1
|
Qin P, Bi Q, Guo Z, Yang L, Li H, Li P, Liang X, Luo J, Kong X, Xiong Y, Sun B, Ocklenburg S, Gong G. Microstructural asymmetries of the planum temporale predict functional lateralization of auditory-language processing. eLife 2024; 13:RP95547. [PMID: 39679659 DOI: 10.7554/elife.95547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Structural hemispheric asymmetry has long been assumed to guide functional lateralization of the human brain, but empirical evidence for this compelling hypothesis remains scarce. Recently, it has been suggested that microstructural asymmetries may be more relevant to functional lateralization than macrostructural asymmetries. To investigate the link between microstructure and function, we analyzed multimodal MRI data in 907 right-handed participants. We quantified structural asymmetry and functional lateralization of the planum temporale (PT), a cortical area crucial for auditory-language processing. We found associations between PT functional lateralization and several structural asymmetries, such as surface area, intracortical myelin content, neurite density, and neurite orientation dispersion. The PT structure also showed hemispheric-specific coupling with its functional activity. All these functional-structural associations are highly specific to within-PT functional activity during auditory-language processing. These results suggest that structural asymmetry underlies functional lateralization of the same brain area and highlights a critical role of microstructural PT asymmetries in auditory-language processing.
Collapse
Affiliation(s)
- Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qiuhui Bi
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zeya Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haokun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Peng Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangyu Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo Sun
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
2
|
Economou M, Bempt FV, Van Herck S, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Myelin plasticity during early literacy training in at-risk pre-readers. Cortex 2023; 167:86-100. [PMID: 37542803 DOI: 10.1016/j.cortex.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 08/07/2023]
Abstract
A growing body of neuroimaging evidence shows that white matter can change as a result of experience and structured learning. Although the majority of previous work has used diffusion MRI to characterize such changes in white matter, diffusion metrics offer limited biological specificity about which microstructural features may be driving white matter plasticity. Recent advances in myelin-specific MRI techniques offer a promising opportunity to assess the specific contribution of myelin in learning-related plasticity. Here we describe the application of such an approach to examine structural plasticity during an early intervention in preliterate children at risk for dyslexia. To this end, myelin water imaging data were collected before and after a 12-week period in (1) at-risk children following early literacy training (n = 13-24), (2) at-risk children engaging with other non-literacy games (n = 10-17) and (3) children without a risk receiving no training (n = 11-22). Before the training, regional risk-related differences were identified, showing higher myelin water fraction (MWF) in right dorsal white matter in at-risk children compared to the typical control group. Concerning intervention-specific effects, our results revealed an increase across left-hemispheric and right ventral MWF over the course of training in the at-risk children receiving early literacy training, but not in the at-risk active control group or the no-risk typical control group. Overall, our results provide support for the use of myelin water imaging as a sensitive tool to investigate white matter and offer a first indication of myelin plasticity in young children at the onset of literacy acquisition.
Collapse
Affiliation(s)
- Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jolijn Vanderauwera
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Al Busaidi A, Gangemi E, Wastling S, Berg ASVD, Mancini L, Yousry T. Functional MRI but not white matter fibre dissection identifies language dominance. Eur Radiol 2023; 33:6081-6093. [PMID: 37410110 DOI: 10.1007/s00330-023-09838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES Lateralisation of some language pathways has been reported in the literature using diffusion tractography, which is more feasible than functional magnetic resonance imaging (fMRI) in challenging patients. Our retrospective study investigates whether a correlation exists between threshold-independent fMRI language lateralisation and structural lateralisation using tractography in healthy controls and brain tumour patients. METHODS Fifteen healthy subjects and 61 patients underwent language fMRI and diffusion-weighted MRI. A regional fMRI laterality index (LI) was calculated. Tracts dissected were the arcuate fasciculus (long direct and short indirect tracts), uncinate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and frontal aslant tract. An asymmetry index (AI) for each tract was calculated using tract volume analysed with single tensor (ST) and spherical deconvolution (SD) models, as well as hindrance modulated orientational anisotropy (HMOA) for SD tracts. Linear regression assessed the correlation between LI and AI. RESULTS In all subjects, there was no significant correlation between LI and AI for any of the dissected tracts. Significant correlations were only found when handedness for controls and tumour volume for patients were included as covariates. In handedness subgroups, the average AI of some tracts showed the same laterality as LI, and some the opposite. Discordant results were observed for ST- and SD-based AIs. CONCLUSIONS Our results do not support using tractography in the assessment of language lateralisation. The discordant results between ST and SD indicate that either the structural lateralisation of dissected tracts is less robust than functional lateralisation, or tractography is not sensitive methodology. Other diffusion analysis approaches should be developed. CLINICAL RELEVANCE STATEMENT Although diffusion tractography may be more feasible than fMRI in challenging tumour patients and where sedation or anaesthesia is required, our results do not currently recommend replacing fMRI with tractography using volume or HMOA in the assessment of language lateralisation. KEY POINTS • No correlation found between fMRI and tractography in language lateralisation. • Discordance between asymmetry indices of different tractography models and metrics. • Tractography not currently recommended in language lateralisation assessment.
Collapse
Affiliation(s)
- Ayisha Al Busaidi
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK.
