1
|
Beani E, Barzacchi V, Scaffei E, Ceragioli B, Festante F, Filogna S, Cioni G, Fiori S, Sgandurra G. Neuroanatomical correlates of gross manual dexterity in children with unilateral spastic cerebral palsy. Front Hum Neurosci 2024; 18:1370561. [PMID: 38655371 PMCID: PMC11035821 DOI: 10.3389/fnhum.2024.1370561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Unilateral spastic Cerebral Palsy (UCP) results from congenital brain injury, and Magnetic Resonance Imaging (MRI) has a role in understanding the etiology and severity of brain insult. In UCP, functional impairment predominantly occurs in the upper limb (UL) of the more affected side, where manual ability and dexterity are typically reduced. Also, mirror movements (MMs), are often present in UCP, with a further possible negative functional impact. This study aims to investigate the relationships among neuroanatomical characteristics of brain injury at MRI, manual functional impairment and MMs, in children with UCP. Thirty-five children with UCP participated in the study (20, M = 15, F, mean age 9.2 ± 3.5 years). Brain lesions at MRI were categorized according to the Magnetic Resonance Classification System (MRICS) and by using a semi-quantitative MRI (sqMRI) scale. Gross manual performance was assessed through Manual Ability Classification System (MACS) and the Box and Block Test (BBT), and MMs by Woods and Teuber scale, for both hands. Non-parametric correlation analyses were run to determine the relationship between neuroanatomical and functional features. Regression models were run to explore the contribution of neuroanatomical features and MMs to UL function. Correlation analyses revealed moderate to strong associations between sqMRI scores contralateral to the more affected side and UL functional impairment on MACS and BBT, with more severe brain injuries significantly correlating with poorer function in the more affected hand. No association emerged between brain lesion severity scores and MMs. MRICS showed no association with MACS or BBT, while a significant correlation emerged between MRICS category and MMs in the more affected hand, with brain lesion category that are suggestive of presumed earlier injury being associated with more severe MMs. Finally, exploratory regression analyses showed that neuroanatomical characteristics of brain injury and MMs contributed to the variability of UL functional impairment. This study contributes to the understanding of the neuroanatomical and neurological correlates of some aspects of manual functional impairment in UCP by using a simple clinical brain MRI assessment.
Collapse
Affiliation(s)
- Elena Beani
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Veronica Barzacchi
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
- Tuscany Ph.D. Programme of Neuroscience, University of Florence, Florence, Italy
| | - Elena Scaffei
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
| | - Beatrice Ceragioli
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
| | - Fabrizia Festante
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
| | - Silvia Filogna
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
| | - Simona Fiori
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppina Sgandurra
- Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Laporta-Hoyos O, Fiori S, Pannek K, Pagnozzi AM, Ware RS, Boyd RN. Longitudinal assessment of brain lesions in children with cerebral palsy and association with motor functioning. Eur J Paediatr Neurol 2024; 49:27-34. [PMID: 38330549 DOI: 10.1016/j.ejpn.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND The semi-quantitative scale of structural brain Magnetic Resonance Imaging (sqMRI) is a valid and reliable measure of brain lesion extent in children with cerebral palsy (CP) >3-years. This system scores lesion burden for each major brain region. The sum of the scores gives a global score ranging from 0 to 48. PURPOSE To investigate how sqMRI scores changed from infancy to school-age, and whether these were associated with lesion load, age at first assessment, and gross motor function and its changes. MATERIALS AND METHODS Twenty-eight children with CP underwent MRI and motor (Gross Motor Function Measure-66; GMFM-66) assessments when <40-months and again when 8-12-years. We investigated whether (i) toddler/preschool-age sqMRI scores (Time 1) reflected school-age sqMRI scores (Time 2); (ii) temporal changes in sqMRI scores (Time 1-Time 2 difference) were related to the child's age at Time 1 and lesion extent; (iii) early or later sqMRI scores were associated with motor functioning; (iv) sqMRI scores' longitudinal changes were associated with motor changes. RESULTS Except for the corticosubcortical (grey-matter only) layers, sqMRI scores were significantly higher ('higher lesion load') at Time 1 than at Time 2. Age at Time 1 was not associated with temporal changes in global sqMRI scores. Higher lesion load at Time 2, but not at Time 1, was associated with smaller temporal changes in the global sqMRI score. The sqMRI scores were associated with concurrent, but not future or past motor GMFM-66 scores. Longitudinal changes in sqMRI scores were not associated with longitudinal changes in motor GMFM-66 scores. CONCLUSION sqMRI scores of brain lesion extent at school-age are lower and a better indication of later-life motor functioning than very early life sqMRI scores. It may be best to interpret MRI white matter lesions with caution in very early life due to possible changes in lesion appearance and the unpredictable role of functional plasticity.
