1
|
Han Y, Jing Y, Shi Y, Mo H, Wan Y, Zhou H, Deng F. The role of language-related functional brain regions and white matter tracts in network plasticity of post-stroke aphasia. J Neurol 2024; 271:3095-3115. [PMID: 38607432 DOI: 10.1007/s00415-024-12358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The neural mechanisms underlying language recovery after a stroke remain controversial. This review aimed to summarize the plasticity and reorganization mechanisms of the language network through neuroimaging studies. Initially, we discussed the involvement of right language homologues, perilesional tissue, and domain-general networks. Subsequently, we summarized the white matter functional mapping and remodeling mechanisms associated with language subskills. Finally, we explored how non-invasive brain stimulation (NIBS) promoted language recovery by inducing neural network plasticity. It was observed that the recruitment of right hemisphere language area homologues played a pivotal role in the early stages of frontal post-stroke aphasia (PSA), particularly in patients with larger lesions. Perilesional plasticity correlated with improved speech performance and prognosis. The domain-general networks could respond to increased "effort" in a task-dependent manner from the top-down when the downstream language network was impaired. Fluency, repetition, comprehension, naming, and reading skills exhibited overlapping and unique dual-pathway functional mapping models. In the acute phase, the structural remodeling of white matter tracts became challenging, with recovery predominantly dependent on cortical activation. Similar to the pattern of cortical activation, during the subacute and chronic phases, improvements in language functions depended, respectively, on the remodeling of right white matter tracts and the restoration of left-lateralized language structural network patterns. Moreover, the midline superior frontal gyrus/dorsal anterior cingulate cortex emerged as a promising target for NIBS. These findings offered theoretical insights for the early personalized treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Health Management (Physical Examination) Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Hongbin Mo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafei Wan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Garcea FE, Buxbaum LJ. Mechanisms and neuroanatomy of response selection in tool and non-tool action tasks: Evidence from left-hemisphere stroke. Cortex 2023; 167:335-350. [PMID: 37598647 PMCID: PMC10543550 DOI: 10.1016/j.cortex.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 08/22/2023]
Abstract
The ability to select between potential actions is central to the complex process of tool use. After left hemisphere stroke, individuals with limb apraxia make more hand action errors when gesturing the use of tools with conflicting hand actions for grasping-to-move and use (e.g., screwdriver) relative to tools that are grasped-to-move and used with the same hand action (e.g., hammer). Prior research indicates that this grasp-use interference effect is driven by abnormalities in the competitive action selection process. The goal of this project was to determine whether common mechanisms and neural substrates support the competitive selection of task-appropriate responses in both tool and non-tool domains. If so, the grasp-use interference effect in a tool use gesturing task should be correlated with response interference effects in the classic Eriksen flanker and Simon tasks, and at least partly overlapping neural regions should subserve the 3 tasks. Sixty-four left hemisphere stroke survivors (33 with apraxia) participated in the tool- and non-tool interference tasks and underwent T1 anatomical MRI. There were robust grasp-use interference effects (grasp-use conflict test) and response interference effects (Eriksen flanker and Simon tasks), but these effects were not correlated. Lesion-symptom mapping analyses showed that lesions to the left inferior parietal lobule, ventral premotor cortex, and insula were associated with grasp-use interference. Lesions to the left inferior parietal lobule, postcentral gyrus, insula, caudate, and putamen were associated with response interference in the Eriksen flanker task. Lesions to the left caudate and putamen were also associated with response interference in the Simon task. Our results suggest that the selection of hand posture for tool use is mediated by distinct cognitive mechanisms and partly distinct neuroanatomic substrates from those mapping a stimulus to an appropriate motor response in non-tool domains.
Collapse
Affiliation(s)
- Frank E Garcea
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Piai V, Eikelboom D. Brain Areas Critical for Picture Naming: A Systematic Review and Meta-Analysis of Lesion-Symptom Mapping Studies. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:280-296. [PMID: 37229507 PMCID: PMC10205157 DOI: 10.1162/nol_a_00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Lesion-symptom mapping (LSM) studies have revealed brain areas critical for naming, typically finding significant associations between damage to left temporal, inferior parietal, and inferior fontal regions and impoverished naming performance. However, specific subregions found in the available literature vary. Hence, the aim of this study was to perform a systematic review and meta-analysis of published lesion-based findings, obtained from studies with unique cohorts investigating brain areas critical for accuracy in naming in stroke patients at least 1 month post-onset. An anatomic likelihood estimation (ALE) meta-analysis of these LSM studies was performed. Ten papers entered the ALE meta-analysis, with similar lesion coverage over left temporal and left inferior frontal areas. This small number is a major limitation of the present study. Clusters were found in left anterior temporal lobe, posterior temporal lobe extending into inferior parietal areas, in line with the arcuate fasciculus, and in pre- and postcentral gyri and middle frontal gyrus. No clusters were found in left inferior frontal gyrus. These results were further substantiated by examining five naming studies that investigated performance beyond global accuracy, corroborating the ALE meta-analysis results. The present review and meta-analysis highlight the involvement of left temporal and inferior parietal cortices in naming, and of mid to posterior portions of the temporal lobe in particular in conceptual-lexical retrieval for speaking.
Collapse
Affiliation(s)
- Vitória Piai
- Radboud University, Donders Centre for Cognition, Nijmegen, Netherlands
- Radboudumc, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Nijmegen, Netherlands
| | - Dilys Eikelboom
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| |
Collapse
|
4
|
Schneider HR, Wawrzyniak M, Stockert A, Klingbeil J, Saur D. fMRI informed voxel-based lesion analysis to identify lesions associated with right-hemispheric activation in aphasia recovery. Neuroimage Clin 2022; 36:103169. [PMID: 36037659 PMCID: PMC9440420 DOI: 10.1016/j.nicl.2022.103169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Several mechanisms have been attributed to post-stroke loss and recovery of language functions. However, the significance and timing of domain-general and homotopic right-hemispheric activation is controversial. We aimed to examine the effect of left-hemispheric lesion location and time post-stroke on right-hemispheric activation. Voxel-based lesion analyses were informed by auditory language-related fMRI activation of 71 patients with left middle cerebral artery stroke examined longitudinally in the acute, subacute and early chronic phase. Language activation was determined in several right-hemispheric regions of interest and served as regressor of interest for voxel-based lesion analyses. We found that an acute to chronic increase of language activation in the right supplementary motor area was associated with lesions to the left extreme capsule as part of the ventral language pathway. Importantly, this activation increase correlated significantly with improvement of out-of-scanner comprehension abilities. We interpret our findings in terms of successful domain-general compensation in patients with critical left frontotemporal disconnection due to damage to the ventral language pathway but relatively spared cortical language areas.