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, Denmark Hill, SE5 9RS, UK.
| | - Emma Gangemi
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Radiology Department, Ospedale Dei Castelli, Via Nettunense, Km 11,5, 00040, Rome, Italy
| | - Stephen Wastling
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Neuroradiological Academic Unit, Department of Brain, Repair and Rehabilitation, University College London Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Aaike S van den Berg
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Neuroradiological Academic Unit, Department of Brain, Repair and Rehabilitation, University College London Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Neuroradiological Academic Unit, Department of Brain, Repair and Rehabilitation, University College London Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
4
|
Herlin B, Uszynski I, Chauvel M, Poupon C, Dupont S. Cross-subject variability of the optic radiation anatomy in a cohort of 1065 healthy subjects. Surg Radiol Anat 2023:10.1007/s00276-023-03161-4. [PMID: 37195302 DOI: 10.1007/s00276-023-03161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Optic radiations are tracts of particular interest for neurosurgery, especially for temporal lobe resection, because their lesion is responsible for visual field defects. However, histological and MRI studies found a high inter-subject variability of the optic radiation anatomy, especially for their most rostral extent inside the Meyer's temporal loop. We aimed to better assess inter-subject anatomical variability of the optic radiations, in order to help to reduce the risk of postoperative visual field deficiencies. METHODS Using an advanced analysis pipeline relying on a whole-brain probabilistic tractography and fiber clustering, we processed the diffusion MRI data of the 1065 subjects of the HCP cohort. After registration in a common space, a cross-subject clustering on the whole cohort was performed to reconstruct the reference optic radiation bundle, from which all optic radiations were segmented on an individual scale. RESULTS We found a median distance between the rostral tip of the temporal pole and the rostral tip of the optic radiation of 29.2 mm (standard deviation: 2.1 mm) for the right side and 28.8 mm (standard deviation: 2.3 mm) for the left side. The difference between both hemispheres was statistically significant (p = 1.10-8). CONCLUSION We demonstrated inter-individual variability of the anatomy of the optic radiations on a large-scale study, especially their rostral extension. In order to better guide neurosurgical procedures, we built a MNI-based reference atlas of the optic radiations that can be used for fast optic radiation reconstruction from any individual diffusion MRI tractography.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
6
|
Comeau N, Monetta L, Schneider C. Noninvasive stimulation of the unlesioned hemisphere and phonological treatment in a case of chronic anomia post-stroke. Neurocase 2022; 28:206-217. [PMID: 35580361 DOI: 10.1080/13554794.2022.2068374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic lexical anomia after left hemisphere (LH) stroke improves under personalized phonological treatment (PT). Cortical linking between language and hand motor areas (hand_M1) questioned whether PT-related improvement relies on the unlesioned hemisphere (UH) plasticity when LH is dysfunctional. Our 70-yo-woman case study showed that 10 sessions of excitatory stimulation of UH_hand-M1 combined with PT hastened oral picture naming improvement as compared to sham+PT and changes were maintained together with changes of untrained items andcorticomotor excitability increase. This supports a role of stimulation-induced plasticity of UH_hand M1 in language recovery, at least in the improvement of lexical anomia in chronic stroke.
Collapse
Affiliation(s)
- Noémie Comeau
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada
| | - Laura Monetta
- Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada.,CIRRIS Research Center, Quebec, Canada
| | - Cyril Schneider
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada.,Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
7
|
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, O'Donnell LJ. White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. Neuroimage 2022; 246:118739. [PMID: 34856375 PMCID: PMC8862285 DOI: 10.1016/j.neuroimage.2021.118739] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Collapse
Affiliation(s)
- Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA; Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institution of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | - Tengfei Xue
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | | | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA, US
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4684-4697. [DOI: 10.1093/cercor/bhab510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
|
9
|
Ramírez-Guerrero S, Vargas-Cuellar MP, Charry-Sánchez JD, Talero-Gutiérrez C. Cognitive sequelae of radiotherapy in primary brain tumors. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Yazbek S, Hage S, Mallak I, Smayra T. Tractography of the arcuate fasciculus in healthy right-handed and left-handed multilingual subjects and its relation to language lateralization on functional MRI. Sci Rep 2021; 11:20936. [PMID: 34686728 PMCID: PMC8536719 DOI: 10.1038/s41598-021-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Functional MRI (fMRI) enables evaluation of language cortical organization and plays a central role in surgical planning. Diffusion Tensor Imaging (DTI) or Tractography, allows evaluation of the white matter fibers involved in language. Unlike fMRI, DTI does not rely on the patient’s cooperation. In monolinguals, there is a significant correlation between the lateralization of language on fMRI and on DTI. Our objective is to delineate the arcuate fasciculus (AF) in right- and left-handed trilinguals and determine if the AF laterality on DTI is correlated to language lateralization on fMRI. 15 right and 15 left-handed trilingual volunteers underwent fMRI and DTI. Laterality Index was determined on fMRI (fMRI-LI). Mean Diffusivity, Fractional Anisotropy (FA), Number of Fibers, Fiber Length, Fiber Volume and Laterality Index (DTI-LI) of the AF were calculated on DTI. 28 of the 30 subjects presented a bilateral AF. Most subjects (52%) were found to have a bilateral language lateralization of the AF on DTI. Only 4 subjects had bilateral lateralization of language on fMRI. The right AF demonstrated lower diffusivity than the left AF in the total participants, the right-handed, and the left-handed subjects. FA, Volume and Length of the AF were not significantly different between the two hemispheres. No correlation was found between the DTI-LI of the AF and the fMRI-LI. A prominent role of the right AF and a bilateral structural organization of the AF was present in our multilingual population regardless of their handedness. While in prior studies DTI was able to determine language lateralization in monolingual subjects, this was not possible in trilingual highly educated subjects.
