1
|
Janota K, Janota B. Heart rate during moderate exercise and attention among adolescents: An experimental study. Int J Psychiatry Med 2024:912174241309712. [PMID: 39692712 DOI: 10.1177/00912174241309712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Existing studies on the effects of physical activity on cognitive function have predominantly focused on pre- or post-exercise effects, leaving a gap in understanding the immediate cognitive impacts during physical exertion. Understanding cognitive performance during activity could have significant implications for improving productivity and therapeutic strategies. METHODS This study examined the relationship between heart rate and cognitive performance, specifically attention, using the D2 attention test among 32 adolescents aged 12-18 years. Participants underwent attention assessments at rest and while moving at target heart rates of 100 bpm, 120 bpm, and 140 bpm. The influence of body mass index (BMI) and sleep quality on attention has been analysed too. RESULTS A significant positive correlation between heart rate and attention was observed (r = 0.39, P < .005), indicating enhanced cognitive performance with increased heart rate. Furthermore, a significant negative correlation was found between BMI and attention (r = -0.37, P = .039) and a significant positive correlation was found between sleep quality and attention (r = 0.66, P = .014). CONCLUSION These findings suggest that moderate physical activity can enhance attention, which could inform the design of educational, therapeutic, and occupational strategies. Future research should explore the generalizability of these effects across different cognitive domains, age groups, and settings.
Collapse
Affiliation(s)
| | - Bertrand Janota
- Psychiatry and Psychotherapy, Sexual Medicine, Clinic for Psychiatry and Psychotherapy, Asklepios Fachklinikum Lübben, Lübben, Germany
| |
Collapse
|
2
|
Jehli E, Denier N, Federspiel A, Dierks T, Strik W, Soravia LM, Grieder M. Altered Functional Coupling of the Bed Nucleus of the Stria Terminalis and Amygdala in Spider Phobic Fear. Brain Connect 2024; 14:527-541. [PMID: 39302065 DOI: 10.1089/brain.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Background: Individuals with spider phobic (SP) fear show hypervigilance and amygdala hyperactivity toward fear-associated stimuli, which may promote the development of other anxiety disorders. The amygdala is a key region within the fear network, which is connected to the anxiety system, where the bed nucleus of the stria terminalis (BNST) plays a crucial role. However, the BNST's involvement in phobic fear is unknown. Therefore, this study investigated the association of phobic fear and anxiety on these regions' functional connectivity (FC) in SP compared to healthy controls (HC). Methods: 7T-functional MRI resting-state FC of 30 individuals with SP and 45 HC was assessed to detect network differences between these groups. The association of phobic fear severity, trait anxiety, and social anxiety on FC was explored using linear regressions combined with seed-to-voxel analyses with amygdala and BNST as primary seeds, corrected for age and sex. Results: In SP, phobic fear was associated with reduced FC between the left amygdala and the right supramarginal gyrus. In contrast, anxiety severity was related to increased FC between the right BNST and the left inferior frontal gyrus. Moreover, social anxiety was related to decreased FC between bilateral BNST and left precuneus. Conclusions: These findings show changes in FC in SP, connecting fear with altered activity in the BNST and amygdala. The results suggest that persistent anxiety in phobic fear is associated with abnormal brain function in these regions, potentially explaining susceptibility to anxiety disorders and processes involved in phobic fear, such as threat perception, avoidance, and salience.
Collapse
Affiliation(s)
- Elisabeth Jehli
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- University Hospital of Zurich, Department of Neurosurgery, Zurich, Switzerland
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Zhang H, Fan S, Yang J, Yi J, Guan L, He H, Zhang X, Luo Y, Guan Q. Attention control training and transfer effects on cognitive tasks. Neuropsychologia 2024; 200:108910. [PMID: 38777117 DOI: 10.1016/j.neuropsychologia.2024.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Attention control is the common element underlying different executive functions. The backward Masking Majority Function Task (MFT-M) requires intensive attention control, and represents a diverse situation where attentional resources need to be allocated dynamically and flexibly to reduce uncertainty. Aiming to train attention control using MFT-M and examine the training transfer effects in various executive functions, we recruited healthy young adults (n = 84) and then equally randomized them into two groups trained with either MFT-M or a sham program for seven consecutive days. Cognitive evaluations were conducted before and after the training, and the electroencephalograph (EEG) signals were recorded for the revised Attention Network Test (ANT-R), N-back, and Task-switching (TS) tasks. Compared to the control group, the training group performed better on the congruent condition of Flanker and the double-congruency condition of Flanker and Location in the ANT-R task, and on the learning trials in the verbal memory test. The training group also showed a larger P2 amplitude decrease and P3 amplitude increase in the 2-back task and a larger P3 amplitude increase in the TS task's repeat condition than the control group, indicating improved neural efficiency in two tasks' attentional processes. Introversion moderated the transfer effects of training, as indicated by the significant group*introversion interactions on the post-training 1-back efficiency and TS switching cost. Our results suggested that attention control training with the MFT-M showed a broad transfer scope, and the transfer effect was influenced by the form of training task. Introversion facilitated the transfer to working memory and hindered the transfer to flexibility.