Collapse
Affiliation(s)
| | - Max Wawrzyniak
- Corresponding author at: Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig AöR, Liebigstraße 20, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
5
|
DeMarco AT, van der Stelt C, Paul S, Dvorak E, Lacey E, Snider S, Turkeltaub PE. Absence of Perilesional Neuroplastic Recruitment in Chronic Poststroke Aphasia. Neurology 2022; 99:e119-e128. [PMID: 35508398 PMCID: PMC9280993 DOI: 10.1212/wnl.0000000000200382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A prominent theory proposes that neuroplastic recruitment of perilesional tissue supports aphasia recovery, especially when language-capable cortex is spared by smaller lesions. This theory has rarely been tested directly and findings have been inconclusive. We tested the perilesional plasticity hypothesis using 2 fMRI tasks in 2 groups of patients with previous aphasia diagnosis. METHODS Two cohorts totaling 82 patients with chronic left-hemisphere stroke with previous aphasia diagnosis and 82 control participants underwent fMRI using either a naming task or a reliable semantic decision task. Individualized perilesional tissue was defined by dilating anatomical lesions and language regions were defined using meta-analyses. Mixed modeling examined differences in activity between groups. Relationships with lesion size and aphasia severity were examined. RESULTS Patients exhibited reduced activity in perilesional language tissue relative to controls in both tasks. Although a few cortical regions exhibited greater activity irrespective of distance from the lesion, or only when distant from the lesion, no regions exhibited increased activity only when near the lesion. Larger lesions were associated with reduced language activity irrespective of distance from the lesion. Using the reliable fMRI task, reduced language activity was related to aphasia severity independent of lesion size. DISCUSSION We found no evidence for neuroplastic recruitment of perilesional tissue in aphasia beyond its typical role in language. Rather, our findings are consistent with alternative hypotheses that changes in left-hemisphere activation during recovery relate to normalization of language network dysfunction and possibly recruitment of alternate cortical processors. These findings clarify left-hemisphere neuroplastic mechanisms supporting language recovery after stroke.
Collapse
Affiliation(s)
- Andrew Tesla DeMarco
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Candace van der Stelt
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sachi Paul
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Dvorak
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Lacey
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sarah Snider
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Peter E Turkeltaub
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC.
| |
Collapse
|
6
|
Martin KC, Seydell-Greenwald A, Berl MM, Gaillard WD, Turkeltaub PE, Newport EL. A Weak Shadow of Early Life Language Processing Persists in the Right Hemisphere of the Mature Brain. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:364-385. [PMID: 35686116 PMCID: PMC9169899 DOI: 10.1162/nol_a_00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Studies of language organization show a striking change in cerebral dominance for language over development: We begin life with a left hemisphere (LH) bias for language processing, which is weaker than that in adults and which can be overcome if there is a LH injury. Over development this LH bias becomes stronger and can no longer be reversed. Prior work has shown that this change results from a significant reduction in the magnitude of language activation in right hemisphere (RH) regions in adults compared to children. Here we investigate whether the spatial distribution of language activation, albeit weaker in magnitude, still persists in homotopic RH regions of the mature brain. Children aged 4-13 (n = 39) and young adults (n = 14) completed an auditory sentence comprehension fMRI (functional magnetic resonance imaging) task. To equate neural activity across the hemispheres, we applied fixed cutoffs for the number of active voxels that would be included in each hemisphere for each participant. To evaluate homotopicity, we generated left-right flipped versions of each activation map, calculated spatial overlap between the LH and RH activity in frontal and temporal regions, and tested for mean differences in the spatial overlap values between the age groups. We found that, in children as well as in adults, there was indeed a spatially intact shadow of language activity in the right frontal and temporal regions homotopic to the LH language regions. After a LH stroke in adulthood, recovering early-life activation in these regions might assist in enhancing recovery of language abilities.
Collapse
Affiliation(s)
- Kelly C. Martin
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Madison M. Berl
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - William D. Gaillard
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - Peter E. Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Elissa L. Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
7
|
Kristinsson S, den Ouden DB, Rorden C, Newman-Norlund R, Neils-Strunjas J, Fridriksson J. Predictors of Therapy Response in Chronic Aphasia: Building a Foundation for Personalized Aphasia Therapy. J Stroke 2022; 24:189-206. [PMID: 35677975 PMCID: PMC9194549 DOI: 10.5853/jos.2022.01102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic aphasia, a devastating impairment of language, affects up to a third of stroke survivors. Speech and language therapy has consistently been shown to improve language function in prior clinical trials, but few clinicially applicable predictors of individual therapy response have been identified to date. Consequently, clinicians struggle substantially with prognostication in the clinical management of aphasia. A rising prevalence of aphasia, in particular in younger populations, has emphasized the increasing demand for a personalized approach to aphasia therapy, that is, therapy aimed at maximizing language recovery of each individual with reference to evidence-based clinical recommendations. In this narrative review, we discuss the current state of the literature with respect to commonly studied predictors of therapy response in aphasia. In particular, we focus our discussion on biographical, neuropsychological, and neurobiological predictors, and emphasize limitations of the literature, summarize consistent findings, and consider how the research field can better support the development of personalized aphasia therapy. In conclusion, a review of the literature indicates that future research efforts should aim to recruit larger samples of people with aphasia, including by establishing multisite aphasia research centers.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC, USA
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk B. den Ouden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC, USA
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC, USA
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Roger Newman-Norlund
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC, USA
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Jean Neils-Strunjas
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
8
|
Martin KC, Ketchabaw WT, Turkeltaub PE. Plasticity of the language system in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:397-414. [PMID: 35034751 PMCID: PMC10149040 DOI: 10.1016/b978-0-12-819410-2.00021-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The language system is perhaps the most unique feature of the human brain's cognitive architecture. It has long been a quest of cognitive neuroscience to understand the neural components that contribute to the hierarchical pattern processing and advanced rule learning required for language. The most important goal of this research is to understand how language becomes impaired when these neural components malfunction or are lost to stroke, and ultimately how we might recover language abilities under these circumstances. Additionally, understanding how the language system develops and how it can reorganize in the face of brain injury or dysfunction could help us to understand brain plasticity in cognitive networks more broadly. In this chapter we will discuss the earliest features of language organization in infants, and how deviations in typical development can-but in some cases, do not-lead to disordered language. We will then survey findings from adult stroke and aphasia research on the potential for recovering language processing in both the remaining left hemisphere tissue and in the non-dominant right hemisphere. Altogether, we hope to present a clear picture of what is known about the capacity for plastic change in the neurobiology of the human language system.
