1
|
Morris ED, Emvalomenos GM, Hoye J, Meikle SR. Modeling PET Data Acquired During Nonsteady Conditions: What If Brain Conditions Change During the Scan? J Nucl Med 2024:jnumed.124.267494. [PMID: 39448268 DOI: 10.2967/jnumed.124.267494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan. The end results are quantitative parameters that characterize the molecular processes. The most common kinetic modeling endpoints are estimates of volume of distribution or the binding potential of a tracer. If the steady state is violated during the scanning period, the standard kinetic models may not apply. To address this issue, time-variant kinetic models have been developed for the characterization of dynamic PET data acquired while significant changes (e.g., short-lived neurotransmitter changes) are occurring in brain processes. These models are intended to extract a transient signal from data. This work in the PET field dates back at least to the 1990s. As interest has grown in imaging nonsteady events, development and refinement of time-variant models has accelerated. These new models, which we classify as belonging to the first, second, or third generation according to their innovation, have used the latest progress in mathematics, image processing, artificial intelligence, and statistics to improve the sensitivity and performance of the earliest practical time-variant models to detect and describe nonsteady phenomena. This review provides a detailed overview of the history of time-variant models in PET. It puts key advancements in the field into historical and scientific context. The sum total of the methods is an ongoing attempt to better understand the nature and implications of neurotransmitter fluctuations and other brief neurochemical phenomena.
Collapse
Affiliation(s)
- Evan D Morris
- Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut;
- Biomedical Engineering, Yale University, New Haven, Connecticut
- Psychiatry, Yale University, New Haven, Connecticut
| | | | - Jocelyn Hoye
- Psychiatry, Yale University, New Haven, Connecticut
| | - Steven R Meikle
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; and
- Sydney Imaging Core Research Facility, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Bevington CWJ, Hanania JU, Ferraresso G, Cheng JC(K, Pavel A, Su D, Stoessl AJ, Sossi V. Novel voxelwise residual analysis of [ 11C]raclopride PET data improves detection of low-amplitude dopamine release. J Cereb Blood Flow Metab 2024; 44:757-771. [PMID: 37974315 PMCID: PMC11197141 DOI: 10.1177/0271678x231214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Existing methods for voxelwise transient dopamine (DA) release detection rely on explicit kinetic modeling of the [11C]raclopride PET time activity curve, which at the voxel level is typically confounded by noise, leading to poor performance for detection of low-amplitude DA release-induced signals. Here we present a novel data-driven, task-informed method-referred to as Residual Space Detection (RSD)-that transforms PET time activity curves to a residual space where DA release-induced perturbations can be isolated and processed. Using simulations, we demonstrate that this method significantly increases detection performance compared to existing kinetic model-based methods for low-magnitude DA release (simulated +100% peak increase in basal DA concentration). In addition, results from nine healthy controls injected with a single bolus of [11C]raclopride performing a finger tapping motor task are shown as proof-of-concept. The ability to detect relatively low magnitudes of dopamine release in the human brain using a single bolus injection, while achieving higher statistical power than previous methods, may additionally enable more complex analyses of neurotransmitter systems. Moreover, RSD is readily generalizable to multiple tasks performed during a single PET scan, further extending the capabilities of task-based single-bolus protocols.
Collapse
Affiliation(s)
- Connor WJ Bevington
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Jordan U Hanania
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Giovanni Ferraresso
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| | - Ju-Chieh (Kevin) Cheng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, Canada
| | - Alexandra Pavel
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, Canada
| | - Dongning Su
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - A Jon Stoessl
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, Canada
- Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Laurell GL, Plavén-Sigray P, Johansen A, Raval NR, Nasser A, Aabye Madsen C, Madsen J, Hansen HD, Donovan LL, Knudsen GM, Lammertsma AA, Ogden RT, Svarer C, Schain M. Kinetic models for estimating occupancy from single-scan PET displacement studies. J Cereb Blood Flow Metab 2023; 43:1544-1556. [PMID: 37070382 PMCID: PMC10414003 DOI: 10.1177/0271678x231168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/19/2023]
Abstract
The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University, Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - R Todd Ogden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Molecular Imaging and Neuropathology Division, The New York State Psychiatric Institute, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Antaros Medical, Mölndal, Sweden
| |
Collapse
|
4
|
Time-varying SUVr reflects the dynamics of dopamine increases during methylphenidate challenges in humans. Commun Biol 2023; 6:166. [PMID: 36765261 PMCID: PMC9918528 DOI: 10.1038/s42003-023-04545-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Dopamine facilitates cognition and is implicated in reward processing. Methylphenidate, a dopamine transporter blocker widely used to treat attention-deficit/hyperactivity disorder, can have rewarding and addictive effects if injected. Since methylphenidate's brain uptake is much faster after intravenous than oral intake, we hypothesize that the speed of dopamine increases in the striatum in addition to its amplitude underly drug reward. To test this we use simulations and PET data of [11C]raclopride's binding displacement with oral and intravenous methylphenidate challenges in 20 healthy controls. Simulations suggest that the time-varying difference in standardized uptake value ratios for [11C]raclopride between placebo and methylphenidate conditions is a proxy for the time-varying dopamine increases induced by methylphenidate. Here we show that the dopamine increase induced by intravenous methylphenidate (0.25 mg/kg) in the striatum is significantly faster than that by oral methylphenidate (60 mg), and its time-to-peak is strongly associated with the intensity of the self-report of "high". We show for the first time that the "high" is associated with the fast dopamine increases induced by methylphenidate.
