intervals of various lengths were presented randomly. Our findings indicated that the BR context led to more accurate time estimates compared to the IR context. In terms of EEG data, the BR context resulted in quicker buildup of contingent negative variation (CNV), which also reached higher amplitude levels and dissolved more rapidly during the encoding stage. We also observed an enhanced amplitude in the offset P2 component of the EEG signal. Overall, our results suggest that the variability in time intervals, as defined by their range, influences the neural processes that underlie time estimation.
Collapse
Affiliation(s)
- Cemre Baykan
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- General and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Xiuna Zhu
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Artyom Zinchenko
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Bueno FD, Nobre AC, Cravo AM. Time for What? Dissociating Explicit Timing Tasks through Electrophysiological Signatures. eNeuro 2024; 11:ENEURO.0351-23.2023. [PMID: 38272676 PMCID: PMC10884563 DOI: 10.1523/eneuro.0351-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Estimating durations between hundreds of milliseconds and seconds is essential for several daily tasks. Explicit timing tasks, which require participants to estimate durations to make a comparison (time for perception) or to reproduce them (time for action), are often used to investigate psychological and neural timing mechanisms. Recent studies have proposed that mechanisms may depend on specific task requirements. In this study, we conducted electroencephalogram (EEG) recordings on human participants as they estimated intervals in different task contexts to investigate the extent to which timing mechanisms depend on the nature of the task. We compared the neural processing of identical visual reference stimuli in two different tasks, in which stimulus durations were either perceptually compared or motorically reproduced in separate experimental blocks. Using multivariate pattern analyses, we could successfully decode the duration and the task of reference stimuli. We found evidence for both overlapping timing mechanisms across tasks as well as recruitment of task-dependent processes for comparing intervals for different purposes. Our findings suggest both core and specialized timing functions are recruited to support explicit timing tasks.
Collapse
Affiliation(s)
- Fernanda D Bueno
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-045, Brazil
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - André M Cravo
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
3
|
Otstavnov N, Riaz A, Moiseeva V, Fedele T. Temporal and Spatial Information Elicit Different Power and Connectivity Profiles during Working Memory Maintenance. J Cogn Neurosci 2024; 36:290-302. [PMID: 38010298 DOI: 10.1162/jocn_a_02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Working memory (WM) is the cognitive ability to store and manipulate information necessary for ongoing tasks. Although frontoparietal areas are involved in the retention of visually presented information, oscillatory neural activity differs for temporal and spatial WM processing. In this study, we corroborated previous findings describing the modulation of neural oscillations and expanded our investigation to the network organization underlying the cognitive processing of temporal and spatial information. We utilized MEG recordings during a Sternberg visual WM task. The spectral oscillatory activity in the maintenance phase revealed increased frontal theta (4-8 Hz) and parietal beta (13-30 Hz) in the temporal condition. Source level coherence analysis delineated the prominent role of parietal areas in all frequency bands during the maintenance of temporal information, whereas frontal and central areas showed major contributions in theta and beta ranges during the maintenance of spatial information. Our study revealed distinct spectral profiles of neural oscillations for separate cognitive subdomains of WM processing. The delineation of specific functional networks might have important implications for clinical applications, enabling the development of stimulation protocols targeting cognitive disabilities associated with WM impairments.
Collapse
Affiliation(s)
| | - Abrar Riaz
- RWTH Aachen University, Germany
- Forschungszentrum Jülich, Germany
| | | | | |
Collapse
|
4
|
Eskikurt G, Duru AD, Ermutlu N, İşoğlu-Alkaç Ü. Evaluation of Brain Electrical Activity of Visual Working Memory with Time-Frequency Analysis. Clin EEG Neurosci 2024:15500594231224014. [PMID: 38225169 DOI: 10.1177/15500594231224014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The term visual working memory (VWM) refers to the temporary storage of visual information. In electrophysiological recordings during the change detection task which relates to VWM, contralateral negative slow activity was detected. It was found to occur during the information is kept in memory and it was called contralateral delay activity. In this study, the characteristics of electroencephalogram frequencies of the contralateral and ipsilateral responses in the retention phase of VWM were evaluated by using time-frequency analysis (discrete wavelet transform [DWT]) in the change detection task. Twenty-six volunteers participated in the study. Event-related brain potentials (ERPs) were examined, and then a time-frequency analysis was performed. A statistically significant difference between contralateral and ipsilateral responses was found in the ERP. DWT showed a statistically significant difference between contralateral and ipsilateral responses in the delta and theta frequency bands range. When volunteers were grouped as either high or low VWM capacity the time-frequency analysis between these groups revealed that high memory capacity groups have a significantly higher negative coefficient in alpha and beta frequency bands. This study showed that during the retention phase delta and theta bands may relate to visual memory retention and alpha and beta bands may reflect individual memory capacity.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Faculty of Humanities and Social Sciences, Department of Psychology, Istinye University, Istanbul, Turkey
| | - Adil Deniz Duru
- Faculty of Sport Sciences, Department of Physical Education and Sports Teaching, Marmara University, Marmara University, Istanbul, Turkey
| | - Numan Ermutlu
- Faculty of Medicine, Department of Physiology, Istanbul Sağlık ve Teknoloji University, Istanbul, Turkey
| | - Ümmühan İşoğlu-Alkaç
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Gunasekaran H, Azizi L, van Wassenhove V, Herbst SK. Characterizing endogenous delta oscillations in human MEG. Sci Rep 2023; 13:11031. [PMID: 37419933 PMCID: PMC10328979 DOI: 10.1038/s41598-023-37514-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Rhythmic activity in the delta frequency range (0.5-3 Hz) is a prominent feature of brain dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive recordings in awake animals, can be observed in non-invasive recordings performed in humans with magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, we additionally analysed two conditions in which participants engaged in spontaneous finger tapping and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time domain revealed that only the resting state condition warranted an interpretation of these peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive recordings of human brain dynamics.