Collapse
Affiliation(s)
- Kelly C Martin
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - W Tyler Ketchabaw
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - Peter E Turkeltaub
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, United States.
| |
Collapse
|
9
|
Zhang J, Zhou Z, Li L, Ye J, Shang D, Zhong S, Yao B, Xu C, Yu Y, He F, Ye X, Luo B. Cerebral perfusion mediated by thalamo-cortical functional connectivity in non-dominant thalamus affects naming ability in aphasia. Hum Brain Mapp 2021; 43:940-954. [PMID: 34698418 PMCID: PMC8764486 DOI: 10.1002/hbm.25696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023] Open
Abstract
Naming is a commonly impaired language domain in various types of aphasia. Emerging evidence supports the cortico‐subcortical circuitry subserving naming processing, although neurovascular regulation of the non‐dominant thalamic and basal ganglia subregions underlying post‐stroke naming difficulty remains unclear. Data from 25 subacute stroke patients and 26 age‐, sex‐, and education‐matched healthy volunteers were analyzed. Region‐of‐interest‐wise functional connectivity (FC) was calculated to measure the strength of cortico‐subcortical connections. Cerebral blood flow (CBF) was determined to reflect perfusion levels. Correlation and mediation analyses were performed to identify the relationship between cortico‐subcortical connectivity, regional cerebral perfusion, and naming performance. We observed increased right‐hemispheric subcortical connectivity in patients. FC between the right posterior superior temporal sulcus (pSTS) and lateral/medial prefrontal thalamus (lPFtha/mPFtha) exhibited significantly negative correlations with total naming score. Trend‐level increased CBF in subcortical nuclei, including that in the right lPFtha, and significant negative correlations between naming and regional perfusion of the right lPFtha were observed. The relationship between CBF in the right lPFtha and naming was fully mediated by the lPFtha‐pSTS connectivity in the non‐dominant hemisphere. Our findings suggest that perfusion changes in the right thalamic subregions affect naming performance through thalamo‐cortical circuits in post‐stroke aphasia. This study highlights the neurovascular pathophysiology of the non‐dominant hemisphere and demonstrates thalamic involvement in naming after stroke.
Collapse
Affiliation(s)
- Jie Zhang
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lingling Li
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuchang Zhong
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Yao
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cong Xu
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yamei Yu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangping He
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Benyan Luo
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Lorca-Puls DL, Gajardo-Vidal A, Oberhuber M, Prejawa S, Hope TMH, Leff AP, Green DW, Price CJ. Brain regions that support accurate speech production after damage to Broca's area. Brain Commun 2021; 3:fcab230. [PMID: 34671727 PMCID: PMC8523882 DOI: 10.1093/braincomms/fcab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Broca’s area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca’s area. Importantly, contemporary evidence suggests that, within Broca’s area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In this study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca’s area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca’s area; (ii) 55 neurologically intact controls; and (iii) 28 patient controls with left-hemisphere damage that spared Broca’s area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically intact controls. Our findings motivate and guide future studies to investigate (i) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca’s area and (ii) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca’s area.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | | | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Susan Prejawa
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
11
|
DeMarco AT, Dvorak E, Lacey E, Stoodley CJ, Turkeltaub PE. An Exploratory Study of Cerebellar Transcranial Direct Current Stimulation in Individuals With Chronic Stroke Aphasia. Cogn Behav Neurol 2021; 34:96-106. [PMID: 34074864 PMCID: PMC8186819 DOI: 10.1097/wnn.0000000000000270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Aphasia is a common, debilitating consequence of stroke, and speech therapy is often inadequate to achieve a satisfactory outcome. Neuromodulation techniques have emerged as a potential augmentative treatment for improving aphasia outcomes. Most studies have targeted the cerebrum, but there are theoretical and practical reasons that stimulation over the cerebral hemispheres might not be ideal. On the other hand, the right cerebellum is functionally and anatomically linked to major language areas in the left hemisphere, making it a promising alternative target site for stimulation. OBJECTIVE To provide preliminary effect sizes for the ability of a short course of anodal transcranial direct current stimulation (tDCS) targeted over the right cerebellum to enhance language processing in individuals with chronic poststroke aphasia. METHOD Ten individuals received five sessions of open-label anodal tDCS targeting the right cerebellum. The effects of the tDCS were compared with the effects of sham tDCS on 14 controls from a previous clinical trial. In total, 24 individuals with chronic poststroke aphasia participated in the study. Behavioral testing was conducted before treatment, immediately following treatment, and at the 3-month follow-up. RESULTS Cerebellar tDCS did not significantly enhance language processing measured either immediately following treatment or at the 3-month follow-up. The effect sizes of tDCS over sham treatment were generally nil or small, except for the mean length of utterance on the picture description task, for which medium to large effects were observed. CONCLUSION These results may provide guidance for investigators who are planning larger trials of tDCS for individuals with chronic poststroke aphasia.