Collapse
|
5
|
Liu H, Morris ED. Detecting and classifying neurotransmitter signals from ultra-high sensitivity PET data: the future of molecular brain imaging. Phys Med Biol 2021; 66. [PMID: 34330107 DOI: 10.1088/1361-6560/ac195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Efforts to build the next generation of brain PET scanners are underway. It is expected that a new scanner (NS) will offer anorder-of-magnitude improvementin sensitivity to counts compared to the current state-of-the-art, Siemens HRRT. Our goal was to explore the use of the anticipated increased sensitivity in combination with the linear-parametric neurotransmitter PET (lp-ntPET) model to improve detection and classification of transient dopamine (DA) signals. We simulated striatal [11C]raclopride PET data to be acquired on a future NS which will offer ten times the sensitivity of the HRRT. The simulated PET curves included the effects of DA signals that varied in start-times, peak-times, and amplitudes. We assessed the detection sensitivity of lp-ntPET to various shapes of DA signal. We evaluated classification thresholds for their ability to separate 'early'- versus 'late'-peaking, and 'low'- versus 'high'-amplitude events in a 4D phantom. To further refine the characterization of DA signals, we developed a weighted k-nearest neighbors (wkNN) algorithm to incorporate information from the neighborhood around each voxel to reclassify it, with a level of certainty. Our findings indicate that the NS would expand the range of detectable neurotransmitter events to 72%, compared to the HRRT (31%). Application of wkNN augmented the detection sensitivity to DA signals in simulated NS data to 92%. This work demonstrates that the ultra-high sensitivity expected from a new generation of brain PET scanner, combined with a novel classification algorithm, will make it possible to accurately detect and classify short-lived DA signals in the brain based on their amplitude and timing.
Collapse
Affiliation(s)
- Heather Liu
- Dept. Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Dept. Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - Evan D Morris
- Dept. Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Dept. Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America.,Dept. Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
6
|
Liu H, Morris ED. Model Comparison Metrics Require Adaptive Correction if Parameters Are Discretized: Proof-of-Concept Applied to Transient Signals in Dynamic PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2451-2460. [PMID: 32031932 PMCID: PMC7392400 DOI: 10.1109/tmi.2020.2969425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Linear parametric neurotransmitter PET (lp-ntPET) is a novel kinetic model that estimates the temporal characteristics of a transient neurotransmitter component in PET data. To preserve computational simplicity in estimation, the parameters of the nonlinear term that describe this transient signal are discretized, and only a limited set of values for each parameter are allowed. Thus, linear estimation can be performed. Linear estimation is implemented using predefined basis functions that incorporate the discretized parameters. The implementation of the model using discretized parameters poses unique challenges for significance testing. Significance testing employs model comparison metrics to determine the significance of the improvement of the fit accomplished by including a basis function, i.e. it determines the presence of a transient signal in the PET data. A false positive occurs when the bases overfit data that do not contain a transient component. The number of parameters in a model, p, is necessary to determine the degrees of freedom in the model. In turn, p is crucial for the calculation of model selection metrics and controlling the false positive rate (FPR). In this work, we first explore the effect of parameter discretization on FPR by fitting simulated null data with varying numbers of bases. We demonstrate the dependence of FPR on number of bases. Then, we propose a correction to the number of parameters in the model, peff , which adapts to the number of bases used. Implementing model selection with peff maintains a stable FPR independent of number of bases.
Collapse
|
7
|
Irace Z, Mérida I, Redouté J, Fonteneau C, Suaud-Chagny MF, Brunelin J, Vidal B, Zimmer L, Reilhac A, Costes N. Bayesian Estimation of the ntPET Model in Single-Scan Competition PET Studies. Front Physiol 2020; 11:498. [PMID: 32508679 PMCID: PMC7248280 DOI: 10.3389/fphys.2020.00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
This paper proposes an innovative method, named b-ntPET, for solving a competition model in PET. The model is built upon the state-of-the-art method called lp-ntPET. It consists in identifying the parameters of the PET kinetic model relative to a reference region that rule the steady state exchanges, together with the identification of four additional parameters defining a displacement curve caused by an endogenous neurotransmitter discharge, or by a competing injected drug targeting the same receptors as the PET tracer. The resolution process of lp-ntPET is however suboptimal due to the use of discretized basis functions, and is very sensitive to noise, limiting its sensitivity and accuracy. Contrary to the original method, our proposed resolution approach first estimates the probability distribution of the unknown parameters using Markov-Chain Monte-Carlo sampling, distributions from which the estimates are then inferred. In addition, and for increased robustness, the noise level is jointly estimated with the parameters of the model. Finally, the resolution is formulated in a Bayesian framework, allowing the introduction of prior knowledge on the parameters to guide the estimation process toward realistic solutions. The performance of our method was first assessed and compared head-to-head with the reference method lp-ntPET using well-controlled realistic simulated data. The results showed that the b-ntPET method is substantially more robust to noise and much more sensitive and accurate than lp-ntPET. We then applied the model to experimental animal data acquired in pharmacological challenge studies and human data with endogenous releases induced by transcranial direct current stimulation. In the drug challenge experiment on cats using [18F]MPPF, a serotoninergic 1A antagonist radioligand, b-ntPET measured a dose response associated with the amount of the challenged injected concurrent 5-HT1A agonist, where lp-ntPET failed. In human [11C]raclopride experiment, contrary to lp-ntPET, b-ntPET successfully detected significant endogenous dopamine releases induced by the stimulation. In conclusion, our results showed that the proposed method b-ntPET has similar performance to lp-ntPET for detecting displacements, but with higher resistance to noise and better robustness to various experimental contexts. These improvements lead to the possibility of detecting and characterizing dynamic drug occupancy from a single PET scan more efficiently.