Collapse
Affiliation(s)
- Harish Gunasekaran
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Leila Azizi
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, NeuroSpin, CEA, INSERM, CNRS, Université Paris-Saclay, 91191, Gif/Yvette, France.
| |
Collapse
|
6
|
Alanazi FI, Kalia SK, Hodaie M, Lopez Rios AL, Lozano AM, Milosevic L, Hutchison WD. Top-down control of human motor thalamic neuronal activity during the auditory oddball task. NPJ Parkinsons Dis 2023; 9:46. [PMID: 36973276 PMCID: PMC10042852 DOI: 10.1038/s41531-023-00493-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
The neurophysiology of selective attention in visual and auditory systems has been studied in animal models but not with single unit recordings in human. Here, we recorded neuronal activity in the ventral intermediate nucleus as well as the ventral oral anterior, and posterior nuclei of the motor thalamus in 25 patients with parkinsonian (n = 6) and non-parkinsonian tremors (n = 19) prior to insertion of deep brain stimulation electrodes while they performed an auditory oddball task. In this task, patients were requested to attend and count the randomly occurring odd or "deviant" tones, ignore the frequent standard tones and report the number of deviant tones at trial completion. The neuronal firing rate decreased compared to baseline during the oddball task. Inhibition was specific to auditory attention as incorrect counting or wrist flicking to the deviant tones did not produce such inhibition. Local field potential analysis showed beta (13-35 Hz) desynchronization in response to deviant tones. Parkinson's disease patients off medications had more beta power than the essential tremor group but less neuronal modulation of beta power to the attended tones, suggesting that dopamine modulates thalamic beta oscillations for selective attention. The current study demonstrated that ascending information to the motor thalamus can be suppressed during auditory attending tasks, providing indirect evidence for the searchlight hypothesis in humans. These results taken together implicate the ventral intermediate nucleus in non-motor cognitive functions, which has implications for the brain circuitry for attention and the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Frhan I Alanazi
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada.
- Department of Basic Sciences, Prince Sultan bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Suneil K Kalia
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Andrés M Lozano
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - William D Hutchison
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Leonard St, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Hospital Universitario San Vicente Fundación, Medellin (Rionegro), Colombia
| |
Collapse
|
7
|
Musical tempo affects EEG spectral dynamics during subsequent time estimation. Biol Psychol 2023; 178:108517. [PMID: 36801434 DOI: 10.1016/j.biopsycho.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
The perception of time depends on the rhythmicity of internal and external synchronizers. One external synchronizer that affects time estimation is music. This study aimed to analyze the effects of musical tempi on EEG spectral dynamics during subsequent time estimation. Participants performed a time production task after (i) silence and (ii) listening to music at different tempi -90, 120, and 150 bpm- while EEG activity was recorded. While listening, there was an increase in alpha power at all tempi compared to the resting state and an increase of beta at the fastest tempo. The beta increase persisted during the subsequent time estimations, with higher beta power during the task after listening to music at the fastest tempo than task performance without music. Spectral dynamics in frontal regions showed lower alpha activity in the final stages of time estimations after listening to music at 90- and 120-bpm than in the silence condition and higher beta in the early stages at 150 bpm. Behaviorally, the 120 bpm musical tempo produced slight improvements. Listening to music modified tonic EEG activity that subsequently affected EEG dynamics during time production. Music at a more optimal rate could have benefited temporal expectation and anticipation. The fastest musical tempo may have generated an over-activated state that affected subsequent time estimations. These results emphasize the importance of music as an external stimulus that can affect brain functional organization during time perception even after listening.
Collapse
|
8
|
Johari K, Lai VT, Riccardi N, Desai RH. Temporal features of concepts are grounded in time perception neural networks: An EEG study. BRAIN AND LANGUAGE 2023; 237:105220. [PMID: 36587493 PMCID: PMC10100101 DOI: 10.1016/j.bandl.2022.105220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Experimental evidence suggests that modality-specific concept features such as action, motion, and sound partially rely on corresponding action/perception neural networks in the human brain.Little is known, however, about time-related features of concepts. We examined whether temporal features of concepts recruit networks that subserve time perception in the brain in an EEG study using event and object nouns. Results showed significantly larger ERPs for event duration vs object size judgments over right parietal electrodes, a region associated with temporal processing. Additionally, alpha/beta (10-15 Hz) neural oscillation showed a stronger desynchronization for event duration compared to object size in the right parietal electrodes. This difference was not seen in control tasks comparing event vs object valence, suggesting that it is not likely to reflect a general difference between event and object nouns. These results indicate that temporal features of words may be subserved by time perception circuits in the human brain.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Vicky T Lai
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
9
|
Subjective time is predicted by local and early visual processing. Neuroimage 2022; 264:119707. [PMID: 36341952 DOI: 10.1016/j.neuroimage.2022.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Time is as pervasive as it is elusive to study, and how the brain keeps track of millisecond time is still unclear. Here we addressed the mechanisms underlying duration perception by looking for a neural signature of subjective time distortion induced by motion adaptation. We recorded electroencephalographic signals in human participants while they were asked to discriminate the duration of visual stimuli after different types of translational motion adaptation. Our results show that perceived duration can be predicted by the amplitude of the N200 event-related potential evoked by the adapted stimulus. Moreover, we show that the distortion of subjective time can be predicted by the activity in the Beta band frequency spectrum, at the offset of the adaptor and during the presentation of the subsequent adapted stimulus. Both effects were observed from posterior electrodes contralateral to the adapted stimulus. Overall, our findings suggest that local and low-level perceptual processes are involved in generating a subjective sense of time.
Collapse
|
10
|
Liang M, Lomayesva S, Isham EA. Dissociable Roles of Theta and Alpha in Sub-Second and Supra-Second Time Reproduction: An Investigation of their Links to Depression and Anxiety. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A growing collection of observations has demonstrated the presence of multiple neural oscillations participating in human temporal cognition and psychiatric pathologies such as depression and anxiety. However, there remains a gap in the literature regarding the specific roles of these neural oscillations during interval timing, and how these oscillatory activities might vary with the different levels of mental health. The current study examined the participation of the frontal midline theta and occipital alpha oscillations, both of which are prevalent cortical oscillatory markers frequently reported in working memory and time perception paradigms. Participants performed a time reproduction task in the sub- (400, 600, 800 ms) and supra-second timescales (1600, 1800, 2000 ms) while undergoing scalp EEG recordings. Anxiety and depression levels were measured via self-report mental health inventories. Time–frequency analysis of scalp EEG revealed that both frontal midline and occipital alpha oscillations were engaged during the encoding of the durations. Furthermore, we observed that the correlational relationship between frontal midline theta power and the reproduction performance in the sub-second range was modulated by state anxiety. In contrast, the correlational relationship between occipital alpha and the reproduction performance of supra-second intervals was modulated by depression and trait anxiety. The results offer insights on how alpha and theta oscillations differentially play a role in interval timing and how mental health further differentially relates these neural oscillations to sub- and supra-second timescales.