Collapse
Affiliation(s)
- Sandrine Yazbek
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Stephanie Hage
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Iyad Mallak
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Tarek Smayra
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon.
| |
Collapse
|
11
|
Kaskikallio A, Karrasch M, Koikkalainen J, Lötjönen J, Rinne JO, Tuokkola T, Parkkola R, Grönholm-Nyman P. Effects of White Matter Hyperintensities on Verbal Fluency in Healthy Older Adults and MCI/AD. Front Aging Neurosci 2021; 13:614809. [PMID: 34025385 PMCID: PMC8134546 DOI: 10.3389/fnagi.2021.614809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND White matter hyperintensities (WMHs) are markers for cerebrovascular pathology, which are frequently seen in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Verbal fluency is often impaired especially in AD, but little research has been conducted concerning the specific effects of WMH on verbal fluency in MCI and AD. OBJECTIVE Our aim was to examine the relationship between WMH and verbal fluency in healthy old age and pathological aging (MCI/AD) using quantified MRI data. METHODS Measures for semantic and phonemic fluency as well as quantified MRI imaging data from a sample of 42 cognitively healthy older adults and 44 patients with MCI/AD (total n = 86) were utilized. Analyses were performed both using the total sample that contained seven left-handed/ambidextrous participants, as well with a sample containing only right-handed participants (n = 79) in order to guard against possible confounding effects regarding language lateralization. RESULTS After controlling for age and education and adjusting for multiple correction, WMH in the bilateral frontal and parieto-occipital areas as well as the right temporal area were associated with semantic fluency in cognitively healthy and MCI/AD patients but only in the models containing solely right-handed participants. CONCLUSION The results indicate that white matter pathology in both frontal and parieto-occipital cerebral areas may have associations with impaired semantic fluency in right-handed older adults. However, elevated levels of WMH do not seem to be associated with cumulative effects on verbal fluency impairment in patients with MCI or AD. Further studies on the subject are needed.
Collapse
Affiliation(s)
- Alar Kaskikallio
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | | | | | - Juha O. Rinne
- Turku PET-Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, University Hospital of Turku, Turku, Finland
| | | |
Collapse
|
12
|
Di Cristofori A, Basso G, de Laurentis C, Mauri I, Sirtori MA, Ferrarese C, Isella V, Giussani C. Perspectives on (A)symmetry of Arcuate Fasciculus. A Short Review About Anatomy, Tractography and TMS for Arcuate Fasciculus Reconstruction in Planning Surgery for Gliomas in Language Areas. Front Neurol 2021; 12:639822. [PMID: 33643213 PMCID: PMC7902861 DOI: 10.3389/fneur.2021.639822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas are brain tumors that are treated with surgical resection. Prognosis is influenced by the extent of resection and postoperative neurological status. As consequence, given the extreme interindividual and interhemispheric variability of subcortical white matter (WM) surgical planning requires to be patient's tailored. According to the “connectionist model,” there is a huge variability among both cortical areas and subcortical WM in all human beings, and it is known that brain is able to reorganize itself and to adapt to WM lesions. Brain magnetic resonance imaging diffusion tensor imaging (DTI) tractography allows visualization of WM bundles. Nowadays DTI tractography is widely available in the clinical setting for presurgical planning. Arcuate fasciculus (AF) is a long WM bundle that connects the Broca's and Wernicke's regions with a complex anatomical architecture and important role in language functions. Thus, its preservation is important for the postoperative outcome, and DTI tractography is usually performed for planning surgery within the language-dominant hemisphere. High variability among individuals and an asymmetrical pattern has been reported for this WM bundle. However, the functional relevance of AF in the contralateral non-dominant hemisphere in case of tumoral or surgical lesion of the language-dominant AF is unclear. This review focuses on AF anatomy with special attention to its asymmetry in both normal and pathological conditions and how it may be explored with preoperative tools for planning surgery on gliomas in language areas. Based on the findings available in literature, we finally speculate about the potential role of preoperative evaluation of the WM contralateral to the surgical site.