Collapse
Affiliation(s)
- Andrew T DeMarco
- Departments of Rehabilitation Medicine
- Neurology, Georgetown University, Washington, DC
| | | | - Elizabeth Lacey
- Neurology, Georgetown University, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | | | - Peter E Turkeltaub
- Neurology, Georgetown University, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
12
|
Stefaniak JD, Alyahya RSW, Lambon Ralph MA. Language networks in aphasia and health: A 1000 participant activation likelihood estimation meta-analysis. Neuroimage 2021; 233:117960. [PMID: 33744459 DOI: 10.1016/j.neuroimage.2021.117960] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Aphasia recovery post-stroke is classically and most commonly hypothesised to rely on regions that were not involved in language premorbidly, through 'neurocomputational invasion' or engagement of 'quiescent homologues'. Contemporary accounts have suggested, instead, that recovery might be supported by under-utilised areas of the premorbid language network, which are downregulated in health to save neural resources ('variable neurodisplacement'). Despite the importance of understanding the neural bases of language recovery clinically and theoretically, there is no consensus as to which specific regions are more likely to be activated in post-stroke aphasia (PSA) than healthy individuals. Accordingly, we performed an Activation Likelihood Estimation (ALE) meta-analysis of language functional neuroimaging studies in PSA. We obtained coordinate-based functional neuroimaging data for 481 individuals with aphasia following left-hemisphere stroke and 530 linked controls from 33 studies that met predefined inclusion criteria. ALE identified regions of consistent, above-chance spatial convergence of activation, as well as regions of significantly different activation likelihood, between participant groups and language tasks. Overall, these findings dispute the prevailing theory that aphasia recovery involves recruitment of novel right hemisphere territory into the language network post-stroke. Instead, multiple regions throughout both hemispheres were consistently activated during language tasks in both PSA and controls. Regions of the right anterior insula, frontal operculum and inferior frontal gyrus (IFG) pars opercularis were more likely to be activated across all language tasks in PSA than controls. Similar regions were more likely to be activated during higher than lower demand comprehension or production tasks, consistent with them representing enhanced utilisation of spare capacity within right hemisphere executive-control related regions. This provides novel evidence that 'variable neurodisplacement' underlies language network changes that occur post-stroke. Conversely, multiple undamaged regions were less likely to be activated across all language tasks in PSA than controls, including domain-general regions of medial superior frontal and paracingulate cortex, right IFG pars triangularis and temporal pole. These changes might represent functional diaschisis, and demonstrate that there is not global, undifferentiated upregulation of all domain-general neural resources during language in PSA. Such knowledge is essential if we are to design neurobiologically-informed therapeutic interventions to facilitate language recovery.
Collapse
Affiliation(s)
- James D Stefaniak
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK; Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK.
| | - Reem S W Alyahya
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; King Fahad Medical City, Riyadh, Saudi Arabia; Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
A unified neurocomputational bilateral model of spoken language production in healthy participants and recovery in poststroke aphasia. Proc Natl Acad Sci U S A 2020; 117:32779-32790. [PMID: 33273118 PMCID: PMC7768768 DOI: 10.1073/pnas.2010193117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies of healthy and impaired language have generated many verbally described hypotheses. While these verbal descriptions have advanced our understanding of language processing, some explanations are mutually incompatible, and it is unclear how they work mechanistically. We constructed a neurocomputational bilateral model of spoken language production to simulate a range of phenomena in healthy participants and patients with aphasia simultaneously, including language lateralization, impaired performance after left but not right damage, and hemispheric involvement in plasticity-dependent recovery. The model demonstrates how seemly contradictory findings can be simulated within a single framework. This provides a coherent mechanistic account of language lateralization and recovery from poststroke aphasia. Understanding the processes underlying normal, impaired, and recovered language performance has been a long-standing goal for cognitive and clinical neuroscience. Many verbally described hypotheses about language lateralization and recovery have been generated. However, they have not been considered within a single, unified, and implemented computational framework, and the literatures on healthy participants and patients are largely separated. These investigations also span different types of data, including behavioral results and functional MRI brain activations, which augment the challenge for any unified theory. Consequently, many key issues, apparent contradictions, and puzzles remain to be solved. We developed a neurocomputational, bilateral pathway model of spoken language production, designed to provide a unified framework to simulate different types of data from healthy participants and aphasic patients. The model encapsulates key computational principles (differential computational capacity, emergent division of labor across pathways, experience-dependent plasticity-related recovery) and provides an explanation for the bilateral yet asymmetric lateralization of language in healthy participants, chronic aphasia after left rather than right hemisphere lesions, and the basis of partial recovery in patients. The model provides a formal basis for understanding the relationship between behavioral performance and brain activation. The unified model is consistent with the degeneracy and variable neurodisplacement theories of language recovery, and adds computational insights to these hypotheses regarding the neural machinery underlying language processing and plasticity-related recovery following damage.
Collapse
|
14
|
Wilson SM, Schneck SM. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 2:22-82. [PMID: 33884373 PMCID: PMC8057712 DOI: 10.1162/nol_a_00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/11/2020] [Indexed: 04/23/2023]
Abstract
Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. We carried out a systematic review and meta-analysis of all articles published between 1995 and early 2020 that have described functional imaging studies of six or more individuals with post-stroke aphasia, and have reported analyses bearing on neuroplasticity of language processing. Each study was characterized and appraised in detail, with particular attention to three critically important methodological issues: task performance confounds, contrast validity, and correction for multiple comparisons. We identified 86 studies describing a total of 561 relevant analyses. We found that methodological limitations related to task performance confounds, contrast validity, and correction for multiple comparisons have been pervasive. Only a few claims about language processing in individuals with aphasia are strongly supported by the extant literature: first, left hemisphere language regions are less activated in individuals with aphasia than neurologically normal controls, and second, in cohorts with aphasia, activity in left hemisphere language regions, and possibly a temporal lobe region in the right hemisphere, is positively correlated with language function. There is modest, equivocal evidence for the claim that individuals with aphasia differentially recruit right hemisphere homotopic regions, but no compelling evidence for differential recruitment of additional left hemisphere regions or domain-general networks. There is modest evidence that left hemisphere language regions return to function over time, but no compelling longitudinal evidence for dynamic reorganization of the language network.
Collapse
Affiliation(s)
- Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Garcea FE, Greene C, Grafton ST, Buxbaum LJ. Structural Disconnection of the Tool Use Network after Left Hemisphere Stroke Predicts Limb Apraxia Severity. Cereb Cortex Commun 2020; 1:tgaa035. [PMID: 33134927 PMCID: PMC7573742 DOI: 10.1093/texcom/tgaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Producing a tool use gesture is a complex process drawing upon the integration of stored knowledge of tools and their associated actions with sensory-motor mechanisms supporting the planning and control of hand and arm actions. Understanding how sensory-motor systems in parietal cortex interface with semantic representations of actions and objects in the temporal lobe remains a critical issue and is hypothesized to be a key determinant of the severity of limb apraxia, a deficit in producing skilled action after left hemisphere stroke. We used voxel-based and connectome-based lesion-symptom mapping with data from 57 left hemisphere stroke participants to assess the lesion sites and structural disconnection patterns associated with poor tool use gesturing. We found that structural disconnection among the left inferior parietal lobule, lateral and ventral temporal cortices, and middle and superior frontal gyri predicted the severity of tool use gesturing performance. Control analyses demonstrated that reductions in right-hand grip strength were associated with motor system disconnection, largely bypassing regions supporting tool use gesturing. Our findings provide evidence that limb apraxia may arise, in part, from a disconnection between conceptual representations in the temporal lobe and mechanisms enabling skilled action production in the inferior parietal lobule.