Collapse
Affiliation(s)
- Mingli Liang
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Sara Lomayesva
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| | - Eve A. Isham
- Department of Psychology, University of Arizona, 1503 E. University Blvd, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Honma M, Saito S, Atsumi T, Tokushige SI, Inomata-Terada S, Chiba A, Terao Y. Inducing Cortical Plasticity to Manipulate and Consolidate Subjective Time Interval Production. Neuromodulation 2022; 25:511-519. [PMID: 35667769 DOI: 10.1111/ner.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Time awareness may change depending on the mental state or disease conditions, although each individual perceives his/her own sense of time as stable and accurate. Nevertheless, the processes that consolidate altered duration production remain unclear. The present study aimed to manipulate the subjective duration production via memory consolidation through the modulation of neural plasticity. MATERIALS AND METHODS We first performed false feedback training of duration or length production and examined the period required for natural recovery from the altered production. Next, persistent neural plasticity was promoted by quadripulse transcranial magnetic stimulation (QPS) over the right dorsolateral prefrontal cortex (DLPFC), temporoparietal junction (TPJ), and primary motor cortex (M1). We conducted the same feedback training in the individual and studied how the time course of false learning changed. RESULTS We observed that altered duration production after false feedback returned to baseline within two hours. Next, immediate exposure to false feedback during neural plasticity enhancement revealed that in individuals who received QPS over the right DLPFC, but not over TPJ or M1, false duration production was maintained for four hours; furthermore, the efficacy persisted for at least one week. CONCLUSION These findings suggest that, while learned altered duration production decays over several hours, QPS over the right DLPFC enables the consolidation of newly learned duration production.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan.
| | - Shoko Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Atsumi
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | - Satomi Inomata-Terada
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Atsuro Chiba
- Department of Neurology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Duprez J, Tabbal J, Hassan M, Modolo J, Kabbara A, Mheich A, Drapier S, Vérin M, Sauleau P, Wendling F, Benquet P, Houvenaghel JF. Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson's disease patients. Neuroimage 2022; 258:119331. [PMID: 35660459 DOI: 10.1016/j.neuroimage.2022.119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
Abstract
Among the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond.
Collapse
Key Words
- Cognitive control
- DIFFIT, Difference in data fitting
- DLPFC, Dorso-lateral prefrontal cortex
- EEG, Electroencephalography
- FC, Functional connectivity
- Functional connectivity
- HC, Healthy controls
- HD-EEG, High-density EEG
- ICA, Independent component analysis
- IFC, Inferior frontal cortex
- MEG, Magnetoencephalography
- Networks, Dynamics
- PD, Parkinson's disease
- PLV, Phase locking value
- Parkinson's disease Abbreviations CAC, Cognitive action control
- ROIS, Regions of interest
- RT, Reaction time
- Simon task
- dBNS, Dynamic brain network state
- dFC, Dynamic functional connectivity
- fMRI, Functional magnetic resonance imaging
- high density EEG
- pre-SMA, Pre-supplementary motor area
- tICA, Temporal ICA
Collapse
Affiliation(s)
- Joan Duprez
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France
| | - Judie Tabbal
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Mahmoud Hassan
- MINDig, F-35000 Rennes, France; School of Engineering, Reykjavik University, Iceland
| | | | | | | | - Sophie Drapier
- CIC INSERM 1414, Rennes, France; Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France
| | - Marc Vérin
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| | - Paul Sauleau
- Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France; Neurophysiology department, Rennes University Hospital, France
| | | | | | - Jean-François Houvenaghel
- Neurology Department, Pontchaillou Hospital, Rennes University Hospital, France; Behavioral and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, France
| |
Collapse
|
13
|
Herbst SK, Obleser J, van Wassenhove V. Implicit Versus Explicit Timing-Separate or Shared Mechanisms? J Cogn Neurosci 2022; 34:1447-1466. [PMID: 35579985 DOI: 10.1162/jocn_a_01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Time implicitly shapes cognition, but time is also explicitly represented, for instance, in the form of durations. Parsimoniously, the brain could use the same mechanisms for implicit and explicit timing. Yet, the evidence has been equivocal, revealing both joint versus separate signatures of timing. Here, we directly compared implicit and explicit timing using magnetoencephalography, whose temporal resolution allows investigating the different stages of the timing processes. Implicit temporal predictability was induced in an auditory paradigm by a manipulation of the foreperiod. Participants received two consecutive task instructions: discriminate pitch (indirect measure of implicit timing) or duration (direct measure of explicit timing). The results show that the human brain efficiently extracts implicit temporal statistics of sensory environments, to enhance the behavioral and neural responses to auditory stimuli, but that those temporal predictions did not improve explicit timing. In both tasks, attentional orienting in time during predictive foreperiods was indexed by an increase in alpha power over visual and parietal areas. Furthermore, pretarget induced beta power in sensorimotor and parietal areas increased during implicit compared to explicit timing, in line with the suggested role for beta oscillations in temporal prediction. Interestingly, no distinct neural dynamics emerged when participants explicitly paid attention to time, compared to implicit timing. Our work thus indicates that implicit timing shapes the behavioral and sensory response in an automatic way and is reflected in oscillatory neural dynamics, whereas the translation of implicit temporal statistics to explicit durations remains somewhat inconclusive, possibly because of the more abstract nature of this task.