Collapse
Affiliation(s)
- Zacharie Irace
- CERMEP-Life Imaging, Lyon, France.,SIEMENS Healthcare SAS, Saint Denis, France
| | | | | | - Clara Fonteneau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | - Marie-Françoise Suaud-Chagny
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Hospitalier Le Vinatier, Lyon, France
| | | | - Luc Zimmer
- CERMEP-Life Imaging, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
8
|
van Duin EDA, Ceccarini J, Booij J, Kasanova Z, Vingerhoets C, van Huijstee J, Heinzel A, Mohammadkhani-Shali S, Winz O, Mottaghy F, Myin-Germeys I, van Amelsvoort T. Lower [ 18F]fallypride binding to dopamine D 2/3 receptors in frontal brain areas in adults with 22q11.2 deletion syndrome: a positron emission tomography study. Psychol Med 2020; 50:799-807. [PMID: 30935427 PMCID: PMC7168654 DOI: 10.1017/s003329171900062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11DS) is caused by a deletion on chromosome 22 locus q11.2. This copy number variant results in haplo-insufficiency of the catechol-O-methyltransferase (COMT) gene, and is associated with a significant increase in the risk for developing cognitive impairments and psychosis. The COMT gene encodes an enzyme that primarily modulates clearance of dopamine (DA) from the synaptic cleft, especially in the prefrontal cortical areas. Consequently, extracellular DA levels may be increased in prefrontal brain areas in 22q11DS, which may underlie the well-documented susceptibility for cognitive impairments and psychosis in affected individuals. This study aims to examine DA D2/3 receptor binding in frontal brain regions in adults with 22q11DS, as a proxy of frontal DA levels. METHODS The study was performed in 14 non-psychotic, relatively high functioning adults with 22q11DS and 16 age- and gender-matched healthy controls (HCs), who underwent DA D2/3 receptor [18F]fallypride PET imaging. Frontal binding potential (BPND) was used as the main outcome measure. RESULTS BPND was significantly lower in adults with 22q11DS compared with HCs in the prefrontal cortex and the anterior cingulate gyrus. After Bonferroni correction significance remained for the anterior cingulate gyrus. There were no between-group differences in BPND in the orbitofrontal cortex and anterior cingulate cortex. CONCLUSIONS This study is the first to demonstrate lower frontal D2/3 receptor binding in adults with 22q11DS. It suggests that a 22q11.2 deletion affects frontal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Jan Booij
- Academic Medical Center, Amsterdam, The Netherlands
| | - Zuzana Kasanova
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jytte van Huijstee
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherland
| | - Inez Myin-Germeys
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven – Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Wang S, Kim S, Cosgrove KP, Morris ED. A framework for designing dynamic lp-ntPET studies to maximize the sensitivity to transient neurotransmitter responses to drugs: Application to dopamine and smoking. Neuroimage 2016; 146:701-714. [PMID: 27743899 DOI: 10.1016/j.neuroimage.2016.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
The "linear parametric neurotransmitter PET" (lp-ntPET) model was introduced to capture the time course of transient endogenous neurotransmitter response to drug stimulus from dynamic PET data. We previously used this novel analysis tool to probe the short-lived dopamine (DA) response induced by cigarette smoking in the PET scanner. It allowed us to find a sex difference in the DA signature of cigarette smoking. To make best use of this tool to characterize neurotransmitter response to drug stimulus, the sensitivity of lp-ntPET to detect such responses must be maximized. We designed a series of simulation studies to examine the impact of the following factors on the sensitivity of lp-ntPET using smoking-induced DA release as an example application: tracer delivery protocol, pre-processing for image denoising, timing of the smoking task, duration of the PET scan, and dose of the radiotracer. Our results suggest that a Bolus paradigm could replace a more difficult B/I paradigm without sacrificing the sensitivity of the method. Pre-processing the PET data with the de-noising algorithm HYPR could improve the sensitivity. The optimal timing to start the smoking task is 45min in a 90min scan and 35min in a 75min scan. A mild shortening of the scan time from 90mCi to 75min should be acceptable without loss of sensitivity. We suggest a lower dose limit of a bolus injection at 16mCi to limit underestimation of DA activation. This study established the framework to optimize the experimental design for reaching the full potential of lp-ntPET to detect neurotransmitter responses to drugs or even behavioral tasks.
Collapse
Affiliation(s)
- Shuo Wang
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sujin Kim
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Kim SJ, Sullivan JM, Wang S, Cosgrove KP, Morris ED. Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: sensitivity analysis and application to cigarette smoking in the PET scanner. Hum Brain Mapp 2014; 35:4876-91. [PMID: 24700424 PMCID: PMC4303353 DOI: 10.1002/hbm.22519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/07/2022] Open
Abstract
The “linear parametric neurotransmitter PET” (lp‐ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp‐ntPET model from the original region of interest (ROI) ‐ based implementation to be able to apply the model at the voxel level. The resulting endpoint is a dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select threshold values to reduce the false positive rate when applied to real 11C‐raclopride PET data. We tested the new voxelwise method on simulated data, and finally, we applied it to 11C‐raclopride PET data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neurotransmitter response was shown to be similar to that of ROI‐based lp‐ntPET (standard deviation ∼ 3 min). False positive rates for the voxelwise method were well controlled by combining a statistical threshold (the F‐test) with a new spatial (cluster‐size) thresholding operation. Sensitivity of detection for the new algorithm was greater than 80% for the case of short‐lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in 11C‐raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp‐ntPET may serve as novel biomarkers for addiction and/or treatment efficacy. Hum Brain Mapp 35:4876–4891, 2014. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Su Jin Kim
- Yale PET Center, Yale University, New Haven, Connecticut; Department of Diagnostic Radiology, Yale University, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
11
|
Ceccarini J, Vrieze E, Koole M, Muylle T, Bormans G, Claes S, Van Laere K. Optimized In Vivo Detection of Dopamine Release Using 18F-Fallypride PET. J Nucl Med 2012; 53:1565-72. [DOI: 10.2967/jnumed.111.099416] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Politis M, Piccini P. In vivo imaging of the integration and function of nigral grafts in clinical trials. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195420 DOI: 10.1016/b978-0-444-59575-1.00009-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vivo functional imaging has provided objective evidence for the integration and function of nigral grafts in the brains of patients with Parkinson's disease. Clinical trials with the use of positron emission tomography have shown that transplants of human dopamine-rich fetal ventral mesencephalic tissue can survive, grow, and release dopamine providing motor symptom relief, and also that they can restore brain activation related to movement. Positron emission tomography has aided in the elucidation of the pathophysiology of serious adverse effects, so-called graft-induced dyskinesias. With the use of newly established radioligands, positron emission tomography and single-photon emission computed tomography could help to improve Parkinson's patient selection in future clinical trials by selecting those with better predicted outcomes. Moreover, positron emission tomography could help monitoring postoperational inflammatory processes around the grafted tissue and the effect of immunosuppression. Recent evidence from positron emission tomography has provided insight of how ongoing extrastriatal serotonergic denervation may have relevance to nonmotor symptoms in transplanted Parkinson's disease patients indicating new cell therapy targets for a more complete relief of symptoms. Functional and structural magnetic resonance imaging techniques could help to better assess the integration of nigral graft with the host brain by assessing the restoration of brain activation during movement and of functional and structural connectivity. This knowledge should lead to the development of new, optimized in vivo imaging protocols that could help to better schedule, monitor, and modify the clinical outcomes of future human trials assessing the efficacy of fetal or stem cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Marios Politis
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| | | |
Collapse
|
13
|
Normandin MD, Schiffer WK, Morris ED. A linear model for estimation of neurotransmitter response profiles from dynamic PET data. Neuroimage 2011; 59:2689-99. [PMID: 21767654 DOI: 10.1016/j.neuroimage.2011.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/26/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal precision of neurotransmitter profiles estimated by lp-ntPET was similar to that of p-ntPET (standard deviation ~3 min for responses early in the scan) while computation time was reduced by several orders of magnitude. Violations of model assumptions such as activation-induced changes in regional blood flow or specific binding in the reference tissue have negligible effects on lp-ntPET performance. Application of the lp-ntPET method is demonstrated on [11C]raclopride data acquired in rats receiving methamphetamine, which yielded estimated response functions that were in good agreement with simultaneous microdialysis measurements of extracellular dopamine concentration. These results demonstrate that lp-ntPET is a computationally efficient, linear variant of ntPET that can be applied to PET data from single or multiple scan designs to estimate the time course of neurotransmitter activation.