Collapse
Affiliation(s)
- Frank E Garcea
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clint Greene
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Stockert A, Wawrzyniak M, Klingbeil J, Wrede K, Kümmerer D, Hartwigsen G, Kaller CP, Weiller C, Saur D. Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain 2020; 143:844-861. [PMID: 32068789 DOI: 10.1093/brain/awaa023] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
The loss and recovery of language functions are still incompletely understood. This longitudinal functional MRI study investigated the neural mechanisms underlying language recovery in patients with post-stroke aphasia putting particular emphasis on the impact of lesion site. To identify patterns of language-related activation, an auditory functional MRI sentence comprehension paradigm was administered to patients with circumscribed lesions of either left frontal (n = 17) or temporo-parietal (n = 17) cortex. Patients were examined repeatedly during the acute (≤1 week, t1), subacute (1-2 weeks, t2) and chronic phase (>6 months, t3) post-stroke; healthy age-matched control subjects (n = 17) were tested once. The separation into two patient groups with circumscribed lesions allowed for a direct comparison of the contributions of distinct lesion-dependent network components to language reorganization between both groups. We hypothesized that activation of left hemisphere spared and perilesional cortex as well as lesion-homologue cortex in the right hemisphere varies between patient groups and across time. In addition, we expected that domain-general networks serving cognitive control independently contribute to language recovery. First, we found a global network disturbance in the acute phase that is characterized by reduced functional MRI language activation including areas distant to the lesion (i.e. diaschisis) and subsequent subacute network reactivation (i.e. resolution of diaschisis). These phenomena were driven by temporo-parietal lesions. Second, we identified a lesion-independent sequential activation pattern with increased activity of perilesional cortex and bilateral domain-general networks in the subacute phase followed by reorganization of left temporal language areas in the chronic phase. Third, we observed involvement of lesion-homologue cortex only in patients with frontal but not temporo-parietal lesions. Fourth, irrespective of lesion location, language reorganization predominantly occurred in pre-existing networks showing comparable activation in healthy controls. Finally, we detected different relationships of performance and activation in language and domain-general networks demonstrating the functional relevance for language recovery. Our findings highlight that the dynamics of language reorganization clearly depend on lesion location and hence open new perspectives for neurobiologically motivated strategies of language rehabilitation, such as individually-tailored targeted application of neuro-stimulation.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Julian Klingbeil
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Katrin Wrede
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Dorothee Kümmerer
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group, Cognition and Plasticity, Max Planck Institute of Human and Cognitive Brain Sciences, 04103 Leipzig, Germany
| | - Christoph P Kaller
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology, University of Freiburg, 79106 Freiburg, Germany
| | - Dorothee Saur
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Vigliecca NS, Voos JA. Remembering a name: Neuropsychological validity studies and a computer proposal for detection of anomia. Dement Neuropsychol 2019; 13:450-462. [PMID: 31844500 PMCID: PMC6907700 DOI: 10.1590/1980-57642018dn13-040013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There are contradictory results or lack of validity studies concerning the naming
function and brain laterality. Although anomia is a frequent symptom of memory
impairment, and the most relevant symptom of aphasia, few studies have been
conducted to evaluate its validity for detecting patients with left-hemisphere
damage (LD), as per the MeSH definition.
Collapse
Affiliation(s)
- Nora Silvana Vigliecca
- Servicio de Neurología y Neurocirugía del Hospital Córdoba, Argentina.,Universidad Tecnológica Nacional (UTN), Regional Córdoba; Córdoba, Argentina
| | - Javier Alfredo Voos
- Servicio de Neurología y Neurocirugía del Hospital Córdoba, Argentina.,Universidad Tecnológica Nacional (UTN), Regional Córdoba; Córdoba, Argentina
| |
Collapse
|
18
|
Thompson CK. Neurocognitive Recovery of Sentence Processing in Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3947-3972. [PMID: 31756151 PMCID: PMC7203523 DOI: 10.1044/2019_jslhr-l-rsnp-19-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
Purpose Reorganization of language networks in aphasia takes advantage of the facts that (a) the brain is an organ of plasticity, with neuronal changes occurring throughout the life span, including following brain damage; (b) plasticity is highly experience dependent; and (c) as with any learning system, language reorganization involves a synergistic interplay between organism-intrinsic (i.e., cognitive and brain) and organism-extrinsic (i.e., environmental) variables. A major goal for clinical treatment of aphasia is to be able to prescribe treatment and predict its outcome based on the neurocognitive deficit profiles of individual patients. This review article summarizes the results of research examining the neurocognitive effects of psycholinguistically based treatment (i.e., Treatment of Underlying Forms; Thompson & Shapiro, 2005) for sentence processing impairments in individuals with chronic agrammatic aphasia resulting from stroke and primary progressive aphasia and addresses both behavioral and brain variables related to successful treatment outcomes. The influences of lesion volume and location, perfusion (blood flow), and resting-state neural activity on language recovery are also discussed as related to recovery of agrammatism and other language impairments. Based on these and other data, principles for promoting neuroplasticity of language networks are presented. Conclusions Sentence processing treatment results in improved comprehension and production of complex syntactic structures in chronic agrammatism and generalization to less complex, linguistically related structures in chronic agrammatism. Patients also show treatment-induced shifts toward normal-like online sentence processing routines (based on eye movement data) and changes in neural recruitment patterns (based on functional neuroimaging), with posttreatment activation of regions overlapping with those within sentence processing and dorsal attention networks engaged by neurotypical adults performing the same task. These findings provide compelling evidence that treatment focused on principles of neuroplasticity promotes neurocognitive recovery in chronic agrammatic aphasia. Presentation Videohttps://doi.org/10.23641/asha.10257587.