Collapse
Affiliation(s)
- Haobo Zhang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| | - Shaoxia Fan
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Jing Yang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Jing Yi
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Lizhen Guan
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Hao He
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Xingxing Zhang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Yuejia Luo
- Department of Applied Psychology, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Qing Guan
- School of Psychology, Shenzhen University, Shenzhen, 518060, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518060, China
| |
Collapse
|
4
|
Crombie KM, Azar A, Botsford C, Heilicher M, Jaeb M, Gruichich TS, Schomaker CM, Williams R, Stowe ZN, Dunsmoor JE, Cisler JM. Decoding context memories for threat in large-scale neural networks. Cereb Cortex 2024; 34:bhae018. [PMID: 38300181 PMCID: PMC10839849 DOI: 10.1093/cercor/bhae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Humans are often tasked with determining the degree to which a given situation poses threat. Salient cues present during prior events help bring online memories for context, which plays an informative role in this process. However, it is relatively unknown whether and how individuals use features of the environment to retrieve context memories for threat, enabling accurate inferences about the current level of danger/threat (i.e. retrieve appropriate memory) when there is a degree of ambiguity surrounding the present context. We leveraged computational neuroscience approaches (i.e. independent component analysis and multivariate pattern analyses) to decode large-scale neural network activity patterns engaged during learning and inferring threat context during a novel functional magnetic resonance imaging task. Here, we report that individuals accurately infer threat contexts under ambiguous conditions through neural reinstatement of large-scale network activity patterns (specifically striatum, salience, and frontoparietal networks) that track the signal value of environmental cues, which, in turn, allows reinstatement of a mental representation, primarily within a ventral visual network, of the previously learned threat context. These results provide novel insight into distinct, but overlapping, neural mechanisms by which individuals may utilize prior learning to effectively make decisions about ambiguous threat-related contexts as they navigate the environment.
Collapse
Affiliation(s)
- Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States
- Department of Kinesiology, The University of Alabama, 620 Judy Bonner Drive, Box 870312, Tuscaloosa, AL 35487, United States
| | - Ameera Azar
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States
| | - Chloe Botsford
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Mickela Heilicher
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Michael Jaeb
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Tijana Sagorac Gruichich
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Chloe M Schomaker
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States
| | - Rachel Williams
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Zachary N Stowe
- Department of Psychiatry, University of Wisconsin—Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Neuroscience, The University of Texas at Austin, 1 University Station, Stop C7000, Austin, TX 78712, United States
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States
- Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States
| |
Collapse
|
5
|
Su K, Wang L, Wang Z, Ma J, Zhang C, Bi H, Wu J. The effect of acupuncture at the Taiyang acupoint on visual function and EEG microstates in myopia. Front Integr Neurosci 2023; 17:1234471. [PMID: 38035147 PMCID: PMC10684943 DOI: 10.3389/fnint.2023.1234471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Acupuncture has certain effects to improve myopia visual function, but its neural mechanism is unclear. In this study, we acupunctured at the right Taiyang acupoint of myopic patients to analyze the effects of acupuncture on visual function and electroencephalographic activity and to investigate the correlation between improvements in visual function and changes in the brain. Methods In this study, a total of 21 myopic patients were recruited. The contrast sensitivity (CS) of the subjects was examined before and after acupuncture, and electroencephalography (EEG) data of the entire acupuncture process were recorded. Results The study found that compared with before acupuncture, the CS of both eyes in myopic patients at each spatial frequency was increased after acupuncture; compared with the resting state, the contribution of microstate C was decreased during the post-acupuncture state, and the transition probability between microstate A and microstate C was reduced; in addition, the contribution of microstate C was negatively correlated with CS at both 12 and 18 cpd. Conclusion The contrast sensitivity of myopic patients was improved after acupuncture at the Taiyang acupoint (20 min), which may be related to microstate C.
