1
|
Wu Y, Zhang C, Ma X, Zhu X, Lin L, Tian M. ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction. Brain Struct Funct 2025; 230:32. [PMID: 39826018 DOI: 10.1007/s00429-024-02889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks. The gray matter (GM) density maps obtained from T1 MRI data of 16,377 healthy participants aged 45 to 82 years from the UKB database were included in this study (mean age, 64.27 ± 7.52 , 7811 men). We propose an innovative deep learning architecture for predicting brain age based on GM density maps. The architecture combines a 3D dual-stream fully convolutional residual network (ds-FCRN) with a Transformer-based global-local feature learning paradigm to enhance prediction accuracy. Moreover, we employed Shapley values to elucidate the influence of various brain regions on prediction precision. On a test set of 3,276 healthy subjects (mean age, 64.15 ± 7.45 , 1561 men), our 3D ds-FCRN model achieved a mean absolute error of 2.2 years in brain age prediction, outperforming existing models on the same dataset. The posterior interpretation revealed that the temporal lobe plays the most significant role in the brain age prediction process, while frontal lobe aging is associated with the greatest number of lifestyle factors. Our designed 3D ds-FCRN model achieved high predictive accuracy and high decision transparency. The brain age vectors constructed using Shapley values provided brain region-level insights into life factors associated with abnormal brain aging.
Collapse
Affiliation(s)
- Yutong Wu
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Chen Zhang
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Xiangge Ma
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Xinyu Zhu
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| | - Miao Tian
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Mauri C, Cerri S, Puonti O, Mühlau M, Van Leemput K. A lightweight generative model for interpretable subject-level prediction. Med Image Anal 2024; 101:103436. [PMID: 39793217 DOI: 10.1016/j.media.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Recent years have seen a growing interest in methods for predicting an unknown variable of interest, such as a subject's diagnosis, from medical images depicting its anatomical-functional effects. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which the underlying cause-effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.
Collapse
Affiliation(s)
- Chiara Mauri
- Department of Health Technology, Technical University of Denmark, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Stefano Cerri
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mark Mühlau
- Department of Neurology and TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Germany
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Department of Computer Science, Aalto University, Finland
| |
Collapse
|
3
|
De Bonis MLN, Fasano G, Lombardi A, Ardito C, Ferrara A, Di Sciascio E, Di Noia T. Explainable brain age prediction: a comparative evaluation of morphometric and deep learning pipelines. Brain Inform 2024; 11:33. [PMID: 39692946 DOI: 10.1186/s40708-024-00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024] Open
Abstract
Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( M A E = 3.21 with DNN and morphometric features and M A E = 3.08 with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.
Collapse
Affiliation(s)
- Maria Luigia Natalia De Bonis
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Giuseppe Fasano
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Angela Lombardi
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Carmelo Ardito
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonio Ferrara
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Eugenio Di Sciascio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Tommaso Di Noia
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
4
|
Sun J, Han JDJ, Chen W. Exploring the relationship among Alzheimer's disease, aging and cognitive scores through neuroimaging-based approach. Sci Rep 2024; 14:27472. [PMID: 39523370 PMCID: PMC11551169 DOI: 10.1038/s41598-024-78712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder, with the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) serving significant roles in monitoring its progression. We hypothesize that while cognitive assessment scores can detect AD-related brain changes, the targeted brain regions may differ. Additionally, given AD's strong association with aging, we propose that specific brain regions are influenced by both AD pathology and aging, exhibiting strong correlations with both. To test these hypotheses, we developed a 3D convolutional network with a mixed-attention mechanism to recognize AD subjects from structural magnetic resonance imaging (sMRI) data and utilize 3D convolutional methods to pinpoint brain regions significantly correlated with the AD, MMSE, CDR and age. All models were trained and internally validated on 417 samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI), and the classification model was externally validated on 382 samples from the Australian Imaging and Lifestyle flagship (AIBL). This approach provided robust support for using MMSE and CDR in assessing AD progression and visually illustrated the relationship between aging and AD. The analysis revealed correlations among the four identification tasks (AD, MMSE, CDR and age) and highlighted asymmetric brain lesions in both AD and aging. Notably, we found that AD can accelerate aging to some extent, and a significant correlation exists between the rate of aging and cognitive assessment scores. This offers new insights into the relationship between AD and aging.