Collapse
Affiliation(s)
- Marc D Normandin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
14
|
Assessment of i.p. injection of [18F]fallypride for behavioral neuroimaging in rats. J Neurosci Methods 2011; 196:70-5. [PMID: 21219928 DOI: 10.1016/j.jneumeth.2010.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 11/23/2022]
Abstract
Great progress has been made toward using small animal PET to assess neurochemical changes during behavior. [(18)F]fallypride (FAL) is a D(2)/D(3) antagonist that is sensitive to changes in endogenous dopamine, and, in theory, could be used to assess changes in dopamine during behavioral paradigms. Tail vein injections of tracer require restraint in awake animals, and catheter implantation is invasive and can cause logistical problems. Thus, administering tracer with i.p. injections (which are well-tolerated by rodents) would be preferable. The purpose of this study was to determine whether i.p. injection of FAL would produce striatal uptake similar to that seen with traditional i.v. tail vein injection protocols. Four male Sprague-Dawley rats underwent i.p. injection of FAL, followed by a 30-min uptake and subsequent dynamic image acquisition on the IndyPET III small animal scanner. Three of these rats also received traditional dynamic scanning with i.v. FAL injection via a tail vein. Two rats that received i.p. injection had moderate striatal uptake, with striatum/cerebellum ratios (SUVR) that were only ∼20% lower than ratios from i.v. scans. Two other rats had little to no uptake; SUVR values were ∼70% lower than i.v. SUVR. These latter two animals showed heavy bone uptake, evidence of defluorination of FAL. The results of this pilot study suggest that it may be possible to achieve striatal uptake of FAL after i.p. injection. However, this was not seen consistently across animals. Future studies are needed to validate, and then to optimize, the use of i.p. FAL for behavioral imaging protocols.
Collapse
|
15
|
|
16
|
Noninvasive visualization of human dopamine dynamics from PET images. Neuroimage 2010; 51:135-44. [PMID: 20056162 DOI: 10.1016/j.neuroimage.2009.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/18/2009] [Accepted: 12/20/2009] [Indexed: 11/23/2022] Open
Abstract
We recently introduced strategies for extracting temporal patterns of brain dopamine fluctuations from dynamic positron emission tomography (PET) data using the tracer [11C]-raclopride. Each of our methods yields a collection of time-concentration curves for endogenous dopamine. Given a spatially dense collection of curves (i.e., one at every voxel in a region of interest), we produce image volumes of dopamine (DA) concentration, DA(X, t), at multiple voxel locations and each time-frame. The volume over time-frames constitutes a 4D dataset that can be thought of as a DA "movie". There are a number of ways to visualize such data. Viewing cine loops of a slice through the DA volume is one way. Creating images of dopamine peak-time, Tpeak(X), derived from a movie, is another. Each visualization may reveal spatio-temporal patterns of neurotransmitter activity heretofore unobservable. We conducted an initial validation experiment in which identical DA responses were induced by an identical task, initiated at different times by the same subject, in two separate PET scans. A comparison of the resulting Tpeak(X) images revealed a large contiguous cluster of striatal voxels, on each side, whose DA timing was consistent with the relative timing of the tasks. Hence, the DA movies and their respective peak-time images were shown to be new types of functional images that contain bonafide timing information about a neurotransmitter's response to a stimulus.
Collapse
|
17
|
|
18
|
Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ. Cognitive deficits and striato-frontal dopamine release in Parkinson's disease. ACTA ACUST UNITED AC 2008; 131:1294-302. [PMID: 18362097 DOI: 10.1093/brain/awn054] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Idiopathic Parkinson's disease (PD) is often accompanied by a pattern of executive deficits similar to those found in patients with frontal lobe lesions. We investigated whether such cognitive deficits are attributable to frontal lobe dysfunction as a direct consequence of impaired mesocortical dopaminergic transmission or an indirect consequence of impaired nigrostriatal dopaminergic function. For this purpose, changes in synaptic dopamine levels during task performance were monitored using a marker of dopamine D2-receptor availability (11)C-raclopride (RAC) PET. During RAC PET, seven patients with early symptomatic PD and seven age-matched healthy controls performed two types of behavioural task, a spatial working memory task (SWT) and a visuomotor control task (VMT). The SWT involves an executive process which is known to be impaired by both frontal lobe lesions and PD while the VMT is a control test for the visuomotor component of the SWT. Parametric images of RAC binding potential during performance of each task were generated, and compared between the tasks using voxel-based statistical parametric mapping as well as region of interest analysis. In controls, RAC binding was reduced in the dorsal caudate during performance of the SWT compared with the VMT, compatible with increased levels of endogenous dopamine release due to the executive process. In PD patients, this RAC binding reduction was not observed. In contrast, RAC binding in the anterior cingulate cortex within the medial prefrontal cortex was reduced by a comparable level during the SWT both in controls and PD patients. Statistical comparisons between controls and PD patients confirmed significantly attenuated dopamine release in the dorsal caudate in PD, but preserved levels of medial prefrontal dopamine release. Our data suggest that executive deficits in early patients with PD are associated with impaired nigrostriatal dopaminergic function resulting in abnormal processing in the cortico-basal ganglia circuit. In contrast, mesocortical dopaminergic transmission appears well preserved in early PD patients.