Collapse
|
14
|
Szelag E, Stanczyk M, Szymaszek A. Sub- and Supra-Second Timing in Auditory Perception: Evidence for Cross-Domain Relationships. Front Neurosci 2022; 15:812533. [PMID: 35095407 PMCID: PMC8791025 DOI: 10.3389/fnins.2021.812533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies indicate that there are at least two levels of temporal processing: the sub- and supra-second domains. The relationship between these domains remains unclear. The aim of this study was to test whether performance on the sub-second level is related to that on the supra-second one, or whether these two domains operate independently. Participants were 118 healthy adults (mean age = 23 years). The sub-second level was studied with a temporal-order judgment task and indexed by the Temporal Order Threshold (TOT), on which lower values corresponded to better performance. On the basis of TOT results, the initial sample was classified into two groups characterized by either higher temporal efficiency (HTE) or lower temporal efficiency (LTE). Next, the efficiency of performance on the supra-second level was studied in these two groups using the subjective accentuation task, in which participants listened to monotonous sequences of beats and were asked to mentally accentuate every n-th beat to create individual rhythmic patterns. The extent of temporal integration was assessed on the basis of the number of beats being united and better performance corresponded to longer units. The novel results are differences between groups in this temporal integration. The HTE group integrated beats in significantly longer units than did the LTE group. Moreover, for tasks with higher mental load, the HTE group relied more on a constant time strategy, whereas the LTE group relied more on mental counting, probably because of less efficient temporal integration. These findings provide insight into associations between sub- and supra-second levels of processing and point to a common time keeping system, which is active independently of temporal domain.
Collapse
Affiliation(s)
- Elzbieta Szelag
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
15
|
da Silva K, Curvina M, Araújo S, Rocha K, Victor Marinho F, Elezier Magalhães F, Teixeira S, Bastos V, Ribeiro P, Silva-Júnior F. Male practitioners of physical activity present lower absolute power of beta band in time perception test. Neurosci Lett 2021; 764:136210. [PMID: 34481000 DOI: 10.1016/j.neulet.2021.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
Cortical changes resulting from physical activity and differences in the estimation of the time of practitioners and non-practitioners of physical activity have already been documented. However, there aren't studies that compare the cortical responses of the time estimate between these groups. Therefore, this study aimed to investigate the influence of the level of physical activity in time estimation and beta band activity in frontal regions, specifically in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex during the task of estimating time in practitioners and non-practitioners of physical activity. After characterizing the sample, the signal was captured using an electroencephalogram during a task to estimate the time of four intervals of supraseconds. The results indicated that the practitioners of physical activity had lower errors in the evaluation of time for the intervals of 1 s, 7 s, and 9 s. The beta band showed less activity among practitioners of physical activity. The correlation between task performance and the absolute power of the beta band proved to be positive in the task of estimating time in the 7 s, and 9 s intervals. It was concluded that participants involved in the regular practice of physical activity showed underestimation in the temporal judgment and lower absolute power of the beta band during the time estimate.
Collapse
Affiliation(s)
- Kamila da Silva
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| | - Maria Curvina
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Sabrina Araújo
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Kaline Rocha
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | | | | | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Victor Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Pedro Ribeiro
- Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil
| | - Fernando Silva-Júnior
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Piauí, Brazil; Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Bueno FD, Cravo AM. Post-interval EEG activity is related to task-goals in temporal discrimination. PLoS One 2021; 16:e0257378. [PMID: 34570779 PMCID: PMC8476012 DOI: 10.1371/journal.pone.0257378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Studies investigating the neural mechanisms of time perception often measure brain activity while participants perform a temporal task. However, several of these studies are based exclusively on tasks in which time is relevant, making it hard to dissociate activity related to decisions about time from other task-related patterns. In the present study, human participants performed a temporal or color discrimination task of visual stimuli. Participants were informed which magnitude they would have to judge before or after presenting the two stimuli (S1 and S2) in different blocks. Our behavioral results showed, as expected, that performance was better when participants knew beforehand which magnitude they would judge. Electrophysiological data (EEG) was analysed using Linear Discriminant Contrasts (LDC) and a Representational Similarity Analysis (RSA) approach to investigate whether and when information about time and color was encoded. During the presentation of S1, we did not find consistent differences in EEG activity as a function of the task. On the other hand, during S2, we found that temporal and color information was encoded in a task-relevant manner. Taken together, our results suggest that task goals strongly modulate decision-related information in EEG activity.
Collapse
Affiliation(s)
- Fernanda Dantas Bueno
- Center for Mathematics, Computing and Cognition Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - André Mascioli Cravo
- Center for Mathematics, Computing and Cognition Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| |
Collapse
|
17
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Cáceda R, Carbajal JM, Salomon RM, Moore JE, Perlman G, Padala PR, Hasan A, Delgado PL. Slower perception of time in depressed and suicidal patients. Eur Neuropsychopharmacol 2020; 40:4-16. [PMID: 33004229 PMCID: PMC7655720 DOI: 10.1016/j.euroneuro.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Effective suicide prevention is hindered by a limited understanding of the natural progression and neurobiology of the suicidal process. Our objective was to characterize the duration of the suicidal process and its relation to possible determinants: time judgment and cognitive impulsivity. In four groups of adults of both sexes including recent suicide attempters (n = 57), suicidal ideators (n = 131), non-suicidal depressed controls (n = 51) and healthy controls (n = 48) we examined time estimation and production, impulsivity and other cognitive variables. Duration of the suicidal process was recorded in suicide attempters. The suicide process duration, suicide contemplation and action intervals, had a bimodal distribution, ∼40% of attempters took less than 5 min from decision to attempt. Time slowing correlated negatively with the suicidal action interval (time from the decision to kill oneself to suicide attempt) (p = .003). Individuals with suicide contemplation interval shorter than three hours showed increased time slowing, measured as shorter time production at 35 s (p = .011) and 43 s (p = .036). Delay discounting for rewards correlated with time estimation at 25 min (p = .02) and 90 s (p = .01). Time slowing correlated positively with suicidal ideation severity, independently of depression severity (p < .001). Perception of time slowing may influence both the intensity and the duration of the suicidal process. Time slowing may initially be triggered by intense psychological pain, then worsen the perception of inescapability in suicidal patients.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA.