Collapse
Affiliation(s)
- Jinhui Sun
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, People's Republic of China.
| | - Weiyang Chen
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
5
|
Romme CJA, Stanley EAM, Mouches P, Wilms M, Pike GB, Metz LM, Forkert ND. Analysis and visualization of the effect of multiple sclerosis on biological brain age. Front Neurol 2024; 15:1423485. [PMID: 39450049 PMCID: PMC11499186 DOI: 10.3389/fneur.2024.1423485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The rate of neurodegeneration in multiple sclerosis (MS) is an important biomarker for disease progression but can be challenging to quantify. The brain age gap, which quantifies the difference between a patient's chronological and their estimated biological brain age, might be a valuable biomarker of neurodegeneration in patients with MS. Thus, the aim of this study was to investigate the value of an image-based prediction of the brain age gap using a deep learning model and compare brain age gap values between healthy individuals and patients with MS. Methods A multi-center dataset consisting of 5,294 T1-weighted magnetic resonance images of the brain from healthy individuals aged between 19 and 89 years was used to train a convolutional neural network (CNN) for biological brain age prediction. The trained model was then used to calculate the brain age gap in 195 patients with relapsing remitting MS (20-60 years). Additionally, saliency maps were generated for healthy subjects and patients with MS to identify brain regions that were deemed important for the brain age prediction task by the CNN. Results Overall, the application of the CNN revealed accelerated brain aging with a larger brain age gap for patients with MS with a mean of 6.98 ± 7.18 years in comparison to healthy test set subjects (0.23 ± 4.64 years). The brain age gap for MS patients was weakly to moderately correlated with age at disease onset (ρ = -0.299, p < 0.0001), EDSS score (ρ = 0.206, p = 0.004), disease duration (ρ = 0.162, p = 0.024), lesion volume (ρ = 0.630, p < 0.0001), and brain parenchymal fraction (ρ = -0.718, p < 0.0001). The saliency maps indicated significant differences in the lateral ventricle (p < 0.0001), insula (p < 0.0001), third ventricle (p < 0.0001), and fourth ventricle (p = 0.0001) in the right hemisphere. In the left hemisphere, the inferior lateral ventricle (p < 0.0001) and the third ventricle (p < 0.0001) showed significant differences. Furthermore, the Dice similarity coefficient showed the highest overlap of salient regions between the MS patients and the oldest healthy subjects, indicating that neurodegeneration is accelerated in this patient cohort. Discussion In conclusion, the results of this study show that the brain age gap is a valuable surrogate biomarker to measure disease progression in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Catharina J. A. Romme
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emma A. M. Stanley
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Zhang X, Pan Y, Wu T, Zhao W, Zhang H, Ding J, Ji Q, Jia X, Li X, Lee Z, Zhang J, Bai L. Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury. Neuroimage 2024; 297:120751. [PMID: 39048043 DOI: 10.1016/j.neuroimage.2024.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tingting Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jierui Ding
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiqi Lee
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
7
|
Jeon YJ, Park SE, Baek HM. Predicting Brain Age and Gender from Brain Volume Data Using Variational Quantum Circuits. Brain Sci 2024; 14:401. [PMID: 38672050 PMCID: PMC11048383 DOI: 10.3390/brainsci14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The morphology of the brain undergoes changes throughout the aging process, and accurately predicting a person's brain age and gender using brain morphology features can aid in detecting atypical brain patterns. Neuroimaging-based estimation of brain age is commonly used to assess an individual's brain health relative to a typical aging trajectory, while accurately classifying gender from neuroimaging data offers valuable insights into the inherent neurological differences between males and females. In this study, we aimed to compare the efficacy of classical machine learning models with that of a quantum machine learning method called a variational quantum circuit in estimating brain age and predicting gender based on structural magnetic resonance imaging data. We evaluated six classical machine learning models alongside a quantum machine learning model using both combined and sub-datasets, which included data from both in-house collections and public sources. The total number of participants was 1157, ranging from ages 14 to 89, with a gender distribution of 607 males and 550 females. Performance evaluation was conducted within each dataset using training and testing sets. The variational quantum circuit model generally demonstrated superior performance in estimating brain age and gender classification compared to classical machine learning algorithms when using the combined dataset. Additionally, in benchmark sub-datasets, our approach exhibited better performance compared to previous studies that utilized the same dataset for brain age prediction. Thus, our results suggest that variational quantum algorithms demonstrate comparable effectiveness to classical machine learning algorithms for both brain age and gender prediction, potentially offering reduced error and improved accuracy.