Collapse
Affiliation(s)
- Nobukatsu Sawamoto
- Division of Neuroscience, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Constantinescu CC, Yoder KK, Kareken DA, Bouman CA, O'Connor SJ, Normandin MD, Morris ED. Estimation from PET data of transient changes in dopamine concentration induced by alcohol: support for a non-parametric signal estimation method. Phys Med Biol 2008; 53:1353-67. [DOI: 10.1088/0031-9155/53/5/012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Morris ED, Normandin MD, Schiffer WK. Initial comparison of ntPET with microdialysis measurements of methamphetamine-induced dopamine release in rats: support for estimation of dopamine curves from PET data. Mol Imaging Biol 2008; 10:67-73. [PMID: 18176804 DOI: 10.1007/s11307-007-0124-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/24/2022]
Abstract
A recently introduced mathematical method for extracting temporal characteristics of neurotransmitter release from dynamic positron emission tomography (PET) data was tested. The method was developed with the hope that by uncovering temporal information about neurotransmitter (nt) dynamics in PET data, researchers could shed new light on mechanisms of psychiatric diseases such as drug abuse and its treatment. In this study, we apply our model-based method, "ntPET", to (11)C-raclopride PET scans of rats in which the dopaminergic response to a microinfusion of methamphetamine in one striatum was assayed simultaneously by microdialysis and PET. Uptake of (11)C-raclopride into the untreated contralateral striatum was used as an input to the ntPET model. Direct comparisons of the model-based ntPET analysis and the microdialysis measurements confirmed that ntPET produced dopamine curves that were very similar in timing (takeoff and peak times) to the microdialysis curves. Variances in takeoff and peak times were comparable for the two methods. Neither method detected a false dopamine response to drug in a control animal. The high degree of correspondence between ntPET estimates and microdialysis measurements lends strong support to the idea that temporal information regarding dopamine release exists in dynamic (11)C-raclopride PET data and that it can be estimated reliably via ntPET. The method is entirely translatable to human PET imaging.
Collapse
Affiliation(s)
- Evan D Morris
- Biomedical Engineering Department, Indiana University-Purdue University, Indianapolis, IN, USA. .
| | | | | |
Collapse
|
21
|
Yoder KK, Kareken DA, Morris ED. What were they thinking? Cognitive states may influence [11C]raclopride binding potential in the striatum. Neurosci Lett 2007; 430:38-42. [PMID: 18060695 DOI: 10.1016/j.neulet.2007.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
[(11)C]Raclopride ([(11)C]RAC) is a selective dopamine D(2)/D(3) antagonist that is commonly used in positron emission tomography (PET) studies to assess both basal levels of receptor availability and changes in availability caused by alterations in striatal dopamine concentration. When designing [(11)C]RAC studies, it is important to understand what variables may affect the results. Here, we examined differences in baseline striatal [(11)C]RAC binding potential (BP(ND)) under two different "rest" conditions. Thirteen subjects received [(11)C]RAC scans. Eight subjects were aware prior to initiation of scanning that they would receive a "baseline" scan, and that no additional procedures would take place during the scan ("certain rest" group, CER). Five subjects were informed that they might or might not receive an i.v. alcohol infusion during the scan ("uncertain rest" group, UNC). This group was informed five min after scan start that they would not receive alcohol. Voxel-wise analyses of binding potential (BP(ND)) images generated for both "rest" conditions indicated that receptor availability was higher in UNC than in CER. This result was confirmed by a region-of-interest analysis, which indicated that the average BP(ND) in right and left putamen was statistically higher in UNC. There were no differences in groups with respect to age or raclopride mass dose that could account for the difference in D(2)/D(3) receptor availability. Our findings suggest that even slight differences in cognitive states between groups can have an effect on BP(ND), presumably mediated by changes in endogenous dopamine concentration.
Collapse
Affiliation(s)
- Karmen K Yoder
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | | | | |
Collapse
|
22
|
Normandin MD, Morris ED. Estimating neurotransmitter kinetics with ntPET: a simulation study of temporal precision and effects of biased data. Neuroimage 2007; 39:1162-79. [PMID: 18023364 DOI: 10.1016/j.neuroimage.2007.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/23/2007] [Accepted: 09/28/2007] [Indexed: 11/28/2022] Open
Abstract
We recently introduced neurotransmitter PET (ntPET), an analysis technique that estimates the kinetics of stimulus-induced neurotransmitter (NT) release. Here, we evaluate two formulations of ntPET. The arterial (ART) approach measures the tracer input function (TIF) directly. The reference (REF) approach derives the TIF from reference region data. Arterial sampling is considered the gold standard in PET modeling but reference region approaches are preferred for reduced cost and complexity. If simulated PET data with unbiased TIFs were analyzed using ART or REF, temporal precision was better than 3 min provided NT concentration peaked less than 30 min into the scanning session. The consequences of biased TIFs or stimulus-induced changes in tracer delivery were also evaluated. ART TIFs were biased by the presence of uncorrected radiometabolites in the plasma whereas REF TIFs were biased by specific binding in the reference region. Simulated changes in tracer delivery emulated ethanol-induced blood flow alterations observed previously with PET. ART performance deteriorated significantly if metabolites amounted to 50% of plasma radioactivity by 60 min. The accuracy and precision of REF were preserved even if the reference region contained 40% of the receptor density of the target region. Both methods were insensitive to blood flow alterations (proportional changes in K(1) and k(2)). Our results suggest that PET data contain information--heretofore not extracted--about the timing of NT release. The REF formulation of ntPET proved to be robust to many plausible model violations and under most circumstances is an appropriate alternative to ART.