Collapse
Affiliation(s)
| | - Gianpaolo Basso
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Camilla de Laurentis
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Mauri
- Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | | | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Valeria Isella
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Giussani
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Saito J, Nemoto T, Katagiri N, Hori M, Tagata H, Funatogawa T, Yamaguchi T, Tsujino N, Mizuno M. Can reduced leftward asymmetry of white matter integrity be a marker of transition to psychosis in at-risk mental state? Asian J Psychiatr 2020; 54:102450. [PMID: 33271729 DOI: 10.1016/j.ajp.2020.102450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
As a biomarker for the degree of psychosis development, the lateral asymmetry of white matter (WM) integrity in each area of the cerebrum has been investigated; as a result, a reduced leftward asymmetry of WM integrity has been reported in patients with schizophrenia. Although individuals with an at-risk mental state for psychosis (ARMS) who subsequently develop psychosis are believed to have poorer social functioning, only a few studies have actually examined the associations between WM abnormalities and social functioning. The aim of the present study was to clarify the possibly predictive association between a reduced asymmetry of WM integrity and impairments in social functioning in patients with ARMS. Thirty ARMS subjects underwent MRI scanning and were assessed using the Social Functioning Scale (SFS). We examined the fractional anisotropy (FA) values in the cingulum bundle (CB) and the uncinate fasciculus (UF) using a tract-specific analysis. Lateral asymmetry was assessed using the laterality index (LI). The LI of the FA value was positive (leftward) in the CB and negative (rightward) in the UF. Although the LI was not correlated with the Scale of Prodromal Symptoms (SOPS) score, the LI in the CB was positively correlated with the SFS score. In ARMS patients, the degree of reduced leftward asymmetry in the CB might affect deteriorations in social functioning and may be useful as a biomarker for predicting future outcomes at an early stage of psychosis.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan; Department of Psychiatry, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan.
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan; Department of Psychiatry, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
White matter pathways underlying Chinese semantic and phonological fluency in mild cognitive impairment. Neuropsychologia 2020; 149:107671. [PMID: 33189733 DOI: 10.1016/j.neuropsychologia.2020.107671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Neuroimaging evidence has suggested that Chinese-language processing differs from that of its alphabetic-language counterparts. However, the underlying white matter pathway correlations between semantic and phonological fluency in Chinese-language processing remain unknown. Thus, we investigated the differences between two verbal fluency tests on 50 participants with amnestic mild cognitive impairment (aMCI) and 36 healthy controls (HC) with respect to five groups (ventral and dorsal stream fibers, frontal-striatal fibers, hippocampal-related fibers, and the corpus callosum) of white matter microstructural integrity. Diffusion spectrum imaging was used. The results revealed a progressive reduction in advantage in semantic fluency relative to phonological fluency from HC to single-domain aMCI to multidomain aMCI. Common and dissociative white matter correlations between tests of the two types of fluency were identified. Both types of fluency relied on the corpus callosum and ventral stream fibers, semantic fluency relied on the hippocampal-related fibers, and phonological fluency relied on the dorsal stream and frontal-striatal fibers. The involvement of bilateral tracts of interest as well as the association with the corpus callosum indicate the uniqueness of Chinese-language fluency processing. Dynamic associations were noted between white matter tract involvement and performance on the two fluency tests in four time blocks. Overall, our findings suggest the clinical utility of verbal fluency tests in geriatric populations, and they elucidate both task-specific and language-specific brain-behavior associations.
Collapse
|
15
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
16
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Gould L, Wu A, Tellez-Zenteno JF, Neudorf J, Kress S, Gibb K, Ekstrand C, Dabirzadeh H, Ahmed SU, Borowsky R. Atypical language localization in right temporal lobe epilepsy: An fMRI case report. Epilepsy Behav Rep 2020; 14:100364. [PMID: 32462137 PMCID: PMC7243043 DOI: 10.1016/j.ebr.2020.100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022] Open
Abstract
We report a 41- year-old, left-handed patient with drug-resistant right temporal lobe epilepsy (TLE). Presurgical fMRI was conducted to examine whether the patient had language functioning in the right hemisphere given that left-handedness is associated with a higher prevalence of right hemisphere dominance for language. The fMRI results revealed bilateral activation in Broca's and Wernicke's areas and activation of eloquent cortex near the region of planned resection in the right temporal lobe. Due to right temporal language-related activation, the patient underwent an awake right-sided temporal lobectomy with intraoperative language mapping. Intraoperative direct cortical stimulation (DCS) was conducted in the regions corresponding to the fMRI activation, and the patient showed language abnormalities, such as paraphasic errors, and speech arrest. The decision was made to abort the planned anterior temporal lobe procedure, and the patient instead underwent a selective amygdalohippocampectomy via the Sylvian fissure at a later date. Post-operatively the patient was seizure-free with no neurological deficits. Taken together, the results support previous findings of right hemisphere language activation in left-handed individuals, and should be considered in cases in which presurgical localization is conducted for left-hand dominant patients undergoing neurosurgical procedures. The report evaluates evidence for the possibility of right hemisphere language activation in a left-handed right TLE patient The results of the fMRI tasks showed bilateral speech regions, such as left and right Broca's area and Wernicke's area The results support previous findings of right hemisphere language activation in left-handed individuals The report discusses the value of fMRI of language tasks for presurgical planning in epilepsy cases Report highlights how fMRI findings can alter surgical strategy and how intraoperative brain mapping validates these findings
Collapse
Affiliation(s)
- Layla Gould
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
- Correspondence to: L. Gould, Department of Surgery, University of Saskatchewan, SK S7N 5A5, Canada.
