1
|
Murphy DLK, Koponen LM, Wood E, Li Y, Bukhari-Parlakturk N, Goetz SM, Peterchev AV. Reduced auditory perception and brain response with quiet TMS coil. Brain Stimul 2024; 17:1197-1207. [PMID: 39395687 DOI: 10.1016/j.brs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120 % RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal while stimulating the primary motor cortex. RESULTS RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100 % coil-specific RMT sounded like Cool-B65 at 34 % RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS- DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS The stimulation efficiency of qTMS-DCC matched Cool-B65 while having substantially lower perceived loudness and auditory-evoked potentials.
Collapse
Affiliation(s)
- David L K Murphy
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Lari M Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Eleanor Wood
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Yiru Li
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | | | - Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Electrical and Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA; Department of Engineering, Technical University Kaiserslautern, Germany
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Electrical and Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA.
| |
Collapse
|
2
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. Clin Neurophysiol 2024; 164:138-148. [PMID: 38865780 PMCID: PMC11246810 DOI: 10.1016/j.clinph.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring. OBJECTIVE To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. METHODS In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. RESULTS Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. SIGNIFICANCE EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Christopher C Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jessica M Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA.
| |
Collapse
|
4
|
Murphy DLK, Koponen LM, Wood E, Li Y, Bukhari-Parlakturk N, Goetz SM, Peterchev AV. Reduced Auditory Perception and Brain Response with Quiet TMS Coil. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600400. [PMID: 39005397 PMCID: PMC11244855 DOI: 10.1101/2024.06.24.600400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
BACKGROUND Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120% RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal. RESULTS RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100% coil-specific RMT sounded like Cool-B65 at 34% RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS-DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS The stimulation efficiency of qTMS-DCC matched Cool-B65, while having substantially lower perceived loudness and auditory-evoked potentials. Highlights qTMS coil is subjectively and objectively quieter than conventional Cool-B65 coilqTMS coil at 100% motor threshold was as loud as Cool-B65 at 34% motor thresholdAttenuated coil noise reduced auditory N100 and P180 evoked response componentsqTMS coil enables reduction of auditory activation without masking.
Collapse
|
5
|
Parmigiani S, Cline CC, Sarkar M, Forman L, Truong J, Ross JM, Gogulski J, Keller CJ. Real-time optimization to enhance noninvasive cortical excitability assessment in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596317. [PMID: 38853941 PMCID: PMC11160722 DOI: 10.1101/2024.05.29.596317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective We currently lack a robust noninvasive method to measure prefrontal excitability in humans. Concurrent TMS and EEG in the prefrontal cortex is usually confounded by artifacts. Here we asked if real-time optimization could reduce artifacts and enhance a TMS-EEG measure of left prefrontal excitability. Methods This closed-loop optimization procedure adjusts left dlPFC TMS coil location, angle, and intensity in real-time based on the EEG response to TMS. Our outcome measure was the left prefrontal early (20-60 ms) and local TMS-evoked potential (EL-TEP). Results In 18 healthy participants, this optimization of coil angle and brain target significantly reduced artifacts by 63% and, when combined with an increase in intensity, increased EL-TEP magnitude by 75% compared to a non-optimized approach. Conclusions Real-time optimization of TMS parameters during dlPFC stimulation can enhance the EL-TEP. Significance Enhancing our ability to measure prefrontal excitability is important for monitoring pathological states and treatment response.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Christopher C. Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Lily Forman
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jessica M. Ross
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Corey J. Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| |
Collapse
|
6
|
Trapp NT, Tsang EW, Bruss J, Russo S, Gander PE, Berger JI, Nourski KV, Rosanova M, Keller CJ, Oya H, Howard MA, Boes AD. TMS-associated auditory evoked potentials can be effectively masked: Evidence from intracranial EEG. Brain Stimul 2024; 17:616-618. [PMID: 38729299 DOI: 10.1016/j.brs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Eric W Tsang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joel Bruss
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Simone Russo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kirill V Nourski
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, 20157, Italy
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew A Howard
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
7
|
Gogulski J, Cline CC, Ross JM, Parmigiani S, Keller CJ. Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex. Cereb Cortex 2024; 34:bhae130. [PMID: 38596882 PMCID: PMC11004671 DOI: 10.1093/cercor/bhae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.