Collapse
Affiliation(s)
- Kangna Su
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Ophthalmology Department of Northwest University First Hospital, Xi’an, Shaanxi, China
| | - Lihan Wang
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongqing Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
| | - Jiayao Ma
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
| | - Chao Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianfeng Wu
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Cushing CA, Peng Y, Anderson Z, Young KS, Bookheimer SY, Zinbarg RE, Nusslock R, Craske MG. Broadening the scope: Multiple functional connectivity networks underlying threat and safety signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553609. [PMID: 37645883 PMCID: PMC10462158 DOI: 10.1101/2023.08.16.553609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Introduction Threat learning and extinction processes are thought to be foundational to anxiety and fear-related disorders. However, the study of these processes in the human brain has largely focused on a priori regions of interest, owing partly to the ease of translating between these regions in human and non-human animals. Moving beyond analyzing focal regions of interest to whole-brain dynamics during threat learning is essential for understanding the neuropathology of fear-related disorders in humans. Methods 223 participants completed a 2-day Pavlovian threat conditioning paradigm while undergoing fMRI. Participants completed threat acquisition and extinction. Extinction recall was assessed 48 hours later. Using a data-driven group independent component analysis (ICA), we examined large-scale functional connectivity networks during each phase of threat conditioning. Connectivity networks were tested to see how they responded to conditional stimuli during early and late phases of threat acquisition and extinction and during early trials of extinction recall. Results A network overlapping with the default mode network involving hippocampus, vmPFC, and posterior cingulate was implicated in threat acquisition and extinction. Another network overlapping with the salience network involving dACC, mPFC, and inferior frontal gyrus was implicated in threat acquisition and extinction recall. Other networks overlapping with parts of the salience, somatomotor, visual, and fronto-parietal networks were involved in the acquisition or extinction of learned threat responses. Conclusions These findings help confirm previous investigations of specific brain regions in a model-free fashion and introduce new findings of spatially independent networks during threat and safety learning. Rather than being a single process in a core network of regions, threat learning involves multiple brain networks operating in parallel coordinating different functions at different timescales. Understanding the nature and interplay of these dynamics will be critical for comprehensive understanding of the multiple processes that may be at play in the neuropathology of anxiety and fear-related disorders.
Collapse
|
7
|
Rakesh D, Allen NB, Whittle S. Longitudinal changes in within-salience network functional connectivity mediate the relationship between childhood abuse and neglect, and mental health during adolescence. Psychol Med 2023; 53:1552-1564. [PMID: 34429171 DOI: 10.1017/s0033291721003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Understanding the neurobiological underpinnings of childhood maltreatment is vital given consistent links with poor mental health. Dimensional models of adversity purport that different types of adversity likely have distinct neurobiological consequences. Adolescence is a key developmental period, during which deviations from normative neurodevelopment may have particular relevance for mental health. However, longitudinal work examining links between different forms of maltreatment, neurodevelopment, and mental health is limited. METHODS In the present study, we explored associations between abuse, neglect, and longitudinal development of within-network functional connectivity of the salience (SN), default mode (DMN), and executive control network in 142 community residing adolescents. Resting-state fMRI data were acquired at age 16 (T1; M = 16.46 years, s.d. = 0.52, 66F) and 19 (T2; mean follow-up period: 2.35 years). Mental health data were also collected at T1 and T2. Childhood maltreatment history was assessed prior to T1. RESULTS Abuse and neglect were both found to be associated with increases in within-SN functional connectivity from age 16 to 19. Further, there were sex differences in the association between neglect and changes in within-DMN connectivity. Finally, increases in within-SN connectivity were found to mediate the association between abuse/neglect and lower problematic substance use and higher depressive symptoms at age 19. CONCLUSIONS Our findings suggest that childhood maltreatment is associated with altered neurodevelopmental trajectories, and that changes in salience processing may be linked with risk and resilience for the development of depression and substance use problems during adolescence, respectively. Further work is needed to understand the distinct neurodevelopmental and mental health outcomes of abuse and neglect.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Nicholas B Allen