| | - Adam Wu
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Jose F. Tellez-Zenteno
- Department of Medicine, Division of Neurology, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Josh Neudorf
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Shaylyn Kress
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Katherine Gibb
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Chelsea Ekstrand
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| | - Hamid Dabirzadeh
- Department of Medical Imaging, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Syed Uzair Ahmed
- Department of Surgery, Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada
| |
Collapse
|
18
|
Regions of white matter abnormalities in the arcuate fasciculus in veterans with anger and aggression problems. Brain Struct Funct 2019; 225:1401-1411. [PMID: 31883025 PMCID: PMC7271041 DOI: 10.1007/s00429-019-02016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Aggression after military deployment is a common occurrence in veterans. Neurobiological research has shown that aggression is associated with a dysfunction in a network connecting brain regions implicated in threat processing and emotion regulation. However, aggression may also be related to deficits in networks underlying communication and social cognition. The uncinate and arcuate fasciculi are integral to these networks, thus studying potential abnormalities in these white matter connections can further our understanding of anger and aggression problems in military veterans. Here, we use diffusion tensor imaging tractography to investigate white matter microstructural properties of the uncinate fasciculus and the arcuate fasciculus in veterans with and without anger and aggression problems. A control tract, the parahippocampal cingulum was also included in the analyses. More specifically, fractional anisotropy (FA) estimates are derived along the trajectory from all fiber pathways and compared between both groups. No between-group FA differences are observed for the uncinate fasciculus and the cingulum, however parts of the arcuate fasciculus show a significantly lower FA in the group of veterans with aggression and anger problems. Our data suggest that abnormalities in arcuate fasciculus white matter connectivity that are related to self-regulation may play an important role in the etiology of anger and aggression in military veterans.
Collapse
|
19
|
Houston J, Allendorfer J, Nenert R, Goodman AM, Szaflarski JP. White Matter Language Pathways and Language Performance in Healthy Adults Across Ages. Front Neurosci 2019; 13:1185. [PMID: 31736704 PMCID: PMC6838008 DOI: 10.3389/fnins.2019.01185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to determine the relationship between age-related white matter changes, with a specific focus on previously identified language pathways, and language functioning in healthy aging. 228 healthy participants (126 female; 146 right-handed), ages 18 to 76, underwent 3.0 Tesla MR diffusion weighted imaging (DWI) and a battery of language assessments including the Boston Naming Test (BNT), the Peabody Picture Vocabulary Test (PPVT), the Controlled Oral Word Association Test (COWAT), Semantic Fluency Test (SFT), and a subset of the Boston Diagnostic Aphasia Examination (CI-BDAE). Using tract based spatial statistics (TBSS), we investigated measurements of fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). TBSS was used to create a white matter skeleton that was then used to analyze white matter changes (indexed by FA, AD, RD, and MD) with age and language performance. Results focused primarily on significant relationships (p < 0.05, cluster-wise FDR corrected for multiple comparisons) in the canonical language white matter pathways. We found a diffuse linear decrease with age in global white matter FA and a significant focal increase in FA with age within the bilateral superior cerebellar peduncles (SCPs). We observed that increased BNT scores were associated with increased FA within the left SLF, and within the posterior and antero-lateral portions of the right inferior frontal-occipital fasciculus (IFOF). Increased SFT and PPVT scores were associated with increased FA within the posterior portion of the right IFOF and increased FA within the left body of the corpus callosum was associated with lower COWAT scores. We found no association between FA and BDAE. MD, RD, and AD, were found to be inversely proportional to FA within the IFOF, with AD showing a negative correlation with SFT, and RD and MD showing a negative correlation with BNT. There was no association between CI-BDAE and any of the white matter measures. Significant differences between sexes included more pronounced FA decrease with age within the right SLF in males vs. females; there were no differences in language performance scores between sexes. We also found that there was no decline in language testing scores with increasing age in our cohort. Taken together, our findings of varying relationships between DTI metrics and language function within multiple regions of the non-dominant IFOF suggest that more robust language networks with bilateral structural connectivity may contribute to better overall language functioning, regardless of age.
Collapse
Affiliation(s)
- James Houston
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jane Allendorfer
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodolph Nenert
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, The University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Neurosurgery and Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Karlsson EM, Johnstone LT, Carey DP. The depth and breadth of multiple perceptual asymmetries in right handers and non-right handers. Laterality 2019; 24:707-739. [PMID: 31399020 DOI: 10.1080/1357650x.2019.1652308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several non-verbal perceptual and attentional processes have been linked with specialization of the right cerebral hemisphere. Given that most people have a left hemispheric specialization for language, it is tempting to assume that functions of these two classes of dominance are related. Unfortunately, such models of complementarity are notoriously hard to test. Here we suggest a method which compares frequency of a particular perceptual asymmetry with known frequencies of left hemispheric language dominance in right-handed and non-right handed groups. We illustrate this idea using the greyscales and colourscales tasks, chimeric faces, emotional dichotic listening, and a consonant-vowel dichotic listening task. Results show a substantial "breadth" of leftward bias on the right hemispheric tasks and rightward bias on verbal dichotic listening. Right handers and non-right handers did not differ in terms of proportions of people who were left biased for greyscales/colourscales. Support for reduced typical biases in non-right handers was found for chimeric faces and for CV dichotic listening. Results are discussed in terms of complementary theories of cerebral asymmetries, and how this type of method could be used to create a taxonomy of lateralized functions, each categorized as related to speech and language dominance, or not.