Collapse
Affiliation(s)
- Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, Helsinki FI-00029, Finland
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94394, United States
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, United States
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94394, United States
| |
Collapse
|
8
|
Song Y, Gordon PC, Metsomaa J, Rostami M, Belardinelli P, Ziemann U. Evoked EEG Responses to TMS Targeting Regions Outside the Primary Motor Cortex and Their Test-Retest Reliability. Brain Topogr 2024; 37:19-36. [PMID: 37996562 PMCID: PMC10771591 DOI: 10.1007/s10548-023-01018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johanna Metsomaa
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Paolo Belardinelli
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences, CIMeC, University of Trento, Trento, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. Sci Rep 2023; 13:22700. [PMID: 38123591 PMCID: PMC10733322 DOI: 10.1038/s41598-023-49250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train-a fundamental building block of treatment-as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526374. [PMID: 36778457 PMCID: PMC9915614 DOI: 10.1101/2023.01.30.526374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train - a fundamental building block of treatment - as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex (dlPFC) in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M. Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J. Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Gogulski J, Cline CC, Ross JM, Truong J, Sarkar M, Parmigiani S, Keller CJ. Mapping cortical excitability in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524867. [PMID: 36711689 PMCID: PMC9882363 DOI: 10.1101/2023.01.20.524867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and that EL-TEP amplitude is inversely related to muscle artifact. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. Methods In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. Results Stimulation location significantly influenced EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. Significance Early local TMS-evoked potentials (EL-TEPs) can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols. Highlights Early local TMS-evoked potentials (EL-TEPs) varied significantly across the dlPFC as a function of TMS target.TMS targets with less muscle artifact had significantly larger EL-TEPs.Selection of a postero-medial target increased EL-TEPs by 102% compared to anterior targets.
Collapse
|
12
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552524. [PMID: 37645954 PMCID: PMC10461914 DOI: 10.1101/2023.08.09.552524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly deployed in the treatment of neuropsychiatric illness, under the presumption that stimulation of specific cortical targets can alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach is most useful for evaluating low-frequency neural activity at the cortical surface. As such, little is known about how TMS perturbs rhythmic activity among deeper structures - such as the hippocampus and amygdala - and whether stimulation can alter higher-frequency oscillations. Recent work has established that TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct neural recordings at sufficient spatiotemporal resolution to examine localized oscillatory responses across the frequency spectrum. To that end, we recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at several cortical sites. Stimulation to the dorsolateral prefrontal cortex (DLPFC) drove widespread low-frequency increases (3-8Hz) in frontolimbic cortices, as well as high-frequency decreases (30-110Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with brief evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. Taken together, we established that non-invasive stimulation can (1) provoke a mixture of low-frequency evoked power and induced theta oscillations and (2) suppress high-frequency activity in deeper brain structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A. Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
| | - Jeffrey B. Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Biophysics Graduate Program, Stanford University Medical Center, Stanford, CA 94305
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Matthew A. Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Nicholas T. Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Brandt D. Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Aaron D. Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Corey J. Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94305
| |
Collapse
|
13
|
Gogulski J, Cline CC, Ross JM, Parmigiani S, Keller CJ. Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556283. [PMID: 37732239 PMCID: PMC10508735 DOI: 10.1101/2023.09.04.556283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background We currently lack a robust and reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC), a region heavily implicated in psychiatric disorders. We recently found that the strength of early and local dlPFC single pulse transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely depending on the anatomical subregion probed, with more medial regions eliciting stronger responses than anterolateral sites. Despite these differences in amplitude of response, the reliability at each target is not known. Objective To evaluate the reliability of EL-TEPs across the dlPFC. Methods In 15 healthy subjects, we quantified within-session reliability of dlPFC EL-TEPs after single pulse TMS to six dlPFC subregions. We evaluated the concordance correlation coefficient (CCC) across targets and analytical parameters including time window, quantification method, region of interest, sensor-vs. source-space, and number of trials. Results At least one target in the anterior and posterior dlPFC produced reliable EL-TEPs (CCC>0.7). The medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). ROI size and type (sensor vs. source space) did not affect reliability. Longer (20-60 ms, CCC = 0.62) and later (30-60 ms, CCC = 0.61) time windows resulted in higher reliability compared to earlier and shorter (20-40 ms, CCC 0.43; 20-50 ms, CCC = 0.55) time windows. Peak-to-peak quantification resulted in higher reliability than the mean of the absolute amplitude. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials for a medial dlPFC target. Conclusions Medial TMS location, wider time window (20-60ms), and peak-to-peak quantification improved reliability. Highly reliable EL-TEPs can be extracted from dlPFC after only a small number of trials. Highlights Medial dlPFC target improved EL-TEP reliability compared to anterior targets.After optimizing analytical parameters, at least one anterior and one posterior target was reliable (CCC>0.7).Longer (20-60 ms) and later (30-60 ms) time windows were more reliable than earlier and shorter (20-40 ms or 20-50 ms) latencies.Peak-to-peak quantification resulted in higher reliability compared to the mean of the absolute amplitude.As low as 25 trials can yield reliable EL-TEPs from the dlPFC.