Collapse
Affiliation(s)
- Olga Laporta-Hoyos
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Departament de Psicologia Clínica i Psicobiologia & Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| | - Simona Fiori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Developmental Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Pisa, Italy.
| | - Kerstin Pannek
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Alex M Pagnozzi
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Errante A, Bozzetti F, Piras A, Beccani L, Filippi M, Costi S, Ferrari A, Fogassi L. Lesion mapping and functional characterization of hemiplegic children with different patterns of hand manipulation. Neuroimage Clin 2024; 41:103575. [PMID: 38354671 PMCID: PMC10944177 DOI: 10.1016/j.nicl.2024.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Brain damage in children with unilateral cerebral palsy (UCP) affects motor function, with varying severity, making it difficult the performance of daily actions. Recently, qualitative and semi-quantitative methods have been developed for lesion classification, but studies on mild to moderate hand impairment are lacking. The present study aimed to characterize lesion topography and preserved brain areas in UCP children with specific patterns of hand manipulation. A homogeneous sample of 16 UCP children, aged 9 to 14 years, was enrolled in the study. Motor assessment included the characterization of the specific pattern of hand manipulation, by means of unimanual and bimanual measures (Kinematic Hand Classification, KHC; Manual Ability Classification System, MACS; House Functional Classification System, HFCS; Melbourne Unilateral Upper Limb Assessment, MUUL; Assisting Hand Assessment, AHA). The MRI morphological study included multiple methods: (a) qualitative lesion classification, (b) semi-quantitative classification (sq-MRI), (c) voxel-based morphometry comparing UCP and typically developed children (VBM-DARTEL), and (d) quantitative brain tissue segmentation (q-BTS). In addition, functional MRI was used to assess spared functional activations and cluster lateralization in the ipsilesional and contralesional hemispheres of UCP children during the execution of simple movements and grasping actions with the more affected hand. Lesions most frequently involved the periventricular white matter, corpus callosum, posterior limb of the internal capsule, thalamus, basal ganglia and brainstem. VMB-DARTEL analysis allowed to detect mainly white matter lesions. Both sq-MRI classification and q-BTS identified lesions of thalamus, brainstem, and basal ganglia. In particular, UCP patients with synergic hand pattern showed larger involvement of subcortical structures, as compared to those with semi-functional hand. Furthermore, sparing of gray matter in basal ganglia and thalamus was positively correlated with MUUL and AHA scores. Concerning white matter, q-BTS revealed a larger damage of fronto-striatal connections in patients with synergic hand, as compared to those with semi-functional hand. The volume of these connections was correlated to unimanual function (MUUL score). The fMRI results showed that all patients, but one, including those with cortical lesions, had activation in ipsilesional areas, regardless of lesion timing. Children with synergic hand showed more lateralized activation in the ipsilesional hemisphere both during grasping and simple movements, while children with semi-functional hand exhibited more bilateral activation during grasping. The study demonstrates that lesion localization, rather than lesion type based on the timing of their occurrence, is more associated with the functional level of hand manipulation. Overall, the preservation of subcortical structures and white matter can predict a better functional outcome. Future studies integrating different techniques (structural and functional imaging, TMS) could provide further evidence on the relation between brain reorganization and specific pattern of manipulation in UCP children.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Diagnostics, Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Francesca Bozzetti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Diagnostics, Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Alessandro Piras
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Beccani
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariacristina Filippi
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Costi
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adriano Ferrari