Collapse
Affiliation(s)
- Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Department of Neurology and Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Evanston/Chicago, IL
| |
Collapse
|
19
|
Turkeltaub PE. A Taxonomy of Brain-Behavior Relationships After Stroke. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3907-3922. [PMID: 31756155 PMCID: PMC7203524 DOI: 10.1044/2019_jslhr-l-rsnp-19-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Purpose Understanding the brain basis of language and cognitive outcomes is a major goal of aphasia research. Prior studies have not often considered the many ways that brain features can relate to behavioral outcomes or the mechanisms underlying these relationships. The purpose of this review article is to provide a new framework for understanding the ways that brain features may relate to language and cognitive outcomes from stroke. Method Brain-behavior relationships that may be important for aphasia outcomes are organized into a taxonomy, including features of the lesion and features of brain tissue spared by the lesion. Features of spared brain tissue are categorized into those that change after stroke and those that do not. Features that change are further subdivided, and multiple mechanisms of brain change after stroke are discussed. Results Features of the stroke, including size, location, and white matter damage, relate to many behavioral outcomes and likely account for most of the variance in outcomes. Features of the spared brain tissue that are unchanged by stroke, such as prior ischemic disease in the white matter, contribute to outcomes. Many different neurobiological and behavioral mechanisms may drive changes in the brain after stroke in association with behavioral recovery. Changes primarily driven by neurobiology are likely to occur in brain regions with a systematic relationship to the stroke distribution. Changes primarily driven by behavior are likely to occur in brain networks related to the behavior driving the change. Conclusions Organizing the various hypothesized brain-behavior relationships according to this framework and considering the mechanisms that drive these relationships may help investigators develop specific experimental designs and more complete statistical models to explain language and cognitive abilities after stroke. Eight main recommendations for future research are provided. Presentation Video https://doi.org/10.23641/asha.10257578.
Collapse
Affiliation(s)
- Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
20
|
Garcea FE, Stoll H, Buxbaum LJ. Reduced competition between tool action neighbors in left hemisphere stroke. Cortex 2019; 120:269-283. [PMID: 31352237 PMCID: PMC6951425 DOI: 10.1016/j.cortex.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023]
Abstract
When pantomiming the use of tools, patients with limb apraxia after left hemisphere stroke (LCVA) produce more spatiotemporal hand action errors with tools associated with conflicting actions for use versus grasp-to-pick-up (e.g., corkscrew) than tools having a single action for both use and grasp (e.g., hammer). There are two possible accounts for this pattern of results. Reduced performance with 'conflict' tools may simply reflect weakened automaticity of use action activation, which is evident only when the use and grasp actions are not redundant. Alternatively, poor use performance may reflect a reduced ability of appropriate tool use actions to compete with task-inappropriate action representations. To address this issue, we developed a Stroop-like experiment in which 21 LCVA and 8 neurotypical participants performed pantomime actions in blocks containing two tools that were similar ("neighbors") in terms of hand action or function, or were unrelated on either dimension. In a congruent condition, they pantomimed the use action associated with the visually presented tool, whereas in an incongruent condition, they pantomimed the use action for the other tool in the block. Relative to controls and other task conditions, LCVA participants showed reductions in hand action errors in incongruent relative to congruent action trials; furthermore, the degree of reduction in this incongruence effect was related to the participants' susceptibility to grasp-on-use conflict in a separate test of pantomime to the sight of tools. Support vector regression lesion-symptom mapping analyses identified the left inferior frontal gyrus, supramarginal gyrus, and superior longitudinal fasciculus as core neuroanatomical sites associated with abnormal performance. Collectively, the results indicate that weakened activation of tool use actions in limb apraxia gives rise to reduced ability of these actions to compete for task-appropriate selection when competition arises within single tools (grasp-on-use conflict) as well as between two tools (reduced neighborhood effects).
Collapse
Affiliation(s)
- Frank E Garcea
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; University of Pennsylvania, Philadelphia, PA, USA.
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Bailey LM, McMillan LE, Newman AJ. A sinister subject: Quantifying handedness-based recruitment biases in current neuroimaging research. Eur J Neurosci 2019; 51:1642-1656. [PMID: 31408571 DOI: 10.1111/ejn.14542] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
Approximately ten per cent of humans are left-handed or ambidextrous (adextral). It has been suggested that, despite their sizable representation at the whole-population level, this demographic is largely avoided by researchers within the neuroimaging community. To date, however, no formal effort has been made to quantify the extent to which adextrals are excluded from neuroimaging-based research. Here, we aimed to address this question in a review of over 1,000 recent articles published in high-impact, peer-reviewed, neuroimaging-focused journals. Specifically, we sought to ascertain whether, and the extent to which adextrals are underrepresented in neuroimaging study samples, and to delineate potential trends in this bias. Handedness data were available for over 30,000 research subjects; only around 3%-4% of these individuals were adextral-considerably less than the 10% benchmark one would expect if neuroimaging samples were truly representative of the general population. This observation was generally consistent across different areas of research, but was modulated by the demographic characteristics of neuroimaging participants. The epistemological and ethical implications of these findings are discussed.
Collapse
Affiliation(s)
- Lyam M Bailey
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Aaron J Newman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
22
|
Sul B, Lee KB, Hong BY, Kim JS, Kim J, Hwang WS, Lim SH. Association of Lesion Location With Long-Term Recovery in Post-stroke Aphasia and Language Deficits. Front Neurol 2019; 10:776. [PMID: 31396146 PMCID: PMC6668327 DOI: 10.3389/fneur.2019.00776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Recovery from post-stroke aphasia is important for performing the activities of daily life, returning to work, and quality of life. We investigated the association between specific brain lesions and the long-term outcome of four dimensions of aphasia: fluency, comprehension, naming, and repetition 12 months after onset in patients with stroke. Methods: Our retrospective cross-sectional observational study investigated the relationship between the Korean version of the Western Aphasia Battery scores in 31 stroke patients 1 year after the onset of stroke and stroke lesion location. Brain lesions were assessed using voxel-based lesion symptom mapping (VLSM) in conjunction with magnetic resonance imaging. Results: Damage to the Rolandic cortex, Heschl's gyrus, the posterior corona radiata, supramarginal cortex, superior longitudinal fasciculus, superior temporal gyrus, and insula was associated with a low total AQ score. Lesions in the inferior triangularis and inferior operculum of the frontal cortex, supramarginal cortex, and insula were associated with a poor fluency outcome. Damage to the parietal cortex, angular cortex, temporal middle cortex, sagittal stratum, and temporal superior cortex was associated with poor recovery of comprehension skills. Lesions in the angular cortex, supramarginal cortex, posterior corona radiata, superior longitudinal fasciculus, internal capsule, temporal superior cortex, and temporal middle cortex were associated with poor recovery of naming in patients with stroke. Damage to the superior temporal cortex, posterior corona radiata, and superior longitudinal fasciculus was associated with poor recovery of repetition component. Conclusions: We identified specific brain lesions associated with long-term outcomes in four dimensions of aphasia, in patients with post-stroke aphasia. Our findings may be useful for advancing understanding for the pathophysiology of aphasia in stroke patients.