| | | | - Ronald M Salomon
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jordan E Moore
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Greg Perlman
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Prasad R Padala
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Geriatric Research Education and Clinical Center, North Little Rock VA Medical Center, USA
| | - Abdullah Hasan
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Pedro L Delgado
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
19
|
Meng J, Xu M, Wang K, Meng Q, Han J, Xiao X, Liu S, Ming D. Separable EEG Features Induced by Timing Prediction for Active Brain-Computer Interfaces. SENSORS 2020; 20:s20123588. [PMID: 32630378 PMCID: PMC7348905 DOI: 10.3390/s20123588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
Brain–computer interfaces (BCI) have witnessed a rapid development in recent years. However, the active BCI paradigm is still underdeveloped with a lack of variety. It is imperative to adapt more voluntary mental activities for the active BCI control, which can induce separable electroencephalography (EEG) features. This study aims to demonstrate the brain function of timing prediction, i.e., the expectation of upcoming time intervals, is accessible for BCIs. Eighteen subjects were selected for this study. They were trained to have a precise idea of two sub-second time intervals, i.e., 400 ms and 600 ms, and were asked to measure a time interval of either 400 ms or 600 ms in mind after a cue onset. The EEG features induced by timing prediction were analyzed and classified using the combined discriminative canonical pattern matching and common spatial pattern. It was found that the ERPs in low-frequency (0~4 Hz) and energy in high-frequency (20~60 Hz) were separable for distinct timing predictions. The accuracy reached the highest of 93.75% with an average of 76.45% for the classification of 400 vs. 600 ms timing. This study first demonstrates that the cognitive EEG features induced by timing prediction are detectable and separable, which is feasible to be used in active BCIs controls and can broaden the category of BCIs.
Collapse
Affiliation(s)
- Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China; (Q.M.); (S.L.)
| | - Kun Wang
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
| | - Qiangfan Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China; (Q.M.); (S.L.)
| | - Jin Han
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
| | - Xiaolin Xiao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China; (Q.M.); (S.L.)
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300000, China; (J.M.); (M.X.); (K.W.); (J.H.); (X.X.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China; (Q.M.); (S.L.)
- Correspondence:
| |
Collapse
|
20
|
Kononowicz TW, Sander T, Van Rijn H, van Wassenhove V. Precision Timing with α-β Oscillatory Coupling: Stopwatch or Motor Control? J Cogn Neurosci 2020; 32:1624-1636. [PMID: 32378998 DOI: 10.1162/jocn_a_01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Precise timing is crucial for many behaviors ranging from conversational speech to athletic performance. The precision of motor timing has been suggested to result from the strength of phase-amplitude coupling (PAC) between the phase of alpha oscillations (α, 8-12 Hz) and the power of beta activity (β, 14-30 Hz), herein referred to as α-β PAC. The amplitude of β oscillations has been proposed to code for temporally relevant information and the locking of β power to the phase of α oscillations to maintain timing precision. Motor timing precision has at least two sources of variability: variability of timekeeping mechanism and variability of motor control. It is ambiguous to which of these two factors α-β PAC should be ascribed: α-β PAC could index precision of stopwatch-like internal timekeeping mechanisms, or α-β PAC could index motor control precision. To disentangle these two hypotheses, we tested how oscillatory coupling at different stages of a time reproduction task related to temporal precision. Human participants encoded and subsequently reproduced a time interval while magnetoencephalography was recorded. The data show a robust α-β PAC during both the encoding and reproduction of a temporal interval, a pattern that cannot be predicted by motor control accounts. Specifically, we found that timing precision resulted from the trade-off between the strength of α-β PAC during the encoding and during the reproduction of intervals. These results support the hypothesis that α-β PAC codes for the precision of temporal representations in the human brain.
Collapse
Affiliation(s)
- Tadeusz W Kononowicz
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | | | | | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| |
Collapse
|
21
|
Jiang F, Ye YQ, Zuo JM, Huang X, Yu C, Zeng XJ. Frequency-specific oscillations synchronization in primary angle-closure glaucoma. Acta Radiol 2020; 61:537-548. [PMID: 31475845 DOI: 10.1177/0284185119870975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Previous neuroimaging studies demonstrated that patients with primary angle-closure glaucoma were accompanied by abnormal neuronal activity. Purpose To investigate frequency-dependent local oscillations synchronization in primary angle-closure glaucoma using the regional homogeneity method. Material and Methods In total, 37 individuals with primary angle-closure glaucoma (20 men, 17 women) and 37 normal-sighted controls (20 men, 17 women) closely matched in age, sex, and education underwent resting-state MRI scans. We compared the different regional homogeneity values in full band (0.01–0.08 Hz) and two different frequency bands (slow-4: 0.027–0.073 Hz and slow-5: 0.010–0.027 Hz) between two groups. Results Compared to the normal-sighted group, the primary angle-closure glaucoma group showed decreased regional homogeneity values in the left calcarine and left postcentral in full band. The primary angle-closure glaucoma group showed increased regional homogeneity values in the bilateral superior medial frontal lobe in the slow-4 band. The primary angle-closure glaucoma group exhibited decreased regional homogeneity values in the right calcarine in the slow-5 band. Specifically, we found that the regional homogeneity values in the right superior frontal lobe were greater in the slow-4 than in the slow-5 band, whereas regional homogeneity in the left calcarine, right pallidum, left inferior occipital gyrus, left superior occipital gyrus, left postcentral/angular gyrus, left paracentral lobule, left superior parietal gyrus, and right precuneus gyrus were greater in the slow-5 than in the slow-4 band. Conclusion Primary angle-closure glaucoma groups showed abnormal regional homogeneity in visual network (calcarine) and default mode network (superior medial frontal lobe) at two frequency bands. Moreover, the regional homogeneity signals in slow-5 band showed closely related to the severity of individuals with primary angle-closure glaucoma.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Yin-Quan Ye
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Jin-Min Zuo
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Chen Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Xian-Jun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
22
|
Influence of multiple hypothesis testing on reproducibility in neuroimaging research: A simulation study and Python-based software. J Neurosci Methods 2020; 337:108654. [PMID: 32114144 DOI: 10.1016/j.jneumeth.2020.108654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Reproducibility of research findings has been recently questioned in many fields of science, including psychology and neurosciences. One factor influencing reproducibility is the simultaneous testing of multiple hypotheses, which entails false positive findings unless the analyzed p-values are carefully corrected. While this multiple testing problem is well known and studied, it continues to be both a theoretical and practical problem. NEW METHOD Here we assess reproducibility in simulated experiments in the context of multiple testing. We consider methods that control either the family-wise error rate (FWER) or false discovery rate (FDR), including techniques based on random field theory (RFT), cluster-mass based permutation testing, and adaptive FDR. Several classical methods are also considered. The performance of these methods is investigated under two different models. RESULTS We found that permutation testing is the most powerful method among the considered approaches to multiple testing, and that grouping hypotheses based on prior knowledge can improve power. We also found that emphasizing primary and follow-up studies equally produced most reproducible outcomes. COMPARISON WITH EXISTING METHOD(S) We have extended the use of two-group and separate-classes models for analyzing reproducibility and provide a new open-source software "MultiPy" for multiple hypothesis testing. CONCLUSIONS Our simulations suggest that performing strict corrections for multiple testing is not sufficient to improve reproducibility of neuroimaging experiments. The methods are freely available as a Python toolkit "MultiPy" and we aim this study to help in improving statistical data analysis practices and to assist in conducting power and reproducibility analyses for new experiments.