- Unità per le gravi disabilità dell'età evolutiva, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Jaatela J, Nurmi T, Vallinoja J, Mäenpää H, Sairanen V, Piitulainen H. Altered corpus callosum structure in adolescents with cerebral palsy: connection to gait and balance. Brain Struct Funct 2023; 228:1901-1915. [PMID: 37615759 PMCID: PMC10516810 DOI: 10.1007/s00429-023-02692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Cerebral palsy (CP) is the most common motor disorder in childhood. Recent studies in children with CP have associated weakened sensorimotor performance with impairments in the major brain white-matter (WM) structure, corpus callosum (CC). However, the relationship between CC structure and lower extremity performance, specifically gait and balance, remains unknown. This study investigated the transcallosal WM structure and lower limb motor stability performance in adolescents aged 10-18 years with spastic hemiplegic (n = 18) or diplegic (n = 13) CP and in their age-matched controls (n = 34). The modern diffusion-weighted MRI analysis included the diffusivity properties of seven CC subparts and the transcallosal lower limb sensorimotor tract of the dominant hemisphere. Children with CP had comprehensive impairments in the cross-sectional area, fractional anisotropy, and mean diffusivity of the CC and sensorimotor tract. Additionally, the extent of WM alterations varied between hemiplegic and diplegic subgroups, which was seen especially in the fractional anisotropy values along the sensorimotor tract. The diffusion properties of transcallosal WM were further associated with static stability in all groups, and with dynamic stability in healthy controls. Our novel results clarify the mechanistic role of the corpus callosum in adolescents with and without CP offering valuable insight into the complex interplay between the brain's WM organization and motor performance. A better understanding of the brain basis of weakened stability performance could, in addition, improve the specificity of clinical diagnosis and targeted rehabilitation in CP.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland.
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
| | - Helena Mäenpää
- Department of Neurology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
| | - Viljami Sairanen
- Department of Clinical Neurophysiology, BABA Center, Pediatric Research Center, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Radiology, Kanta-Häme Central Hospital, 13530, Hämeenlinna, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Neurology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Aalto NeuroImaging, Aalto University, 02150, Espoo, Finland
| |
Collapse
|
5
|
Malandraki GA, Mitchell SS, Hahn Arkenberg RE, Brown B, Craig BΑ, Burdo-Hartman W, Lundine JP, Darling-White M, Goffman L. Swallowing and Motor Speech Skills in Unilateral Cerebral Palsy: Novel Findings From a Preliminary Cross-Sectional Study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:3300-3315. [PMID: 35952392 PMCID: PMC9913219 DOI: 10.1044/2022_jslhr-22-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Our purpose was to start examining clinical swallowing and motor speech skills of school-age children with unilateral cerebral palsy (UCP) compared to typically developing children (TDC), how these skills relate to each other, and whether they are predicted by clinical/demographic data (age, birth history, lesion type, etc.). METHOD Seventeen children with UCP and 17 TDC (7-12 years old) participated in this cross-sectional study. Feeding/swallowing skills were evaluated using the Dysphagia Disorder Survey (DDS) and a normalized measure of mealtime efficiency (normalized mealtime duration, i.e., nMD). Motor speech was assessed via speech intelligibility and speech rate measures using the Test of Children's Speech Plus. Analyses included nonparametric bootstrapping, correlation analysis, and multiple regression. RESULTS Children with UCP exhibited more severe (higher) DDS scores (p = .0096, Part 1; p = .0132, Part 2) and reduced speech rate than TDC (p = .0120). Furthermore, in children with UCP, total DDS scores were moderately negatively correlated with speech intelligibility (words: r = -.6162, p = .0086; sentences: r = -.60792, p = .0096). Expressive language scores were the only significant predictor of feeding and swallowing performance, and receptive language scores were the only significant predictor of motor speech skills. CONCLUSIONS Swallowing and motor speech skills can be affected in school-age children with UCP, with wide variability of performance also noted. Preliminary cross-system interactions between swallowing, speech, and language are observed and might support the complex relationships between these domains. Further understanding these relationships in this population could have prognostic and/or therapeutic value and warrants further study.