- Department of Psychology, The University of Oregon, Eugene, OR, USA
| | - Sarah Whittle
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Brennan A, Marstaller L, Burianová H, Benton D, Hanley CJ, Newstead S, Young HA. Weaker connectivity in resting state networks is associated with disinhibited eating in older adults. Int J Obes (Lond) 2022; 46:859-865. [PMID: 35017713 PMCID: PMC8960408 DOI: 10.1038/s41366-021-01056-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Background/objectives Obesity affects more than forty percent of adults over the age of sixty. Aberrant eating styles such as disinhibition have been associated with the engagement of brain networks underlying executive functioning, attentional control, and interoception. However, these effects have been exclusively studied in young samples overlooking those most at risk of obesity related harm. Methods Here we assessed associations between resting-state functional connectivity and disinhibited eating (using the Three Factor Eating Questionnaire) in twenty-one younger (aged 19–34 years, BMI range: 18–31) and twenty older (aged 60–73 years, BMI range: 19–32) adults matched for BMI. The Alternative Healthy Eating Index was used to quantify diet quality. Results Older, compared to younger, individuals reported lower levels of disinhibited eating, consumed a healthier diet, and had weaker connectivity in the frontoparietal (FPN) and default mode (DMN) networks. In addition, associations between functional connectivity and eating behaviour differed between the two age groups. In older adults, disinhibited eating was associated with weaker connectivity in the FPN and DMN––effects that were absent in the younger sample. Importantly, these effects could not be explained by differences in habitual diet. Conclusions These findings point to a change in interoceptive signalling as part of the ageing process, which may contribute to behavioural changes in energy intake, and highlight the importance of studying this under researched population.
Collapse
Affiliation(s)
| | | | - Hana Burianová
- Swansea University, Wales, SA2 8PP, UK.,Bournemouth University, Fern Barrow, Poole, BH12 5BB, UK
| | | | | | | | | |
Collapse
|
9
|
Daniel Arzate-Mena J, Abela E, Olguín-Rodríguez PV, Ríos-Herrera W, Alcauter S, Schindler K, Wiest R, Müller MF, Rummel C. Stationary EEG pattern relates to large-scale resting state networks - An EEG-fMRI study connecting brain networks across time-scales. Neuroimage 2021; 246:118763. [PMID: 34863961 DOI: 10.1016/j.neuroimage.2021.118763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and temporally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as with the brain's energy balance.
Collapse
Affiliation(s)
- J Daniel Arzate-Mena
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos,Cuernavaca Morelos, Mexico
| | - Eugenio Abela
- Center for Neuropsychiatrics, Psychiatric Services Aargau AG, Windisch, Switzerland
| | | | - Wady Ríos-Herrera
- Facultad de Psicología Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Müller
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico; Centro Internacional de Ciencias A. C., Cuernavaca, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Marstaller L, Fynes-Clinton S, Burianová H, Reutens DC. Salience and default-mode network connectivity during threat and safety processing in older adults. Hum Brain Mapp 2020; 42:14-23. [PMID: 32936998 PMCID: PMC7721242 DOI: 10.1002/hbm.25199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
The appropriate assessment of threat and safety is important for decision‐making but might be altered in old age due to neurobiological changes. The literature on threat and safety processing in older adults is sparse and it is unclear how healthy ageing affects the brain's functional networks associated with affective processing. We measured skin conductance responses as an indicator of sympathetic arousal and used functional magnetic resonance imaging and independent component analysis to compare young and older adults' functional connectivity in the default mode (DMN) and salience networks (SN) during a threat conditioning and extinction task. While our results provided evidence for differential threat processing in both groups, they also showed that functional connectivity within the SN – but not the DMN – was weaker during threat processing in older compared to young adults. This reduction of within‐network connectivity was accompanied by an age‐related decrease in low frequency spectral power in the SN and a reduction in inter‐network connectivity between the SN and DMN during threat and safety processing. Similarly, we found that skin conductance responses were generally lower in older compared to young adults. Our results are the first to demonstrate age‐related changes in brain activation during aversive conditioning and suggest that the ability to adaptively filter affective information is reduced in older adults.
Collapse
Affiliation(s)
- Lars Marstaller
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Hana Burianová
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|