Collapse
Affiliation(s)
- Bomi Sul
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Bo Lee
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon Sung Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jaewon Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woo Seop Hwang
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
23
|
Wiesen D, Sperber C, Yourganov G, Rorden C, Karnath HO. Using machine learning-based lesion behavior mapping to identify anatomical networks of cognitive dysfunction: Spatial neglect and attention. Neuroimage 2019; 201:116000. [PMID: 31295567 DOI: 10.1016/j.neuroimage.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Previous lesion behavior studies primarily used univariate lesion behavior mapping techniques to map the anatomical basis of spatial neglect after right brain damage. These studies led to inconsistent results and lively controversies. Given these inconsistencies, the idea of a wide-spread network that might underlie spatial orientation and neglect has been pushed forward. In such case, univariate lesion behavior mapping methods might have been inherently limited in detecting the presumed network due to limited statistical power. By comparing various univariate analyses with multivariate lesion-mapping based on support vector regression, we aimed to validate the network hypothesis directly in a large sample of 203 newly recruited right brain damaged patients. If the exact same correction factors and parameter combinations (FDR correction and dTLVC for lesion size control) were used, both univariate as well as multivariate approaches uncovered the same complex network pattern underlying spatial neglect. At the cortical level, lesion location dominantly affected the temporal cortex and its borders into inferior parietal and occipital cortices. Beyond, frontal and subcortical gray matter regions as well as white matter tracts connecting these regions were affected. Our findings underline the importance of a right network in spatial exploration and attention and specifically in the emergence of the core symptoms of spatial neglect.
Collapse
Affiliation(s)
- Daniel Wiesen
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, 29208, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, 29208, USA
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany; Department of Psychology, University of South Carolina, Columbia, 29208, USA.
| |
Collapse
|
24
|
Meier EL, Johnson JP, Pan Y, Kiran S. A lesion and connectivity-based hierarchical model of chronic aphasia recovery dissociates patients and healthy controls. NEUROIMAGE-CLINICAL 2019; 23:101919. [PMID: 31491828 PMCID: PMC6702239 DOI: 10.1016/j.nicl.2019.101919] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/05/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Traditional models of left hemisphere stroke recovery propose that reactivation of remaining ipsilesional tissue is optimal for language processing whereas reliance on contralesional right hemisphere homologues is less beneficial or possibly maladaptive in the chronic recovery stage. However, neuroimaging evidence for this proposal is mixed. This study aimed to elucidate patterns of effective connectivity in patients with chronic aphasia in light of healthy control connectivity patterns and in relation to damaged tissue within left hemisphere regions of interest and according to performance on a semantic decision task. Using fMRI and dynamic causal modeling, biologically-plausible models within four model families were created to correspond to potential neural recovery patterns, including Family A: Left-lateralized connectivity (i.e., no/minimal damage), Family B: Bilateral anterior-weighted connectivity (i.e., posterior damage), Family C: Bilateral posterior-weighted connectivity (i.e., anterior damage) and Family D: Right-lateralized connectivity (i.e., extensive damage). Controls exhibited a strong preference for left-lateralized network models (Family A) whereas patients demonstrated a split preference for Families A and C. At the level of connections, controls exhibited stronger left intrahemispheric task-modulated connections than did patients. Within the patient group, damage to left superior frontal structures resulted in greater right intrahemispheric connectivity whereas damage to left ventral structures resulted in heightened modulation of left frontal regions. Lesion metrics best predicted accuracy on the fMRI task and aphasia severity whereas left intrahemispheric connectivity predicted fMRI task reaction times. These results are discussed within the context of the hierarchical recovery model of chronic aphasia. The semantic network in neurologically-intact, healthy controls was characterized by left-lateralized connectivity. Patient connectivity was split between left-lateralized and bilateral, posterior-weighted (i.e., anterior damage) models. Controls solely recruited LITG-driven connections whereas patients recruited a distributed network of connections. Within the patient group, intra- and inter-hemispheric connections were related to lesion site and/or size. Lesion size predicted aphasia severity and fMRI task accuracy, and effective connectivity predicted task reaction times.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America.
| | - Jeffrey P Johnson
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| | - Yue Pan
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| | - Swathi Kiran
- Department of Speech, Language, & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Room 326, Boston, MA 02215, United States of America
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Aphasia is often characterized in terms of subtype and severity, yet these constructs have limited explanatory power, because aphasia is inherently multifactorial both in its neural substrates and in its symptomatology. The purpose of this review is to survey current and emerging multivariate approaches to understanding aphasia. RECENT FINDINGS Techniques such as factor analysis and principal component analysis have been used to define latent underlying factors that can account for performance on batteries of speech and language tests, and for characteristics of spontaneous speech production. Multivariate lesion-symptom mapping has been shown to outperform univariate approaches to lesion-symptom mapping for identifying brain regions where damage is associated with specific speech and language deficits. It is increasingly clear that structural damage results in functional changes in wider neural networks, which mediate speech and language outcomes. Multivariate statistical approaches are essential for understanding the complex relationships between the neural substrates of aphasia, and resultant profiles of speech and language function.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - William D Hula
- Audiology and Speech Pathology Program, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol 2019; 10:295. [PMID: 31001187 PMCID: PMC6454116 DOI: 10.3389/fneur.2019.00295] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.
Collapse
Affiliation(s)
- Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurology, The Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Karnath HO, Sperber C, Rorden C. Reprint of: Mapping human brain lesions and their functional consequences. Neuroimage 2019; 190:4-13. [PMID: 30686616 DOI: 10.1016/j.neuroimage.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications.