Collapse
Affiliation(s)
- Marc D Normandin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
23
|
Constantinescu CC, Bouman C, Morris ED. Nonparametric extraction of transient changes in neurotransmitter concentration from dynamic PET data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:359-73. [PMID: 17354641 DOI: 10.1109/tmi.2006.891501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have developed a nonparametric approach to the analysis of dynamic positron emission tomography (PET) data for extracting temporal characteristics of the change in endogenous neurotransmitter concentration in the brain. An algebraic method based on singular value decomposition (SVD) was applied to simulated data under both rest (neurotransmitter at baseline) and activated (transient neurotransmitter release) conditions. The resulting signals are related to the integral of the change in free neurotransmitter concentration in the tissue. Therefore, a specially designed minimum mean-square error (MMSE) filter must be applied to the signals to recover the desired temporal pattern of neurotransmitter change. To test the method, we simulated sets of realistic time activity curves representing uptake of [11C]raclopride, a dopamine (DA) receptor antagonist, in brain regions, under baseline and dopamine-release conditions. Our tests considered two scenarios: 1) a spatially homogeneous pattern with all voxels in the activated state presenting an identical DA signal; 2) a spatially heterogeneous pattern in which different DA signals were contained in different families of voxels. In the first case, we demonstrated that the timing of a single DA peak can be accurately identified to within 1 min and that two distinct neurotransmitter peaks can be distinguished. In the second case, separate peaks of activation separated by as little as 5 min can be distinguished. A decrease in blood flow during activation could not account for our findings. We applied the method to human PET data acquired with [11C]raclopride in the presence of transiently elevated DA due to intravenous (IV) alcohol. Our results for an area of the nucleus accumbens-a region relevant to alcohol consumption-agreed with a model-based method for estimating the DA response. SVD-based analysis of dynamic PET data promises a completely noninvasive and model-independent technique for determining the dynamics of a neurotransmitter response to cognitive or pharmacological stimuli. Our results indicate that the method is robust enough for application to voxel-by-voxel data.
Collapse
|
24
|
Christian BT, Lehrer DS, Shi B, Narayanan TK, Strohmeyer PS, Buchsbaum MS, Mantil JC. Measuring dopamine neuromodulation in the thalamus: Using [F-18]fallypride PET to study dopamine release during a spatial attention task. Neuroimage 2006; 31:139-52. [PMID: 16469510 DOI: 10.1016/j.neuroimage.2005.11.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/18/2005] [Accepted: 11/30/2005] [Indexed: 11/22/2022] Open
Abstract
We used the highly selective D2/D3 dopamine PET radioligand [F-18]fallypride to demonstrate that cognitive task induced dopamine release can be measured in the extrastriatal region of the thalamus, a region containing 10-fold fewer D2 dopamine receptors than the striatum. Human studies were acquired on 8 healthy volunteers using a single [F-18]fallypride injection PET imaging session. A spatial attention task, previously demonstrated to increase FDG uptake in the thalamus, was initiated following a period of radioligand uptake. Thalamic dopamine release was statistically tested by measuring time-dependent alterations in the kinetics (focusing on specific binding) of the [F-18]fallypride using the linearized extension of the simplified reference region model. Voxel-based analysis of the dynamic PET data sets revealed a high correlation (r = 0.86, P = 0.0067) between spatial attention task performance and thalamic dopamine release. Various aspects of the kinetic model were analyzed to address concerns such as blood flow artifacts and model bias, as well as issues with task timing and regional variations in D2/D3 receptor density. In addition to the thalamus, measurement of dopamine neuromodulation using [F-18]fallypride and a single injection PET protocol can be extended to other extrastriatal regions of the brain, such as the amygdala, hippocampus, and regions of the temporal cortex. However, issues of task timing and detection sensitivity will vary depending on regional D2/D3 dopamine receptor density. Measurements of extrastriatal dopamine neuromodulation hold great promise to further our understanding of extrastriatal dopamine involvement in normal cognition and neuropsychiatric pathology.
Collapse
Affiliation(s)
- Bradley T Christian
- Boonshoft Schizophrenia Center, Kettering Medical Center, Kettering, OH 45429, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Normandin MD, Morris ED. Temporal resolution of ntPET using either arterial or reference region-derived plasma input functions. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:2005-2008. [PMID: 17946491 DOI: 10.1109/iembs.2006.259716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We recently introduced an imaging application combining dynamic positron emission tomography (PET), a modification of the two-tissue compartment model, and constrained parameter estimation. The objective of this method, which we have called neurotransmitter PET (ntPET), is to estimate the timing of neurotransmitter (NT) kinetics. The time course of NT release in response to drugs or other stimuli may provide information about the function of the brain. In this paper, we evaluate two alternate formulations of ntPET, one which uses arterial blood samples as the plasma input function (ART) and another which uses a reference region-derived approximation of the plasma input (REF). Simulated data with strong (moderate noise, prominent NT response) and weak (high noise, subtle NT response) signals were analyzed with ntPET using ART and REF. Both methods were able to recover NT profiles resembling the true response, with temporal resolution better than 1 min for strong signals and 3 min for weak signals. Despite potential disadvantages, REF yielded results rivaling those of the ART method. When a sufficiently robust response is anticipated and knowledge of absolute timing is not necessary, the REF method is an appropriate alternative to ART, which is more demanding experimentally.