Collapse
|
14
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
15
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Zrenner C, Rajji TK, Chen R, Voineskos D, Blumberger DM, Daskalakis ZJ. Isolating sensory artifacts in the suprathreshold TMS-EEG signal over DLPFC. Sci Rep 2023; 13:6796. [PMID: 37100795 PMCID: PMC10130812 DOI: 10.1038/s41598-023-29920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 04/28/2023] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an effective way to evaluate neurophysiological processes at the level of the cortex. To further characterize the TMS-evoked potential (TEP) generated with TMS-EEG, beyond the motor cortex, we aimed to distinguish between cortical reactivity to TMS versus non-specific somatosensory and auditory co-activations using both single-pulse and paired-pulse protocols at suprathreshold stimulation intensities over the left dorsolateral prefrontal cortex (DLPFC). Fifteen right-handed healthy participants received six blocks of stimulation including single and paired TMS delivered as active-masked (i.e., TMS-EEG with auditory masking and foam spacing), active-unmasked (TMS-EEG without auditory masking and foam spacing) and sham (sham TMS coil). We evaluated cortical excitability following single-pulse TMS, and cortical inhibition following a paired-pulse paradigm (long-interval cortical inhibition (LICI)). Repeated measure ANOVAs revealed significant differences in mean cortical evoked activity (CEA) of active-masked, active-unmasked, and sham conditions for both the single-pulse (F(1.76, 24.63) = 21.88, p < 0.001, η2 = 0.61) and LICI (F(1.68, 23.49) = 10.09, p < 0.001, η2 = 0.42) protocols. Furthermore, global mean field amplitude (GMFA) differed significantly across the three conditions for both single-pulse (F(1.85, 25.89) = 24.68, p < 0.001, η2 = 0.64) and LICI (F(1.8, 25.16) = 14.29, p < 0.001, η2 = 0.5). Finally, only active LICI protocols but not sham stimulation ([active-masked (0.78 ± 0.16, P < 0.0001)], [active-unmasked (0.83 ± 0.25, P < 0.01)]) resulted in significant signal inhibition. While previous findings of a significant somatosensory and auditory contribution to the evoked EEG signal are replicated by our study, an artifact attenuated cortical reactivity can reliably be measured in the TMS-EEG signal with suprathreshold stimulation of DLPFC. Artifact attenuation can be accomplished using standard procedures, and even when masked, the level of cortical reactivity is still far above what is produced by sham stimulation. Our study illustrates that TMS-EEG of DLPFC remains a valid investigational tool.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
16
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
17
|
No evidence for interaction between TMS-EEG responses and sensory inputs. Brain Stimul 2023; 16:25-27. [PMID: 36567062 DOI: 10.1016/j.brs.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
|
18
|
Gassmann L, Gordon PC, Ziemann U. Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG. Brain Stimul 2022; 15:1354-1369. [PMID: 36180039 DOI: 10.1016/j.brs.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebellum provides important input to the cerebral cortex but its assessment is difficult. Cerebellar brain inhibition tested by paired-coil transcranial magnetic stimulation (TMS) is limited to the motor cortex. Here we sought to measure responses to cerebellar TMS (cbTMS) throughout the cerebral cortex using electroencephalography (EEG). METHODS Single-pulse TMS was applied with an induced upward current to the right cerebellar hemisphere in 46 healthy volunteers while recording EEG. Multiple control conditions, including TMS of right occipital cortex, cbTMS with induced downward current, and a sham condition modified specifically for cbTMS were tested to provide evidence for the specificity of the EEG responses evoked by cbTMS with an upward induced current. RESULTS Distinct EEG response components could be specifically attributed to cbTMS, namely a left-hemispheric prefrontal positive deflection 25 ms after cbTMS, and a subsequent left-hemispheric parietal negative deflection peaking at 45 ms. In the time-frequency-response analysis, cbTMS induced a left-hemispheric prefrontal power increase in the high-beta frequency band. These responses were not seen in the control and sham conditions. CONCLUSIONS The EEG responses observed in this highly controlled experimental design may cautiously be attributed to reflect specific signatures of the activation of the cerebello-dentato-thalamo-cortical pathway by cbTMS. Therefore, these responses may provide biomarkers for assessing the integrity of this pathway, a proposition that will need further testing in clinical populations.
Collapse
Affiliation(s)
- Lukas Gassmann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro Caldana Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|