Collapse
|
23
|
Neuronal correlates of full and partial visual conscious perception. Conscious Cogn 2019; 78:102863. [PMID: 31887533 DOI: 10.1016/j.concog.2019.102863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
Stimuli may induce only partial consciousness-an intermediate between null and full consciousness-where the presence but not identity of an object can be reported. The differences in the neuronal basis of full and partial consciousness are poorly understood. We investigated if evoked and oscillatory activity could dissociate full from partial conscious perception. We recorded human cortical activity with magnetoencephalography (MEG) during a visual perception task in which stimulus could be either partially or fully perceived. Partial consciousness was associated with an early increase in evoked activity and theta/low-alpha-band oscillations while full consciousness was also associated with late evoked activity and beta-band oscillations. Full from partial consciousness was dissociated by stronger evoked activity and late increase in theta oscillations that were localized to higher-order visual regions and posterior parietal and prefrontal cortices. Our results reveal both evoked activity and theta oscillations dissociate partial and full consciousness.
Collapse
|
24
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
25
|
Kononowicz TW, van Wassenhove V. Evaluation of Self-generated Behavior: Untangling Metacognitive Readout and Error Detection. J Cogn Neurosci 2019; 31:1641-1657. [DOI: 10.1162/jocn_a_01442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When producing a duration, for instance, by pressing a key for 1 sec, the brain relies on self-generated neuronal dynamics to monitor the “flow of time.” Evidence has suggested that the brain can also monitor itself monitoring time, the so-called self-evaluation. How are temporal errors inferred on the basis of purely internally driven brain dynamics with no external reference for time? Although studies have shown that participants can reliably detect temporal errors when generating a duration, the neural bases underlying the evaluation of this self-generated temporal behavior are unknown. Theories of psychological time have also remained silent about such self-evaluation abilities. We assessed the contributions of an error-detection mechanism, in which error detection results from the ability to estimate the latency of motor actions, and of a readout mechanism, in which errors would result from inferring the state of a duration representation. Error detection predicts a V-shape association between neural activity and self-evaluation at the offset of a produced interval, whereas the readout predicts a linear association. Here, human participants generated a time interval and evaluated the magnitude of their timing (first- and second-order behavioral judgments, respectively). Focusing on the MEG/EEG signatures after the termination of the self-generated duration, we found several cortical sources involved in performance monitoring displaying a linear association between the power of alpha (α = 8–14 Hz) oscillations and self-evaluation. Altogether, our results support the readout hypothesis and indicate that duration representation may be integrated for the evaluation of self-generated behavior.
Collapse
Affiliation(s)
- Tadeusz W. Kononowicz
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| |
Collapse
|
26
|
Movement Improves the Quality of Temporal Perception and Decision-Making. eNeuro 2019; 6:ENEURO.0042-19.2019. [PMID: 31395616 PMCID: PMC6709222 DOI: 10.1523/eneuro.0042-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
A critical aspect of behavior is that mobile organisms must be able to precisely determine where and when to move. A better understanding of the mechanisms underlying precise movement timing and action planning is therefore crucial to understanding how we interact with the world around us. Recent evidence suggests that our experience of time is directly and intrinsically computed within the motor system, consistent with the theory of embodied cognition. To investigate the role of the motor system, we tested human subjects (n = 40) on a novel task combining reaching and time estimation. In this task, subjects were required to move a robotic manipulandum to one of two physical locations to categorize a concurrently timed suprasecond. Critically, subjects were divided into two groups: one in which movement during the interval was unrestricted and one in which they were restricted from moving until the stimulus interval had elapsed. Our results revealed a higher degree of precision for subjects in the free-moving group. A further experiment (n = 14) verified that these findings were not due to proximity to the target, counting strategies, bias, or movement length. A final experiment (n = 10) replicated these findings using a within-subjects design, performing a time reproduction task, in which movement during encoding of the interval led to more precise performance. Our findings suggest that time estimation may be instantiated within the motor system as an ongoing readout of timing judgment and confidence.