Collapse
Affiliation(s)
- Emma M Karlsson
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| | | | - David P Carey
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| |
Collapse
|
21
|
Blecher T, Miron S, Schneider GG, Achiron A, Ben-Shachar M. Association Between White Matter Microstructure and Verbal Fluency in Patients With Multiple Sclerosis. Front Psychol 2019; 10:1607. [PMID: 31379663 PMCID: PMC6657651 DOI: 10.3389/fpsyg.2019.01607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Verbal fluency refers to the ability to generate words quickly and efficiently according to predefined phonological or semantic criteria. Deficits in verbal fluency limit patients' ability to communicate effectively and to function well in social setups. Multiple sclerosis (MS) patients suffer from various cognitive impairments, and some of them experience language deficits as well. The goal of this study is to examine the contribution of the dorsal and ventral language pathways to verbal fluency in MS patients. All patients (N = 33) underwent diffusion MRI (dMRI) and fluency measurements. Diffusion parameters were calculated along dorsal and ventral language-related pathways and their right-hemispheric homologs, identified individually in each patient. Significant correlations were found between fluency measures and mean fractional anisotropy (FA) in several pathways, including the left fronto-temporal arcuate fasciculus (AFft), bilateral inferior fronto-occipital fasciculus (IFOF), and bilateral frontal aslant tract. Along-tract correlations revealed a more selective pattern of associations: letter-based fluency was associated with FA in a segment of the left AFft (dorsal pathway), while category-based fluency was associated with FA in a segment of the right IFOF (ventral pathway). The observed pattern of associations, mapping letter-based fluency to the dorsal stream and category-based fluency to the ventral stream, fits well within the dual stream framework of language processing. Further studies will be necessary to assess whether these associations generalize to the typical adult population or whether they are tied to the clinical state.
Collapse
Affiliation(s)
- Tal Blecher
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shmuel Miron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Ben-Shachar
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of English Literature and Linguistics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
22
|
|
23
|
Bain JS, Yeatman JD, Schurr R, Rokem A, Mezer AA. Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines. Hum Brain Mapp 2019; 40:3695-3711. [PMID: 31106944 DOI: 10.1002/hbm.24626] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022] Open
Abstract
The arcuate fasciculi are white-matter pathways that connect frontal and temporal lobes in each hemisphere. The arcuate plays a key role in the language network and is believed to be left-lateralized, in line with left hemisphere dominance for language. Measuring the arcuate in vivo requires diffusion magnetic resonance imaging-based tractography, but asymmetry of the in vivo arcuate is not always reliably detected in previous studies. It is unknown how the choice of tractography algorithm, with each method's freedoms, constraints, and vulnerabilities to false-positive and -negative errors, impacts findings of arcuate asymmetry. Here, we identify the arcuate in two independent datasets using a number of tractography strategies and methodological constraints, and assess their impact on estimates of arcuate laterality. We test three tractography methods: a deterministic, a probabilistic, and a tractography-evaluation (LiFE) algorithm. We extract the arcuate from the whole-brain tractogram, and compare it to an arcuate bundle constrained even further by selecting only those streamlines that connect to anatomically relevant cortical regions. We test arcuate macrostructure laterality, and also evaluate microstructure profiles for properties such as fractional anisotropy and quantitative R1. We find that both tractography choice and implementing the cortical constraints substantially impact estimates of all indices of arcuate laterality. Together, these results emphasize the effect of the tractography pipeline on estimates of arcuate laterality in both macrostructure and microstructure.
Collapse
Affiliation(s)
- Jonathan S Bain
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences and Department of Speech and Hearing Science, The University of Washington, Seattle, Washington, USA
| | - Roey Schurr
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Rokem
- The University of Washington eScience Institute, The University of Washington, Seattle, Washington, USA
| | - Aviv A Mezer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Guo J, Han Y, Li Y, Reddick WE. Reduced brain microstructural asymmetry in patients with childhood leukemia treated with chemotherapy compared with healthy controls. PLoS One 2019; 14:e0216554. [PMID: 31071157 PMCID: PMC6508708 DOI: 10.1371/journal.pone.0216554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/18/2019] [Indexed: 11/18/2022] Open
Abstract
Microstructural asymmetry of the brain can provide more direct causal explanations of functional lateralization than can macrostructural asymmetry. We performed a cross-sectional diffusion imaging study of 314 patients treated for childhood acute lymphoblastic leukemia (ALL) at a single institution and 92 healthy controls. An asymmetry index based on diffusion metrics was computed to quantify brain microstructural asymmetry. The effects of age and the asymmetry metrics of the two cohorts were examined with t-tests and linear models. We discovered two new types of microstructural asymmetry. Myelin-related asymmetry in controls was prominent in the back brain (89% right), whereas axon-related asymmetry occurred in the front brain (67% left) and back brain (88% right). These asymmetries indicate that white matter is more mature and more myelinated in the left back brain, potentially explaining the leftward lateralization of language and visual functions. The asymmetries increase throughout childhood and adolescence (P = 0.04) but were significantly less in patients treated for ALL (P<0.01), especially in younger patients. Our results indicate that atypical brain development may appear long before patients treated with chemotherapy become symptomatic.