Collapse
Affiliation(s)
- Yeong-Jae Jeon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea;
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Shin-Eui Park
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
8
|
Camacho M, Wilms M, Almgren H, Amador K, Camicioli R, Ismail Z, Monchi O, Forkert ND. Exploiting macro- and micro-structural brain changes for improved Parkinson's disease classification from MRI data. NPJ Parkinsons Dis 2024; 10:43. [PMID: 38409244 PMCID: PMC10897162 DOI: 10.1038/s41531-024-00647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Accurate PD diagnosis is crucial for effective treatment and prognosis but can be challenging, especially at early disease stages. This study aimed to develop and evaluate an explainable deep learning model for PD classification from multimodal neuroimaging data. The model was trained using one of the largest collections of T1-weighted and diffusion-tensor magnetic resonance imaging (MRI) datasets. A total of 1264 datasets from eight different studies were collected, including 611 PD patients and 653 healthy controls (HC). These datasets were pre-processed and non-linearly registered to the MNI PD25 atlas. Six imaging maps describing the macro- and micro-structural integrity of brain tissues complemented with age and sex parameters were used to train a convolutional neural network (CNN) to classify PD/HC subjects. Explainability of the model's decision-making was achieved using SmoothGrad saliency maps, highlighting important brain regions. The CNN was trained using a 75%/10%/15% train/validation/test split stratified by diagnosis, sex, age, and study, achieving a ROC-AUC of 0.89, accuracy of 80.8%, specificity of 82.4%, and sensitivity of 79.1% on the test set. Saliency maps revealed that diffusion tensor imaging data, especially fractional anisotropy, was more important for the classification than T1-weighted data, highlighting subcortical regions such as the brainstem, thalamus, amygdala, hippocampus, and cortical areas. The proposed model, trained on a large multimodal MRI database, can classify PD patients and HC subjects with high accuracy and clinically reasonable explanations, suggesting that micro-structural brain changes play an essential role in the disease course.
Collapse
Affiliation(s)
- Milton Camacho
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hannes Almgren
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Kimberly Amador
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Oury Monchi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Guan S, Jiang R, Meng C, Biswal B. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 2024; 46:1-20. [PMID: 37733220 PMCID: PMC10828281 DOI: 10.1007/s11357-023-00924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, 610041, China.
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Medical Equipment Department, Xiangyang No. 1 People's Hospital, Xiangyang, 441000, China
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Dartora C, Marseglia A, Mårtensson G, Rukh G, Dang J, Muehlboeck JS, Wahlund LO, Moreno R, Barroso J, Ferreira D, Schiöth HB, Westman E. A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Front Aging Neurosci 2024; 15:1303036. [PMID: 38259636 PMCID: PMC10800627 DOI: 10.3389/fnagi.2023.1303036] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction In the last few years, several models trying to calculate the biological brain age have been proposed based on structural magnetic resonance imaging scans (T1-weighted MRIs, T1w) using multivariate methods and machine learning. We developed and validated a convolutional neural network (CNN)-based biological brain age prediction model that uses one T1w MRI preprocessing step when applying the model to external datasets to simplify implementation and increase accessibility in research settings. Our model only requires rigid image registration to the MNI space, which is an advantage compared to previous methods that require more preprocessing steps, such as feature extraction. Methods We used a multicohort dataset of cognitively healthy individuals (age range = 32.0-95.7 years) comprising 17,296 MRIs for training and evaluation. We compared our model using hold-out (CNN1) and cross-validation (CNN2-4) approaches. To verify generalisability, we used two external datasets with different populations and MRI scan characteristics to evaluate the model. To demonstrate its usability, we included the external dataset's images in the cross-validation training (CNN3). To ensure that our model used only the brain signal on the image, we also predicted brain age using skull-stripped images (CNN4). Results The trained models achieved a mean absolute error of 2.99, 2.67, 2.67, and 3.08 years for CNN1-4, respectively. The model's performance in the external dataset was in the typical range of mean absolute error (MAE) found in the literature for testing sets. Adding the external dataset to the training set (CNN3), overall, MAE is unaffected, but individual cohort MAE improves (5.63-2.25 years). Salience maps of predictions reveal that periventricular, temporal, and insular regions are the most important for age prediction. Discussion We provide indicators for using biological (predicted) brain age as a metric for age correction in neuroimaging studies as an alternative to the traditional chronological age. In conclusion, using different approaches, our CNN-based model showed good performance using one T1w brain MRI preprocessing step. The proposed CNN model is made publicly available for the research community to be easily implemented and used to study ageing and age-related disorders.