Collapse
Affiliation(s)
- Hans-Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | - Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
28
|
Zhao Y, Lambon Ralph MA, Halai AD. Relating resting-state hemodynamic changes to the variable language profiles in post-stroke aphasia. Neuroimage Clin 2018; 20:611-619. [PMID: 30186765 PMCID: PMC6120600 DOI: 10.1016/j.nicl.2018.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/29/2023]
Abstract
Linking both structural lesions and the functional integrity of remaining brain tissue to patients' behavioural profile may be critical in discovering the limits of behavioural recovery post stroke. In the present study, we explored the relationship between temporal hemodynamic changes and language performance in chronic post-stroke aphasia. We collected detailed language and neuropsychological data for 66 patients with chronic (>1 year) post-stroke aphasia. We used principal component analysis to extract their core language-neuropsychological features. From resting-state fMRI scans in 35 patients, we calculated the lag in the time-course of the intact brain voxels in each patient. Finally, variation across the language-cognitive factors was related to both the patients' structural damage and the time-course changes in each patient's intact tissue. Phonological abilities were correlated with the structural integrity of the left superior temporal, angular gyrus, supramarginal gyrus and arcuate fasciculus regions and hemodynamic advance in the left intra-parietal sulcus. Speech fluency related to integrity of premotor regions, plus hemodynamic advance in the left middle/superior temporal gyrus, left middle occipital gyrus, and right angular gyrus. Semantic performance reflected a combination of medial ventral temporal lobe status and hemodynamic delay in the left posterior middle temporal gyrus. Finally, executive abilities correlated with hemodynamic delay in the left middle/inferior frontal gyrus, right rolandic operculum, bilateral supplementary motor areas/middle cingulum areas, and bilateral thalamus/caudate. Following stroke, patients' patterns of chronic language abilities reflects a combination of structural and functional integrity across a distributed network of brain regions. The correlation between hemodynamic changes and behaviours may have clinical importance.
Collapse
Affiliation(s)
- Ying Zhao
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, UK;; Department of Psychology, University of Cambridge, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, UK;; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Ajay D Halai
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, UK;; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| |
Collapse
|
29
|
Xing S, Mandal A, Lacey EH, Skipper-Kallal LM, Zeng J, Turkeltaub PE. Behavioral Effects of Chronic Gray and White Matter Stroke Lesions in a Functionally Defined Connectome for Naming. Neurorehabil Neural Repair 2018; 32:613-623. [PMID: 29890878 DOI: 10.1177/1545968318780351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In functional magnetic resonance imaging studies, picture naming engages widely distributed brain regions in the parietal, frontal, and temporal cortices. However, it remains unknown whether those activated areas, along with white matter pathways between them, are actually crucial for naming. OBJECTIVE We aimed to identify nodes and pathways implicated in naming in healthy older adults and test the impact of lesions to the connectome on naming ability. METHODS We first identified 24 cortical nodes activated by a naming task and reconstructed anatomical connections between these nodes using probabilistic tractography in healthy adults. We then used structural scans and fractional anisotropy (FA) maps in 45 patients with left hemisphere stroke to assess the relationships of node and pathway integrity to naming, phonology, and nonverbal semantic ability. RESULTS We found that mean FA values in 13 left hemisphere white matter tracts within the dorsal and ventral streams and 1 interhemispheric tract significantly related to naming scores after controlling for lesion size and demographic factors. In contrast, lesion loads in the cortical nodes were not related to naming performance after controlling for the same variables. Among the identified tracts, the integrity of 4 left hemisphere ventral stream tracts related to nonverbal semantic processing and 1 left hemisphere dorsal stream tract related to phonological processing. CONCLUSIONS Our findings reveal white matter structures vital for naming and its subprocesses. These findings demonstrate the value of multimodal methods that integrate functional imaging, structural connectivity, and lesion data to understand relationships between brain networks and behavior.
Collapse
Affiliation(s)
- Shihui Xing
- 1 First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,2 Georgetown University Medical Center, Washington, DC, USA
| | - Ayan Mandal
- 2 Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth H Lacey
- 2 Georgetown University Medical Center, Washington, DC, USA.,3 MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Laura M Skipper-Kallal
- 2 Georgetown University Medical Center, Washington, DC, USA.,4 National Science Foundation, Arlington, VA, USA
| | - Jinsheng Zeng
- 1 First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peter E Turkeltaub
- 2 Georgetown University Medical Center, Washington, DC, USA.,3 MedStar National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
30
|
Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage 2018; 165:180-189. [PMID: 29042216 PMCID: PMC5777219 DOI: 10.1016/j.neuroimage.2017.10.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022] Open
Abstract
Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications.
Collapse
Affiliation(s)
- Hans-Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | - Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
31
|
Griffis JC, Nenert R, Allendorfer JB, Szaflarski JP. Linking left hemispheric tissue preservation to fMRI language task activation in chronic stroke patients. Cortex 2017; 96:1-18. [PMID: 28961522 PMCID: PMC5675757 DOI: 10.1016/j.cortex.2017.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/09/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
Abstract
The preservation of near-typical function in distributed brain networks is associated with less severe deficits in chronic stroke patients. However, it remains unclear how task-evoked responses in networks that support complex cognitive functions such as semantic processing relate to the post-stroke brain anatomy. Here, we used recently developed methods for the analysis of multimodal MRI data to investigate the relationship between regional tissue concentration and functional MRI activation evoked during auditory semantic decisions in a sample of 43 chronic left hemispheric stroke patients and 43 age, handedness, and sex-matched controls. Our analyses revealed that closer-to-normal levels of tissue concentration in left temporo-parietal cortex and the underlying white matter correlated with the level of task-evoked activation in distributed regions associated with the semantic network. This association was not attributable to the effects of left hemispheric lesion or brain volumes, and similar results were obtained when using explicit lesion data. Left temporo-parietal tissue concentration and the associated task-evoked activations predicted patient performance on the in-scanner task, and also predicted patient performance on out-of-scanner naming and verbal fluency tasks. Exploratory analyses using the average HCP-842 tractography dataset revealed the presence of fronto-temporal, fronto-parietal, and temporo-parietal semantic network connections in the locations where tissue concentration was found to correlate with task-evoked activation in the semantic network. In summary, our results link the preservation of left posterior temporo-parietal structures with the preservation of task-evoked semantic network function in chronic left hemispheric stroke patients. Speculatively, this relationship may reflect the status of posterior temporo-parietal areas as cortical and white matter convergence zones that support coordinated processing in the distributed semantic network. Damage to these regions may contribute to atypical task-evoked responses during semantic processing in chronic stroke patients.
Collapse
Affiliation(s)
- Joseph C Griffis
- University of Alabama at Birmingham, Department of Psychology, USA.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, USA
| | | | | |
Collapse
|