Collapse
Affiliation(s)
- Junyu Guo
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| |
Collapse
|
25
|
Van der Haegen L, Brysbaert M. The relationship between behavioral language laterality, face laterality and language performance in left-handers. PLoS One 2018; 13:e0208696. [PMID: 30576313 PMCID: PMC6303078 DOI: 10.1371/journal.pone.0208696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/21/2018] [Indexed: 01/20/2023] Open
Abstract
Left-handers provide unique information about the relationship between cognitive functions because of their larger variability in hemispheric dominance. This study presents the laterality distribution of, correlations between and test-retest reliability of behavioral lateralized language tasks (speech production, reading and speech perception), face recognition tasks, handedness measures and language performance tests based on data from 98 left-handers. The results show that a behavioral test battery leads to percentages of (a)typical dominance that are similar to those found in neuropsychological studies even though the incidence of clear atypical lateralization (about 20%) may be overestimated at the group level. Significant correlations were found between the language tasks for both reaction time and accuracy lateralization indices. The degree of language laterality could however not be linked to face laterality, handedness or language performance. Finally, individuals were classified less consistently than expected as being typical, bilateral or atypical across all tasks. This may be due to the often good (speech production and perception tasks) but sometimes weak (reading and face tasks) test-retest reliabilities. The lack of highly reliable and valid test protocols for functions unrelated to speech remains one of the largest impediments for individual analysis and cross-task investigations in laterality research.
Collapse
Affiliation(s)
- Lise Van der Haegen
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Marc Brysbaert
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Talozzi L, Testa C, Evangelisti S, Cirignotta L, Bianchini C, Ratti S, Fantazzini P, Tonon C, Manners DN, Lodi R. Along-tract analysis of the arcuate fasciculus using the Laplacian operator to evaluate different tractography methods. Magn Reson Imaging 2018; 54:183-193. [PMID: 30165094 DOI: 10.1016/j.mri.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/08/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE We propose a new along-tract algorithm to compare different tractography algorithms in tract curvature mapping and along-tract analysis of the arcuate fasciculus (AF). In particular, we quantified along-tract diffusion parameters and AF spatial distribution evaluating hemispheric asymmetries in a group of healthy subjects. METHODS The AF was bilaterally reconstructed in a group of 29 healthy subjects using the probabilistic ball-and-sticks model, and both deterministic and probabilistic constrained spherical deconvolution. We chose cortical ROIs as tractography targets and the developed along-tract algorithm used the Laplacian operator to parameterize the volume of the tract, allowing along-tract analysis and tract curvature mapping independent of the tractography algorithm used. RESULTS The Laplacian parameterization successfully described the tract geometry underlying hemispheric asymmetries in the AF curvature. Using the probabilistic tractography methods, we found more tracts branching towards cortical terminations in the left hemisphere. This influenced the left AF curvature and its diffusion parameters, which were significantly different with respect to the right. In particular, we detected projections towards the middle temporal and inferior frontal gyri bilaterally, and towards the superior temporal and precentral gyri in the left hemisphere, with a significantly increased volume and connectivity. CONCLUSIONS The approach we propose is useful to evaluate brain asymmetries, assessing the volume, the diffusion properties and the quantitative spatial localization of the AF.
Collapse
Affiliation(s)
- Lia Talozzi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Claudia Testa
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Lorenzo Cirignotta
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Claudio Bianchini
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Stefano Ratti
- Department of Biomedical and NeuroMotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italia
| | - Paola Fantazzini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy, and Centro Enrico Fermi, Roma, Italia
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia; IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italia.
| | - David Neil Manners
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italia; IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italia
| |
Collapse
|
27
|
Hirnstein M, Hugdahl K, Hausmann M. Cognitive sex differences and hemispheric asymmetry: A critical review of 40 years of research. Laterality 2018; 24:204-252. [DOI: 10.1080/1357650x.2018.1497044] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
28
|
Ngattai Lam PD, Belhomme G, Ferrall J, Patterson B, Styner M, Prieto JC. TRAFIC: Fiber Tract Classification Using Deep Learning. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10574. [PMID: 29780197 DOI: 10.1117/12.2293931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We present TRAFIC, a fully automated tool for the labeling and classification of brain fiber tracts. TRAFIC classifies new fibers using a neural network trained using shape features computed from previously traced and manually corrected fiber tracts. It is independent from a DTI Atlas as it is applied to already traced fibers. This work is motivated by medical applications where the process of extracting fibers from a DTI atlas, or classifying fibers manually is time consuming and requires knowledge about brain anatomy. With this new approach we were able to classify traced fiber tracts obtaining encouraging results. In this report we will present in detail the methods used and the results achieved with our approach.