Collapse
Affiliation(s)
- Marc D Normandin
- Weldon Sch. of Biomed. Eng., Purdue Univ., West Lafayette, IN 47907, USA.
| | | |
Collapse
|
26
|
Morris ED, Yoder KK, Wang C, Normandin MD, Zheng QH, Mock B, Muzic RF, Froehlich JC. ntPET: A New Application of PET Imaging for Characterizing the Kinetics of Endogenous Neurotransmitter Release. Mol Imaging 2005; 4:473-89. [PMID: 16285909 DOI: 10.2310/7290.2005.05130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/30/2005] [Accepted: 06/15/2005] [Indexed: 11/18/2022] Open
Abstract
We present a new application of positron emission tomography (“ntPET” or “neurotransmitter PET”) designed to recover temporal patterns of neurotransmitter release from dynamic data. Our approach employs an enhanced tracer kinetic model that describes uptake of a labeled dopamine D2/D3 receptor ligand in the presence of a time-varying rise and fall in endogenous dopamine. Data must be acquired during both baseline and stimulus (transient dopamine release) conditions. Data from a reference region in both conditions are used as an input function, which alleviates the need for any arterial blood sampling. We use simulation studies to demonstrate the ability of the method to recover the temporal characteristics of an increase in dopamine concentration that might be expected following a drug treatment. The accuracy and precision of the method—as well as its potential for false-positive responses due to noise or changes in blood flow—were examined. Finally, we applied the ntPET method to small-animal imaging data in order to produce the first noninvasive assay of the time-varying release of dopamine in the rat striatum following alcohol.
Collapse
Affiliation(s)
- Evan D Morris
- Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In this article, the role of functional imaging for providing objective evidence that grafts of fetal tissue can survive and form connections in Parkinson's and Huntington's disease patients is reviewed. The dissociation between dopamine storage capacity, clinical improvement, and normalization of brain metabolism in PD is discussed, and possible mechanisms underlying the phenomenon of dyskinesias off medication are presented. It is concluded the positron emission tomography and single photon emission computed tomography can provide valuable ancillary information alongside clinical observations but are not currently appropriate modalities for use as surrogate endpoints.
Collapse
Affiliation(s)
- David J Brooks
- Medical Research Council Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 ONN, United Kingdom.
| |
Collapse
|
28
|
Holschneider DP, Maarek JMI. Mapping brain function in freely moving subjects. Neurosci Biobehav Rev 2004; 28:449-61. [PMID: 15465134 PMCID: PMC4103625 DOI: 10.1016/j.neubiorev.2004.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 06/05/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject's natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, 1333 San Pablo St., BMT 401, MC 9112, Los Angeles, CA 90089-9112, USA.
| | | |
Collapse
|
29
|
Fisher RE, Morris ED, Alpert NM, Fischman AJ. In vivo imaging of neuromodulatory synaptic transmission using PET: A review of relevant neurophysiology. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460030104] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Badgaiyan RD, Fischman AJ, Alpert NM. Striatal dopamine release during unrewarded motor task in human volunteers. Neuroreport 2003; 14:1421-4. [PMID: 12960756 DOI: 10.1097/00001756-200308060-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SUMMARY Striatal dopamine is associated with the processing of rewarded motor tasks. Its involvement in mediating unrewarded tasks is, however, unclear. We used a recently developed PET technique to dynamically measure the rate of displacement of a dopamine receptor ligand raclopride in healthy volunteers performing a finger opposition task. Rapid displacement of the ligand from the posterior putamen and the caudate immediately after the task initiation suggested striatal dopamine release during task performance. Since dopamine release was observed in the striatal areas that are implicated in unrewarded tasks by neuroimaging studies, the results demonstrate that the PET method can be used to extend the findings of conventional neuroimaging techniques, that do not provide information about signal transduction.
Collapse
Affiliation(s)
- Rajendra D Badgaiyan
- Division of Nuclear Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
31
|
Alpert NM, Badgaiyan RD, Livni E, Fischman AJ. A novel method for noninvasive detection of neuromodulatory changes in specific neurotransmitter systems. Neuroimage 2003; 19:1049-60. [PMID: 12880831 DOI: 10.1016/s1053-8119(03)00186-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Over the last decade, it has become possible to study theories of cognition using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). These methods yield statistical parametric maps of changes in cerebral blood flow (CBF) elicited by cognitive tasks. A limitation of these studies is that they provide no information about the underlying neurochemistry. However, it is possible to extend the concept of activation studies to include measurements targeting neurotransmitters and specific receptor populations. Cognitive activation increases neuronal firing rate, increasing the endogenous neurotransmitter level. The increased neurotransmitter level can be used to alter the kinetics of specifically bound radioligands. We describe a new approach to the design and analysis of neuromodulation experiments. This approach uses PET, a single-scan session design, and a linear extension of the simplified reference region model (LSSRM) that accounts for changes in ligand binding induced by cognitive tasks or drug challenge. In the LSSRM, an "activation" parameter is included that represents the presence or absence of change in apparent dissociation rate. Activation of the neurotransmitter is detected statistically when the activation parameter is shown to violate the null hypothesis. Simulation was used to explore the properties of the LSSRM with regard to model identifiability, effect of statistical noise, and confounding effects of CBF-related changes. Simulation predicted that it is possible to detect and map neuromodulatory changes in single-subject designs. A human study was conducted to confirm the predictions of simulation using (11)C-raclopride and a motor planning task. Parametric images of transport, binding potential, areas of significant dopamine release, and statistical parameters were computed. Examination of the kinetics of activation demonstrated that maximum dopamine release occurred immediately following task initiation and then decreased with a half-time of about 3 min. This method can be extended to explore neurotransmitter involvement in other behavioral and cognitive domains.
Collapse
Affiliation(s)
- Nathaniel M Alpert
- Division of Nuclear Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
32
|
Bencherif B, Fuchs PN, Sheth R, Dannals RF, Campbell JN, Frost JJ. Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 2002; 99:589-598. [PMID: 12406535 DOI: 10.1016/s0304-3959(02)00266-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of the supraspinal endogenous opioid system in pain processing has been investigated in this study using positron emission tomography imaging of [11C]-carfentanil, a synthetic, highly specific mu opioid receptor (mu-OR) agonist. Eight healthy volunteers were studied during a baseline imaging session and during a session in which subjects experienced pain induced by applying capsaicin topically to the dorsal aspect of the left hand. A pain-related decrease in brain mu-OR binding was observed in the contralateral thalamus consistent with competitive binding between [11C]-carfentanil and acutely released endogenous opioid peptides. This decrease varied directly with ratings of pain intensity. These results suggest that the supraspinal mu-opioid system is activated by acute pain and thus may play a substantial role in pain processing and modulation in pain syndromes.