Collapse
Affiliation(s)
- Caroline Dartora
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gustav Mårtensson
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José Barroso
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Yang Y, Sathe A, Schilling K, Shashikumar N, Moore E, Dumitrescu L, Pechman KR, Landman BA, Gifford KA, Hohman TJ, Jefferson AL, Archer DB. A deep neural network estimation of brain age is sensitive to cognitive impairment and decline. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:148-162. [PMID: 38160276 PMCID: PMC10764074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32x10-7; T1: β=-1.331, p=6.52x10-7; FW+T1: β=-1.476, p=2.53x10-10; executive function, FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, p=2.52x10-7; FW+T1: β=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62x10-11; T1: β=-0.097, p=1.40x10-8; FW+T1: β=-0.101, p=1.35x10-11; executive function, FW: β=-0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12; FW+T1: β=-0.158, p=1.65x10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.
Collapse
Affiliation(s)
- Yisu Yang
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Kurt Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Elizabeth Moore
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Kimberly R. Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Bennett A. Landman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| |
Collapse
|
12
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
13
|
Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M. eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 2024; 93:102144. [PMID: 38030090 DOI: 10.1016/j.arr.2023.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
XAI is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Igor Yusipov
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| |
Collapse
|
14
|
Souza R, Wilms M, Camacho M, Pike GB, Camicioli R, Monchi O, Forkert ND. Image-encoded biological and non-biological variables may be used as shortcuts in deep learning models trained on multisite neuroimaging data. J Am Med Inform Assoc 2023; 30:1925-1933. [PMID: 37669158 PMCID: PMC10654841 DOI: 10.1093/jamia/ocad171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVE This work investigates if deep learning (DL) models can classify originating site locations directly from magnetic resonance imaging (MRI) scans with and without correction for intensity differences. MATERIAL AND METHODS A large database of 1880 T1-weighted MRI scans collected across 41 sites originally for Parkinson's disease (PD) classification was used to classify sites in this study. Forty-six percent of the datasets are from PD patients, while 54% are from healthy participants. After preprocessing the T1-weighted scans, 2 additional data types were generated: intensity-harmonized T1-weighted scans and log-Jacobian deformation maps resulting from nonlinear atlas registration. Corresponding DL models were trained to classify sites for each data type. Additionally, logistic regression models were used to investigate the contribution of biological (age, sex, disease status) and non-biological (scanner type) variables to the models' decision. RESULTS A comparison of the 3 different types of data revealed that DL models trained using T1-weighted and intensity-harmonized T1-weighted scans can classify sites with an accuracy of 85%, while the model using log-Jacobian deformation maps achieved a site classification accuracy of 54%. Disease status and scanner type were found to be significant confounders. DISCUSSION Our results demonstrate that MRI scans encode relevant site-specific information that models could use as shortcuts that cannot be removed using simple intensity harmonization methods. CONCLUSION The ability of DL models to exploit site-specific biases as shortcuts raises concerns about their reliability, generalization, and deployability in clinical settings.
Collapse
Affiliation(s)
- Raissa Souza
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matthias Wilms
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Milton Camacho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Oury Monchi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W4, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nils D Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Vigneshwaran V, Wilms M, Forkert ND. The causal link between cardiometabolic risk factors and gray matter atrophy: An exploratory study. Heliyon 2023; 9:e21567. [PMID: 38027770 PMCID: PMC10661200 DOI: 10.1016/j.heliyon.2023.e21567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Although gray matter atrophy is commonly observed with aging, it is highly variable, even among healthy people of the same age. This raises the question of what other factors may contribute to gray matter atrophy. Previous studies have reported that risk factors for cardiometabolic diseases are associated with accelerated brain aging. However, these studies were primarily based on standard correlation analyses, which do not unveil a causal relationship. While randomized controlled trials are typically required to investigate true causality, in this work, we investigated an alternative method by exploring data-driven causal discovery and inference techniques on observational data. Accordingly, this feasibility study used clinical and quantified gray matter volume data from 22,793 subjects from the UK biobank cohort without any known neurological disease. Our method identified that age, sex, body mass index (BMI), body fat percentage (BFP), and smoking exhibit a causal relationship with gray matter volume. Interventions on the causal network revealed that higher BMI and BFP values significantly increased the chance of gray matter atrophy in males, whereas this was not the case in females.