Collapse
|
27
|
Noguchi Y, Xia Y, Kakigi R. Desynchronizing to be faster? Perceptual- and attentional-modulation of brain rhythms at the sub-millisecond scale. Neuroimage 2019; 191:225-233. [PMID: 30772401 DOI: 10.1016/j.neuroimage.2019.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Neural oscillatory signals has been associated with many high-level functions (e.g. attention and working memory), because they reflect correlated behaviors of neural population that would facilitate the information transfer in the brain. On the other hand, a decreased power of oscillation (event-related desynchronization, ERD) has been associated with an irregular state in which many neurons behave in an uncorrelated manner. In contrast to this view, here we show that the human ERD is linked to the increased regularity of oscillatory signals. Using magnetoencephalography, we found that presenting a visual stimulus not only induced a decrease in power of alpha (8-12 Hz) to beta (13-30 Hz) rhythms in the contralateral visual cortex but also reduced the mean and variance of their inter-peak intervals (IPIs). This indicates that the suppressed alpha/beta rhythms became faster (reduced mean) and more regular (reduced variance) during visual stimulation. The same changes in IPIs, especially those of beta rhythm, were observed when subjects allocated their attention to a contralateral visual field. Those results revealed a new role of the event-related decrease in alpha/beta power and further suggested that our brain regulates and accelerates a clock for neural computations by actively suppressing the oscillation amplitude in task-relevant regions.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| | - Yi Xia
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
28
|
The Strength of Alpha-Beta Oscillatory Coupling Predicts Motor Timing Precision. J Neurosci 2019; 39:3277-3291. [PMID: 30792271 DOI: 10.1523/jneurosci.2473-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/16/2018] [Indexed: 11/21/2022] Open
Abstract
Precise timing makes the difference between harmony and cacophony, but how the brain achieves precision during timing is unknown. In this study, human participants (7 females, 5 males) generated a time interval while being recorded with magnetoencephalography. Building on the proposal that the coupling of neural oscillations provides a temporal code for information processing in the brain, we tested whether the strength of oscillatory coupling was sensitive to self-generated temporal precision. On a per individual basis, we show the presence of alpha-beta phase-amplitude coupling whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. Our results provide evidence that active oscillatory coupling engages α oscillations in maintaining the precision of an endogenous temporal motor goal encoded in β power; the when of self-timed actions. We propose that oscillatory coupling indexes the variance of neuronal computations, which translates into the precision of an individual's behavioral performance.SIGNIFICANCE STATEMENT Which neural mechanisms enable precise volitional timing in the brain is unknown, yet accurate and precise timing is essential in every realm of life. In this study, we build on the hypothesis that neural oscillations, and their coupling across time scales, are essential for the coding and for the transmission of information in the brain. We show the presence of alpha-beta phase-amplitude coupling (α-β PAC) whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. α-β PAC indexes the temporal precision with which information is represented in an individual's brain. Our results link large-scale neuronal variability on the one hand, and individuals' timing precision, on the other.
Collapse
|
29
|
Kononowicz TW, Roger C, van Wassenhove V. Temporal Metacognition as the Decoding of Self-Generated Brain Dynamics. Cereb Cortex 2018; 29:4366-4380. [DOI: 10.1093/cercor/bhy318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Abstract
Metacognition, the ability to know about one’s thought process, is self-referential. Here, we combined psychophysics and time-resolved neuroimaging to explore metacognitive inference on the accuracy of a self-generated behavior. Human participants generated a time interval and evaluated the signed magnitude of their temporal production. We show that both self-generation and self-evaluation relied on the power of beta oscillations (β; 15–40 Hz) with increases in early β power predictive of increases in duration. We characterized the dynamics of β power in a low-dimensional space (β state-space trajectories) as a function of timing and found that the more distinct trajectories, the more accurate metacognitive inferences were. These results suggest that β states instantiate an internal variable determining the fate of the timing network’s trajectory, possibly as release from inhibition. Altogether, our study describes oscillatory mechanisms for timing, suggesting that temporal metacognition relies on inferential processes of self-generated dynamics.
Collapse
Affiliation(s)
- Tadeusz W Kononowicz
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| | - Clémence Roger
- Université de Lille, CNRS, UMR 9193—SCALab—Sciences Cognitives et Sciences Affectives, Lille, France
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| |
Collapse
|
30
|
Rocha K, Marinho V, Magalhães F, Ribeiro J, Oliveira T, Gupta DS, Chaves F, Velasques B, Ribeiro P, Cagy M, Lima G, Teixeira S. Low-frequency rTMS stimulation over superior parietal cortex medially improves time reproduction and increases the right dorsolateral prefrontal cortex predominance. Int J Neurosci 2018; 129:523-533. [DOI: 10.1080/00207454.2018.1476351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Jéssica Ribeiro
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
| | - Thomaz Oliveira
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
| | - Daya S. Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Fernanda Chaves
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gildário Lima
- Neurophysics Applied Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory,, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
31
|
Iwasaki M, Noguchi Y, Kakigi R. Neural correlates of time distortion in a preaction period. Hum Brain Mapp 2018; 40:804-817. [PMID: 30276935 DOI: 10.1002/hbm.24413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/19/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
An intention to move distorts the perception of time. For example, a visual stimulus presented during the preparation of manual movements is perceived longer than actual. Although neural mechanisms underlying this action-induced time distortion have been unclear, here we propose a new model in which the distortion is caused by a sensory-motor interaction mediated by alpha rhythm. It is generally known that viewing a stimulus induces a reduction in amplitude of occipital 10-Hz wave ("alpha-blocking"). Preparing manual movements are also known to reduce alpha power in the motor cortex ("mu-suppression"). When human participants prepared movements while viewing a stimulus, we found that those two types of classical alpha suppression interacted in the third (time-processing) region in the brain, inducing a prominent decrease in alpha power in the supplementary motor cortex (SMA). Interestingly, this alpha suppression in the SMA occurred in an asymmetric manner (such that troughs of alpha rhythm was more strongly suppressed than peaks), which can produce a gradual increase (slow shift of baseline) in neural activity. Since the neural processing in the SMA encodes a subjective time length for a sensory event, the increased activity in this region (by the asymmetric alpha suppression) would cause an overestimation of elapsed time, resulting in the action-induced time distortion. Those results showed a unique role of alpha wave enabling communications across distant (visual, motor, and time-processing) regions in the brain and further suggested a new type of sensory-motor interaction based on neural desynchronization (rather than synchronization).