Collapse
Affiliation(s)
- Georgia A. Malandraki
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Samantha S. Mitchell
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | | | - Barbara Brown
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Bruce Α. Craig
- Department of Statistics, Purdue University, West Lafayette, IN
| | - Wendy Burdo-Hartman
- Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus
| | - Jennifer P. Lundine
- Nationwide Children's Hospital, Columbus, OH
- Department of Speech and Hearing Sciences, The Ohio State University, Columbus
| | - Meghan Darling-White
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
| | - Lisa Goffman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson
| |
Collapse
|
6
|
Ferreira Furtado LM, Bernardes HM, de Souza Félix Nunes FA, Gonçalves CA, Da Costa Val Filho JA, de Miranda AS. The Role of Neuroplasticity in Improving the Decision-Making Quality of Individuals With Agenesis of the Corpus Callosum: A Systematic Review. Cureus 2022; 14:e26082. [PMID: 35747104 PMCID: PMC9206817 DOI: 10.7759/cureus.26082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Although individuals with agenesis of corpus callosum (ACC) possess intelligence coefficients within regular parameters, current studies have demonstrated decision-making compromise and potential negative social consequences. Furthermore, alternative pathways regarding brain connectivity in acallosal patients combined with cognitive therapy that would potentially mitigate such difficulties. Therefore, this study aimed to examine the current state of the art regarding brain foundations in the role of neuroplasticity by improving the decision-making quality in ACC. A systematic revision of literature was performed including studies conducted on non-syndromic ACC individuals and analyzing the impact of the potential role of neuroplasticity on the decision-making published to date. Studies with patients who underwent callosotomy were excluded. Experimental studies performed on animal models were included. During this period, 849 studies were identified; among them, 11 were eligible for qualitative analysis. Despite the paucity of evidence on this matter, patients with ACC present considerable decision-making difficulties mainly due to the functional connectivity impairment in the frontal lobes. Moreover, neuroplasticity was characterized by increased anterior commissure width as compared with controls. Notwithstanding, no studies were conducted on cognitive therapists managing this type of disease. Although the reorganization of inter-hemispheric bundles on anterior commissure has demonstrated the main natural neuroanatomic strategy in ACC, further evidence will be needed to clarify whether cognitive stimulus could improve the decision-making quality.