Collapse
Affiliation(s)
- Vibujithan Vigneshwaran
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Yoon HS, Oh J, Kim YC. Assessing Machine Learning Models for Predicting Age with Intracranial Vessel Tortuosity and Thickness Information. Brain Sci 2023; 13:1512. [PMID: 38002472 PMCID: PMC10669197 DOI: 10.3390/brainsci13111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to develop and validate machine learning (ML) models that predict age using intracranial vessels' tortuosity and diameter features derived from magnetic resonance angiography (MRA) data. A total of 171 subjects' three-dimensional (3D) time-of-flight MRA image data were considered for analysis. After annotations of two endpoints in each arterial segment, tortuosity features such as the sum of the angle metrics, triangular index, relative length, and product of the angle distance, as well as the vessels' diameter features, were extracted and used to train and validate the ML models for age prediction. Features extracted from the right and left internal carotid arteries (ICA) and basilar arteries were considered as the inputs to train and validate six ML regression models with a four-fold cross validation. The random forest regression model resulted in the lowest root mean square error of 14.9 years and the highest average coefficient of determination of 0.186. The linear regression model showed the lowest average mean absolute percentage error (MAPE) and the highest average Pearson correlation coefficient (0.532). The mean diameter of the right ICA vessel segment was the most important feature contributing to prediction of age in two out of the four regression models considered. An ML of tortuosity descriptors and diameter features extracted from MRA data showed a modest correlation between real age and ML-predicted age. Further studies are warranted for the assessment of the model's age predictions in patients with intracranial vessel diseases.
Collapse
Affiliation(s)
| | | | - Yoon-Chul Kim
- Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea; (H.-S.Y.); (J.O.)
| |
Collapse
|
17
|
Yang Y, Sathe A, Schilling K, Shashikumar N, Moore E, Dumitrescu L, Pechman KR, Landman BA, Gifford KA, Hohman TJ, Jefferson AL, Archer DB. A deep neural network estimation of brain age is sensitive to cognitive impairment and decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552494. [PMID: 37645837 PMCID: PMC10461919 DOI: 10.1101/2023.08.10.552494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62×10-32; T1: r=0.61, p=1.45×10-26, FW+T1: r=0.77, p=6.48×10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32×10-7; T1: β=-1.331, p=6.52×10-7; FW+T1: β=-1.476, p=2.53×10-10; executive function, FW: β=-1.276, p=1.46×10-9; T1: β=-1.337, p=2.52×10-7; FW+T1: β=-1.850, p=3.85×10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62×10-11; T1: β=-0.097, p=1.40×10-8; FW+T1: β=-0.101, p=1.35×10-11; executive function, FW: β=-0.125, p=1.20×10-10; T1: β=-0.163, p=4.25×10-12; FW+T1: β=-0.158, p=1.65×10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.
Collapse
Affiliation(s)
- Yisu Yang
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Kurt Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Elizabeth Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Kimberly R. Pechman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Bennett A. Landman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| |
Collapse
|
18
|
Qian J, Li H, Wang J, He L. Recent Advances in Explainable Artificial Intelligence for Magnetic Resonance Imaging. Diagnostics (Basel) 2023; 13:1571. [PMID: 37174962 PMCID: PMC10178221 DOI: 10.3390/diagnostics13091571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Advances in artificial intelligence (AI), especially deep learning (DL), have facilitated magnetic resonance imaging (MRI) data analysis, enabling AI-assisted medical image diagnoses and prognoses. However, most of the DL models are considered as "black boxes". There is an unmet need to demystify DL models so domain experts can trust these high-performance DL models. This has resulted in a sub-domain of AI research called explainable artificial intelligence (XAI). In the last decade, many experts have dedicated their efforts to developing novel XAI methods that are competent at visualizing and explaining the logic behind data-driven DL models. However, XAI techniques are still in their infancy for medical MRI image analysis. This study aims to outline the XAI applications that are able to interpret DL models for MRI data analysis. We first introduce several common MRI data modalities. Then, a brief history of DL models is discussed. Next, we highlight XAI frameworks and elaborate on the principles of multiple popular XAI methods. Moreover, studies on XAI applications in MRI image analysis are reviewed across the tissues/organs of the human body. A quantitative analysis is conducted to reveal the insights of MRI researchers on these XAI techniques. Finally, evaluations of XAI methods are discussed. This survey presents recent advances in the XAI domain for explaining the DL models that have been utilized in MRI applications.