Collapse
Affiliation(s)
| | | | | | | | - Martin Styner
- NIRAL, UNC, Chapel Hill, North Carolina, United States
| | - Juan C Prieto
- NIRAL, UNC, Chapel Hill, North Carolina, United States
| |
Collapse
|
29
|
Uomini NT, Ruck L. Manual laterality and cognition through evolution: An archeological perspective. PROGRESS IN BRAIN RESEARCH 2018; 238:295-323. [DOI: 10.1016/bs.pbr.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Jung YH, Shin JE, Lee YI, Jang JH, Jo HJ, Choi SH. Altered Amygdala Resting-State Functional Connectivity and Hemispheric Asymmetry in Patients With Social Anxiety Disorder. Front Psychiatry 2018; 9:164. [PMID: 29755374 PMCID: PMC5932339 DOI: 10.3389/fpsyt.2018.00164] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/11/2018] [Indexed: 01/03/2023] Open
Abstract
Background: The amygdala plays a key role in emotional hyperreactivity in response to social threat in patients with social anxiety disorder (SAD). We investigated resting-state functional connectivity (rs-FCN) of the left and right amygdala with various brain regions and functional lateralization in patients with SAD. Methods: A total of 36 patients with SAD and 42 matched healthy controls underwent functional magnetic resonance imaging (fMRI) at rest. Using the left and right amygdala as seed regions, we compared the strength of the rs-FCN in the patient and control groups. Furthermore, we investigated group differences in the hemispheric asymmetry of the functional connectivity maps of the left and right amygdala. Results: Compared with healthy controls, the rs-FCN between the left amygdala and the dorsolateral prefrontal cortex was reduced in patients with SAD, whereas left amygdala connectivity with the fusiform gyrus, anterior insula, supramarginal gyrus, and precuneus was increased or positively deflected in the patient group. Additionally, the strength rs-FCN between the left amygdala and anterior insula was positively associated with the severity of the fear of negative evaluation in patients with SAD (r = 0.338, p = 0.044). The rs-FCN between the right amygdala and medial frontal gyrus was decreased in patients with SAD compared with healthy controls, whereas connectivity with the parahippocampal gyrus was greater in the patient group than in the control group. The hemispheric asymmetry patterns in the anterior insula, intraparietal sulcus (IPS), and inferior frontal gyrus of the patient group were opposite those of the control group, and functional lateralization of the connectivity between the amygdala and the IPS was associated with the severity of social anxiety symptoms (r = 0.365, p = 0.037). Conclusion: Our findings suggest that in addition to impaired fronto-amygdala communication, the functional lateralization of amygdala function plays a central role in the pathophysiology of SAD.
Collapse
Affiliation(s)
- Ye-Ha Jung
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jung E Shin
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Yoonji I Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Joon H Jang
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang J Jo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Psychiatry, Institute of Human Behavioral Medicine in SNU-MRC, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Age-related language lateralization assessed by fMRI: The effects of sex and handedness. Brain Res 2017; 1674:20-35. [PMID: 28830770 DOI: 10.1016/j.brainres.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022]
Abstract
Previous studies focusing on the relationship between lateralization of language function and age suffer from lack of a balanced distribution of age and handedness among participants, especially in the extremes of age. This limits our understanding of the influence of these factors on lateralization of language circuitry. The hemispheric asymmetry reduction in older adults (HAROLD) model suggests that under similar circumstances, involvement in cognitive processes of prefrontal (and potentially other) cortical areas tends to be less lateralized with age. In this study, we aimed to investigate the link between age, gender, and language lateralization in a large group of healthy participants with a relatively even distribution of age and handedness in order to further test the HAROLD model. 99 healthy men (33 left-handed; age range 18-74years) and 125 women (44 left-handed; age range 19-76) were recruited. All participants underwent fMRI at 3T with a semantic decision and a verb generation tasks and received a battery of linguistic tests. Lateralization indexes (LI) were calculated for each participant based on fMRI results for each task separately. LIs were found to be significantly decreasing with age only in right-handed men and only in temporo-parietal cortical area. LIs did not change with age in other brain regions or in left-handed subjects. Our results do not support the HAROLD model and suggest a potentially different relationship between aging and lateralization of language functions.
Collapse
|
32
|
Bradshaw AR, Bishop DVM, Woodhead ZVJ. Methodological considerations in assessment of language lateralisation with fMRI: a systematic review. PeerJ 2017; 5:e3557. [PMID: 28713656 PMCID: PMC5508809 DOI: 10.7717/peerj.3557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/18/2017] [Indexed: 11/20/2022] Open
Abstract
The involvement of the right and left hemispheres in mediating language functions has been measured in a variety of ways over the centuries since the relative dominance of the left hemisphere was first known. Functional magnetic resonance imaging (fMRI) presents a useful non-invasive method of assessing lateralisation that is being increasingly used in clinical practice and research. However, the methods used in the fMRI laterality literature currently are highly variable, making systematic comparisons across studies difficult. Here we consider the different methods of quantifying and classifying laterality that have been used in fMRI studies since 2000, with the aim of determining which give the most robust and reliable measurement. Recommendations are made with a view to informing future research to increase standardisation in fMRI laterality protocols. In particular, the findings reinforce the importance of threshold-independent methods for calculating laterality indices, and the benefits of assessing heterogeneity of language laterality across multiple regions of interest and tasks. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/hyvc4/.
Collapse
Affiliation(s)
- Abigail R Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|