Collapse
|
7
|
Nardone R, Sebastianelli L, Ferrazzoli D, Brigo F, Lochner P, Saltuari L, Trinka E, Versace V. Brain functional reorganization in children with hemiplegic cerebral palsy: Assessment with TMS and therapeutic perspectives. Neurophysiol Clin 2021; 51:391-408. [PMID: 34615605 DOI: 10.1016/j.neucli.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can be a useful tool for the assessment of the brain functional reorganization in subjects with hemiplegic cerebral palsy (HCP). In this review, we performed a systematic search of all studies using TMS in order to explore the neuroplastic changes that occur in HCP patients. We aimed at investigating the usefulness of TMS to explore cortical excitability, plasticity and connectivity changes in HCP. Children with HCP due to unilateral lesions of the corticospinal system had ipsilateral motor evoked potentials (MEPs) similar to those recorded contralaterally. TMS studies demonstrated that occupational and constraint-induced movement therapy were associated with significant improvements in contralateral and ipsilateral corticomotor projection patterns. In addition, after intensive bimanual therapy, children with HCP showed increased activation and size of the motor areas controlling the affected hand. A TMS mapping study revealed a mediolateral location of the upper and lower extremity map motor cortical representations. Deficits in intracortical and interhemispheric inhibitory mechanisms were observed in HCP. Early hand function impairment correlated with the extension of brain damage, number of involved areas, and radiological signs of corticospinal tract (CST) degeneration. Clinical mirror movements (MMs) correlated with disability and CST organization in subjects with HCP and a positive relationship was found between MMs and MEPs strength. Therefore, TMS studies have shed light on important pathophysiological aspects of motor cortex and CST reorganization in HCP patients. Furthermore, repetitive TMS (rTMS) might have therapeutic effects on CST activities, functional connectivity and clinical status in children with HCP.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Salzburg, Austria; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
8
|
Bhat A, Biagi L, Cioni G, Tinelli F, Morrone MC. Cortical thickness of primary visual cortex correlates with motion deficits in periventricular leukomalacia. Neuropsychologia 2020; 151:107717. [PMID: 33333138 DOI: 10.1016/j.neuropsychologia.2020.107717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022]
Abstract
Impairments of visual motion perception and, in particular, of flow motion have been consistently observed in premature and very low birth weight subjects during infancy. Flow motion information is analyzed at various cortical levels along the dorsal pathways, with information mainly provided by primary and early visual cortex (V1, V2 and V3). We investigated the cortical stage of the visual processing that underlies these motion impairments, measuring Grey Matter Volume and Cortical Thickness in 13 children with Periventricular Leukomalacia (PVL). The cortical thickness, but not the grey matter volume of area V1, correlates negatively with motion coherence sensitivity, indicating that the thinner the cortex, the better the performance among the patients. However, we did not find any such association with either the thickness or volume of area MT, MST and areas of the IPS, suggesting damage at the level of primary visual cortex or along the optic radiation.
Collapse
Affiliation(s)
- Akshatha Bhat
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Neuroscience, University of Florence, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - M Concetta Morrone
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
9
|
Pagnozzi AM, Pannek K, Fripp J, Fiori S, Boyd RN, Rose S. Understanding the impact of bilateral brain injury in children with unilateral cerebral palsy. Hum Brain Mapp 2020; 41:2794-2807. [PMID: 32134174 PMCID: PMC7294067 DOI: 10.1002/hbm.24978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 11/29/2022] Open
Abstract
The presence of bilateral brain injury in patients with unilateral cerebral palsy (CP) may impact neuroplasticity in the ipsilateral hemisphere; however, this pattern of injury is typically under‐analyzed due to the lack of methods robust to severe injury. In this study, injury‐robust methods have been applied to structural brain magnetic resonance imaging (MRI) data of a cohort of 91 children with unilateral CP (37 with unilateral and 54 with bilateral brain injury, 4–17 years) and 44 typically developing controls (5–17 years), to determine how brain structure is associated with concurrent motor function, and if these associations differ between patients with unilateral or bilateral injury. Regression models were used to associate these measures with two clinical scores of hand function, with patient age, gender, brain injury laterality, and interaction effects included. Significant associations with brain structure and motor function were observed (Pearson's r = .494–.716), implicating several regions of the motor pathway, and demonstrating an accurate prediction of hand function from MRI, regardless of the extent of brain injury. Reduced brain volumes were observed in patients with bilateral injury, including volumes of the thalamus and corpus callosum splenium, compared to those with unilateral injury, and the healthy controls. Increases in cortical thickness in several cortical regions were observed in cohorts with unilateral and bilateral injury compared to controls, potentially suggesting neuroplasticity might be occurring in the inferior frontal gyrus and the precuneus. These findings identify prospective useful target regions for transcranial magnetic stimulation intervention.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Kerstin Pannek
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|