Collapse
Affiliation(s)
- Jinzhao Qian
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Junqi Wang
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
19
|
Camacho M, Wilms M, Mouches P, Almgren H, Souza R, Camicioli R, Ismail Z, Monchi O, Forkert ND. Explainable classification of Parkinson's disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets. Neuroimage Clin 2023; 38:103405. [PMID: 37079936 PMCID: PMC10148079 DOI: 10.1016/j.nicl.2023.103405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a severe neurodegenerative disease that affects millions of people. Early diagnosis is important to facilitate prompt interventions to slow down disease progression. However, accurate PD diagnosis can be challenging, especially in the early disease stages. The aim of this work was to develop and evaluate a robust explainable deep learning model for PD classification trained from one of the largest collections of T1-weighted magnetic resonance imaging datasets. MATERIALS AND METHODS A total of 2,041 T1-weighted MRI datasets from 13 different studies were collected, including 1,024 datasets from PD patients and 1,017 datasets from age- and sex-matched healthy controls (HC). The datasets were skull stripped, resampled to isotropic resolution, bias field corrected, and non-linearly registered to the MNI PD25 atlas. The Jacobian maps derived from the deformation fields together with basic clinical parameters were used to train a state-of-the-art convolutional neural network (CNN) to classify PD and HC subjects. Saliency maps were generated to display the brain regions contributing the most to the classification task as a means of explainable artificial intelligence. RESULTS The CNN model was trained using an 85%/5%/10% train/validation/test split stratified by diagnosis, sex, and study. The model achieved an accuracy of 79.3%, precision of 80.2%, specificity of 81.3%, sensitivity of 77.7%, and AUC-ROC of 0.87 on the test set while performing similarly on an independent test set. Saliency maps computed for the test set data highlighted frontotemporal regions, the orbital-frontal cortex, and multiple deep gray matter structures as most important. CONCLUSION The developed CNN model, trained on a large heterogenous database, was able to differentiate PD patients from HC subjects with high accuracy with clinically feasible classification explanations. Future research should aim to investigate the combination of multiple imaging modalities with deep learning and on validating these results in a prospective trial as a clinical decision support system.
Collapse
Affiliation(s)
- Milton Camacho
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada.
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Pauline Mouches
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada
| | - Hannes Almgren
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Raissa Souza
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Psychiatry, University of Calgary, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Quebec, Canada; Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Electrical and Software Engineering, University of Calgary, Canada
| |
Collapse
|
20
|
Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, Sotiras A. A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PATTERNS (NEW YORK, N.Y.) 2023; 4:100712. [PMID: 37123443 PMCID: PMC10140612 DOI: 10.1016/j.patter.2023.100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brain age studies that were derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across multiple imaging modalities (i.e., "multimodal"). In this systematic review, we show that unimodal and multimodal models have distinct advantages. Multimodal models are the most accurate and sensitive to differences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped potential with regard to achieving widespread clinical utility.
Collapse
Affiliation(s)
- Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M. Gatavins
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Undergraduate Neuroscience Program, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis A. Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Corresponding author
| |
Collapse
|
21
|
Kaplan H, Hooper PL, Gatz M, Mack WJ, Law EM, Chui HC, Sutherland ML, Sutherland JD, Rowan CJ, Wann LS, Allam AH, Thompson RC, Michalik DE, Lombardi G, Miyamoto MI, Eid Rodriguez D, Copajira Adrian J, Quispe Gutierrez R, Beheim BA, Cummings DK, Seabright E, Alami S, R. Garcia A, Buetow K, Thomas GS, Finch CE, Stieglitz J, Trumble BC, Gurven MD, Irimia A. Brain volume, energy balance, and cardiovascular health in two nonindustrial South American populations. Proc Natl Acad Sci U S A 2023; 120:e2205448120. [PMID: 36940322 PMCID: PMC10068758 DOI: 10.1073/pnas.2205448120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/24/2023] [Indexed: 03/22/2023] Open
Abstract
Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.