Collapse
Affiliation(s)
- Miho Iwasaki
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
32
|
Coull JT, Droit-Volet S. Explicit Understanding of Duration Develops Implicitly through Action. Trends Cogn Sci 2018; 22:923-937. [DOI: 10.1016/j.tics.2018.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
|
33
|
Palva S, Palva JM. Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing. Trends Neurosci 2018; 41:729-743. [DOI: 10.1016/j.tins.2018.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
|
34
|
Proactive Sensing of Periodic and Aperiodic Auditory Patterns. Trends Cogn Sci 2018; 22:870-882. [DOI: 10.1016/j.tics.2018.08.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022]
|
35
|
Performance-informed EEG analysis reveals mixed evidence for EEG signatures unique to the processing of time. PSYCHOLOGICAL RESEARCH 2018; 84:352-369. [PMID: 29926169 PMCID: PMC7039843 DOI: 10.1007/s00426-018-1039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Certain EEG components (e.g., the contingent negative variation, CNV, or beta oscillations) have been linked to the perception of temporal magnitudes specifically. However, it is as of yet unclear whether these EEG components are really unique to time perception or reflect the perception of magnitudes in general. In the current study we recorded EEG while participants had to make judgments about duration (time condition) or numerosity (number condition) in a comparison task. This design allowed us to directly compare EEG signals between the processing of time and number. Stimuli consisted of a series of blue dots appearing and disappearing dynamically on a black screen. Each stimulus was characterized by its duration and the total number of dots that it consisted of. Because it is known that tasks like these elicit perceptual interference effects that we used a maximum-likelihood estimation (MLE) procedure to determine, for each participant and dimension separately, to what extent time and numerosity information were taken into account when making a judgement in an extensive post hoc analysis. This approach enabled us to capture individual differences in behavioral performance and, based on the MLE estimates, to select a subset of participants who suppressed task-irrelevant information. Even for this subset of participants, who showed no or only small interference effects and thus were thought to truly process temporal information in the time condition and numerosity information in the number condition, we found CNV patterns in the time-domain EEG signals for both tasks that was more pronounced in the time-task. We found no substantial evidence for differences between the processing of temporal and numerical information in the time–frequency domain.
Collapse
|
36
|
Wiener M, Parikh A, Krakow A, Coslett HB. An Intrinsic Role of Beta Oscillations in Memory for Time Estimation. Sci Rep 2018; 8:7992. [PMID: 29789611 PMCID: PMC5964239 DOI: 10.1038/s41598-018-26385-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The neural mechanisms underlying time perception are of vital importance to a comprehensive understanding of behavior and cognition. Recent work has suggested a supramodal role for beta oscillations in measuring temporal intervals. However, the precise function of beta oscillations and whether their manipulation alters timing has yet to be determined. To accomplish this, we first re-analyzed two, separate EEG datasets and demonstrate that beta oscillations are associated with the retention and comparison of a memory standard for duration. We next conducted a study of 20 human participants using transcranial alternating current stimulation (tACS), over frontocentral cortex, at alpha and beta frequencies, during a visual temporal bisection task, finding that beta stimulation exclusively shifts the perception of time such that stimuli are reported as longer in duration. Finally, we decomposed trialwise choice data with a drift diffusion model of timing, revealing that the shift in timing is caused by a change in the starting point of accumulation, rather than the drift rate or threshold. Our results provide evidence for the intrinsic involvement of beta oscillations in the perception of time, and point to a specific role for beta oscillations in the encoding and retention of memory for temporal intervals.
Collapse
|
37
|
Time estimation and beta segregation: An EEG study and graph theoretical approach. PLoS One 2018; 13:e0195380. [PMID: 29624619 PMCID: PMC5889177 DOI: 10.1371/journal.pone.0195380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
Elucidation of the neural correlates of time perception constitutes an important research topic in cognitive neuroscience. The focus to date has been on durations in the millisecond to seconds range, but here we used electroencephalography (EEG) to examine brain functional connectivity during much longer durations (i.e., 15 min). For this purpose, we conducted an initial exploratory experiment followed by a confirmatory experiment. Our results showed that those participants who overestimated time exhibited lower activity of beta (18–30 Hz) at several electrode sites. Furthermore, graph theoretical analysis indicated significant differences in the beta range (15–30 Hz) between those that overestimated and underestimated time. Participants who underestimated time showed higher clustering coefficient compared to those that overestimated time. We discuss our results in terms of two aspects. FFT results, as a linear approach, are discussed within localized/dedicated models (i.e., scalar timing model). Second, non-localized properties of psychological interval timing (as emphasized by intrinsic models) are addressed and discussed based on results derived from graph theory. Results suggested that although beta amplitude in central regions (related to activity of BG-thalamocortical pathway as a dedicated module) is important in relation to timing mechanisms, the properties of functional activity of brain networks; such as the segregation of beta network, are also crucial for time perception. These results may suggest subjective time may be created by vector units instead of scalar ticks.
Collapse
|
38
|
Gompf F, Pflug A, Laufs H, Kell CA. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front Hum Neurosci 2017; 11:582. [PMID: 29249950 PMCID: PMC5714933 DOI: 10.3389/fnhum.2017.00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Collapse
Affiliation(s)
- Florian Gompf
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Pflug
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helmut Laufs
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts- Universität zu Kiel, Kiel, Germany
| | - Christian A Kell
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Abstract
In behavior, action and perception are inherently interdependent. However, the actual mechanistic contributions of the motor system to sensory processing are unknown. We present neurophysiological evidence that the motor system is involved in predictive timing, a brain function that aligns temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection and optimizing behavior. In a magnetoencephalography experiment involving auditory temporal attention, participants had to disentangle two streams of sound on the unique basis of endogenous temporal cues. We show that temporal predictions are encoded by interdependent delta and beta neural oscillations originating from the left sensorimotor cortex, and directed toward auditory regions. We also found that overt rhythmic movements improved the quality of temporal predictions and sharpened the temporal selection of relevant auditory information. This latter behavioral and functional benefit was associated with increased signaling of temporal predictions in right-lateralized frontoparietal associative regions. In sum, this study points at a covert form of auditory active sensing. Our results emphasize the key role of motor brain areas in providing contextual temporal information to sensory regions, driving perceptual and behavioral selection.
Collapse
|
40
|
Milton A, Pleydell-Pearce C. Exploring the relationship of phase and peak-frequency EEG alpha-band and beta-band activity to temporal judgments of stimulus duration. Cogn Neurosci 2017; 8:193-205. [DOI: 10.1080/17588928.2017.1359524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Alex Milton
- Psychology, University of Southampton, Southampton, UK
| | | |
Collapse
|
41
|
θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech. J Neurosci 2017; 37:7930-7938. [PMID: 28729443 DOI: 10.1523/jneurosci.2882-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm.SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process.
Collapse
|