Collapse
Affiliation(s)
- Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, CA82866
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA82866
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA90089
| | - Wendy J. Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - E. Meng Law
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Department of Radiology, The Alfred Health Hospital, Melbourne, VIC3004, Australia
- iBRAIN Research Laboratory, Departments of Neuroscience, Computer Systems and Electrical Engineering, Monash University, Melbourne, VIC3800, Australia
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | | | | | - Christopher J. Rowan
- Renown Institute for Heart and Vascular Health, Reno, NV89502
- School of Medicine, University of Nevada, Reno, NV89557
| | - L. Samuel Wann
- Division of Cardiology, University of New Mexico, Albuquerque, NM87131
| | - Adel H. Allam
- Department of Cardiology, School of Medicine, Al-Azhar University, Al Mikhaym Al Daem, Cairo4334003, Egypt
| | - Randall C. Thompson
- Saint Luke’s Mid America Heart Institute, University of Missouri - Kansas City, Kansas City, MO64111
| | - David E. Michalik
- Department of Pediatrics, School of Medicine, University of California at Irvine, Orange, CA92617
- MemorialCare Miller Children’s and Women’s Hospital, Long Beach, CA90806
| | - Guido Lombardi
- Laboratorio de Paleopatologia, Catedra Pedro Weiss, Universidad Peruana Cayetano Heredia, Lima15102, Peru
| | | | | | | | | | - Bret A. Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | | | - Edmond Seabright
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
| | - Sarah Alami
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Angela R. Garcia
- Scientific Research Core, Phoenix Children’s Hospital, Phoenix, AZ85016
- Department of Child Health, University of Arizona, Tucson, AZ85724
| | - Kenneth Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Gregory S. Thomas
- MemorialCare Health Systems, Fountain Valley, CA92708
- Division of Cardiology, University of California, Irvine, Orange, CA92868
| | - Caleb E. Finch
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, Anthropology and Psychology, University of Southern California, Los Angeles, CA90089
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Toulouse 1 Capitole University, Toulouse31000, France
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
22
|
Cai H, Gao Y, Liu M. Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:456-466. [PMID: 36374874 DOI: 10.1109/tmi.2022.3222093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Brain age is considered as an important biomarker for detecting aging-related diseases such as Alzheimer's Disease (AD). Magnetic resonance imaging (MRI) have been widely investigated with deep neural networks for brain age estimation. However, most existing methods cannot make full use of multimodal MRIs due to the difference in data structure. In this paper, we propose a graph transformer geometric learning framework to model the multimodal brain network constructed by structural MRI (sMRI) and diffusion tensor imaging (DTI) for brain age estimation. First, we build a two-stream convolutional autoencoder to learn the latent representations for each imaging modality. The brain template with prior knowledge is utilized to calculate the features from the regions of interest (ROIs). Then, a multi-level construction of the brain network is proposed to establish the hybrid ROI connections in space, feature and modality. Next, a graph transformer network is proposed to model the cross-modal interaction and fusion by geometric learning for brain age estimation. Finally, the difference between the estimated age and the chronological age is used as an important biomarker for AD diagnosis. Our method is evaluated with the sMRI and DTI data from UK Biobank and Alzheimer's Disease Neuroimaging Initiative database. Experimental results demonstrate that our method has achieved promising performances for brain age estimation and AD diagnosis.
Collapse
|
23
|
Mouches P, Wilms M, Aulakh A, Langner S, Forkert ND. Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors. Front Neurol 2022; 13:979774. [PMID: 36588902 PMCID: PMC9794870 DOI: 10.3389/fneur.2022.979774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The difference between the chronological and biological brain age, called the brain age gap (BAG), has been identified as a promising biomarker to detect deviation from normal brain aging and to indicate the presence of neurodegenerative diseases. Moreover, the BAG has been shown to encode biological information about general health, which can be measured through cardiovascular risk factors. Current approaches for biological brain age estimation, and therefore BAG estimation, either depend on hand-crafted, morphological measurements extracted from brain magnetic resonance imaging (MRI) or on direct analysis of brain MRI images. The former can be processed with traditional machine learning models while the latter is commonly processed with convolutional neural networks (CNNs). Using a multimodal setting, this study aims to compare both approaches in terms of biological brain age prediction accuracy and biological information captured in the BAG. Methods T1-weighted MRI, containing brain tissue information, and magnetic resonance angiography (MRA), providing information about brain arteries, from 1,658 predominantly healthy adults were used. The volumes, surface areas, and cortical thickness of brain structures were extracted from the T1-weighted MRI data, while artery density and thickness within the major blood flow territories and thickness of the major arteries were extracted from MRA data. Independent multilayer perceptron and CNN models were trained to estimate the brain age from the hand-crafted features and image data, respectively. Next, both approaches were fused to assess the benefits of combining image data and hand-crafted features for brain age prediction. Results The combined model achieved a mean absolute error of 4 years between the chronological and predicted biological brain age. Among the independent models, the lowest mean absolute error was observed for the CNN using T1-weighted MRI data (4.2 years). When evaluating the BAGs obtained using the different approaches and imaging modalities, diverging associations between cardiovascular risk factors were found. For example, BAGs obtained from the CNN models showed an association with systolic blood pressure, while BAGs obtained from hand-crafted measurements showed greater associations with obesity markers. Discussion In conclusion, the use of more diverse sources of data can improve brain age estimation modeling and capture more diverse biological deviations from normal aging.
Collapse
Affiliation(s)
- Pauline Mouches
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Radiology, University of Calgary, Calgary, AB, Canada,*Correspondence: Pauline Mouches
| | - Matthias Wilms
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Agampreet Aulakh
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D. Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Radiology, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Souza R, Mouches P, Wilms M, Tuladhar A, Langner S, Forkert ND. An analysis of the effects of limited training data in distributed learning scenarios for brain age prediction. J Am Med Inform Assoc 2022; 30:112-119. [PMID: 36287916 PMCID: PMC9748540 DOI: 10.1093/jamia/ocac204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Distributed learning avoids problems associated with central data collection by training models locally at each site. This can be achieved by federated learning (FL) aggregating multiple models that were trained in parallel or training a single model visiting sites sequentially, the traveling model (TM). While both approaches have been applied to medical imaging tasks, their performance in limited local data scenarios remains unknown. In this study, we specifically analyze FL and TM performances when very small sample sizes are available per site. MATERIALS AND METHODS 2025 T1-weighted magnetic resonance imaging scans were used to investigate the effect of sample sizes on FL and TM for brain age prediction. We evaluated models across 18 scenarios varying the number of samples per site (1, 2, 5, 10, and 20) and the number of training rounds (20, 40, and 200). RESULTS Our results demonstrate that the TM outperforms FL, for every sample size examined. In the extreme case when each site provided only one sample, FL achieved a mean absolute error (MAE) of 18.9 ± 0.13 years, while the TM achieved a MAE of 6.21 ± 0.50 years, comparable to central learning (MAE = 5.99 years). DISCUSSION Although FL is more commonly used, our study demonstrates that TM is the best implementation for small sample sizes. CONCLUSION The TM offers new opportunities to apply machine learning models in rare diseases and pediatric research but also allows even small hospitals to contribute small datasets.
Collapse
Affiliation(s)
- Raissa Souza
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Mouches
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anup Tuladhar
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Stanley EAM, Wilms M, Mouches P, Forkert ND. Fairness-related performance and explainability effects in deep learning models for brain image analysis. J Med Imaging (Bellingham) 2022; 9:061102. [PMID: 36046104 PMCID: PMC9412191 DOI: 10.1117/1.jmi.9.6.061102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/18/2022] [Indexed: 08/28/2023] Open
Abstract
Purpose: Explainability and fairness are two key factors for the effective and ethical clinical implementation of deep learning-based machine learning models in healthcare settings. However, there has been limited work on investigating how unfair performance manifests in explainable artificial intelligence (XAI) methods, and how XAI can be used to investigate potential reasons for unfairness. Thus, the aim of this work was to analyze the effects of previously established sociodemographic-related confounders on classifier performance and explainability methods. Approach: A convolutional neural network (CNN) was trained to predict biological sex from T1-weighted brain MRI datasets of 4547 9- to 10-year-old adolescents from the Adolescent Brain Cognitive Development study. Performance disparities of the trained CNN between White and Black subjects were analyzed and saliency maps were generated for each subgroup at the intersection of sex and race. Results: The classification model demonstrated a significant difference in the percentage of correctly classified White male ( 90.3 % ± 1.7 % ) and Black male ( 81.1 % ± 4.5 % ) children. Conversely, slightly higher performance was found for Black female ( 89.3 % ± 4.8 % ) compared with White female ( 86.5 % ± 2.0 % ) children. Saliency maps showed subgroup-specific differences, corresponding to brain regions previously associated with pubertal development. In line with this finding, average pubertal development scores of subjects used in this study were significantly different between Black and White females ( p < 0.001 ) and males ( p < 0.001 ). Conclusions: We demonstrate that a CNN with significantly different sex classification performance between Black and White adolescents can identify different important brain regions when comparing subgroup saliency maps. Importance scores vary substantially between subgroups within brain structures associated with pubertal development, a race-associated confounder for predicting sex. We illustrate that unfair models can produce different XAI results between subgroups and that these results may explain potential reasons for biased performance.
Collapse
Affiliation(s)
- Emma A. M. Stanley
- University of Calgary, Department of Biomedical Engineering, Calgary, Alberta, Canada
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Matthias Wilms
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Pauline Mouches
- University of Calgary, Department of Biomedical Engineering, Calgary, Alberta, Canada
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Nils D. Forkert
- University of Calgary, Department of Biomedical Engineering, Calgary, Alberta, Canada
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|