Collapse
Affiliation(s)
- B Bencherif
- Department of Radiology, The Johns Hopkins University School of Medicine, JHOC 3225, 601 N Caroline Street, Baltimore, MD 21287, USA Department of Neurosurgery, The Johns Hopkins University School of Medicine, Meyer 5-109, 600 N Wolfe Street, Baltimore, MD 21287, USA Department of Neurosciences, The Johns Hopkins University School of Medicine, JHOC 3225, 601 N Caroline Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
33
|
Delforge J, Bottlaender M, Pappata S, Loc'h C, Syrota A. Absolute quantification by positron emission tomography of the endogenous ligand. J Cereb Blood Flow Metab 2001; 21:613-30. [PMID: 11333372 DOI: 10.1097/00004647-200105000-00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The results of several recent papers have shown a significant influence of the endogenous neurotransmitters on the exogenous ligand kinetics measured by positron emission tomography. For example, several groups found that the percentage of D2 receptor sites occupied by the endogenous dopamine ranged from 25% to 40% at basal level. An obvious consequence of this significant occupancy is that the ligand-receptor model parameters, usually estimated by a model that does not take into account the endogenous ligand (EL) kinetics, can be significantly biased. In the current work, the authors studied the biases obtained by using the multiinjection approach. The results showed that in the classical ligand-receptor model, the receptor concentration is correctly estimated and that only the apparent affinity is biased by not taking the EL into account. At present, all absolute quantifications of the EL have been obtained through pharmacologic manipulation of the endogenous transmitter concentration, which is often too invasive a method to be used in patients. A theoretical reasoning showed that a noninvasive approach is necessarily based on both the apparent affinity measurement and on a multiregion approach. The correlation between the receptor concentration and the apparent affinity, previously observed with some ligands, verifies these two conditions; thus, the authors suggest that this correlation could be the result of the EL effect. To test this assumption experimentally, the effect of reserpine-induced dopamine depletion on the interactions between the D2 receptor sites and the FLB 457 is studied. With untreated baboons, the apparent FLB 457 affinity was smaller in the receptor-rich regions (striatum) than in the receptor-poor regions. This discrepancy disappeared after dopamine depletion, strongly suggesting that this affinity difference was related to the EL effect. Therefore, the purpose of the current study was to test the ability to quantify the EL based on the observed correlation between the receptor concentration and the apparent affinity. This approach offers a method for estimating the percentage of receptor sites occupied by the EL and, if its affinity is known, the free EL concentration. From the data obtained using FLB 457 with baboons, the authors found that approximately 53% of the D2 receptor sites are occupied by dopamine in the striatum and that the free dopamine concentration is approximately 120 nmol/L at basal level. This approach is transferable to patients, because the experimental data are obtained without pharmacologically induced modification of the EL.
Collapse
Affiliation(s)
- J Delforge
- Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France
| | | | | | | | | |
Collapse
|
34
|
Pike VW, Halldin C, Wikström H, Marchais S, McCarron JA, Sandell J, Nowicki B, Swahn CG, Osman S, Hume SP, Constantinou M, Andrée B, Farde L. Radioligands for the study of brain 5-HT(1A) receptors in vivo--development of some new analogues of way. Nucl Med Biol 2000; 27:449-55. [PMID: 10962249 DOI: 10.1016/s0969-8051(00)00110-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
[Carbonyl-(11)C]WAY-100635 (WAY) has proved to be a very useful radioligand for the imaging of brain 5-HT(1A) receptors in human brain in vivo with positron emission tomography (PET). WAY is now being applied widely for clinical research and drug development. However, WAY is rapidly cleared from plasma and is also rapidly metabolised. A comparable radioligand, with a higher and more sustained delivery to brain, is desirable since these properties might lead to better biomathematical modelling of acquired PET data. There are also needs for other types of 5-HT(1A) receptor radioligands, for example, ligands sensitive to elevated serotonin levels, ligands labelled with longer-lived fluorine-18 for distribution to "satellite" PET centres, and ligands labelled with iodine-123 for single photon emission computerised tomography (SPECT) imaging. Here we describe our progress toward these aims through the exploration of WAY analogues, including the development of [carbonyl-(11)C]desmethyl-WAY (DWAY) as a promising, more brain-penetrant radioligand for PET imaging of human 5-HT(1A) receptors, and (pyridinyl-6-halo)-analogues as promising leads for the development of radiohalogenated ligands.
Collapse
Affiliation(s)
- V W Pike
- MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, London W12 ONN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Endres CJ, Carson RE. Assessment of dynamic neurotransmitter changes with bolus or infusion delivery of neuroreceptor ligands. J Cereb Blood Flow Metab 1998; 18:1196-210. [PMID: 9809509 DOI: 10.1097/00004647-199811000-00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To describe the effect of endogenous dopamine on [11C]raclopride binding, we previously extended the conventional receptor ligand model to include dynamic changes in neurotransmitter concentration. Here, we apply the extended model in simulations of neurotransmitter competition studies using either bolus or bolus-plus-infusion (B/I) tracer delivery. The purpose of this study was (1) to develop an interpretation of the measured change in tracer binding in terms of underlying neurotransmitter changes, and (2) to determine tracer characteristics that maximize sensitivity to neurotransmitter release. A wide range of kinetic parameters was tested based on existing reversible positron emission tomography tracers. In simulations of bolus studies, the percent reduction in distribution volume (deltaV) caused by a neurotransmitter pulse was calculated. For B/I simulations, equilibrium was assumed, and the maximum percent reduction in tissue concentration (deltaC) after neurotransmitter release was calculated. Both deltaV and deltaC were strongly correlated with the integral of the neurotransmitter pulse. The values of deltaV and deltaC were highly dependent on the kinetic properties of the tracer in tissue, and deltaV could be characterized in terms of the tissue free tracer concentration. The value of deltaV was typically maximized for binding potentials of approximately 3 to 10, with deltaC being maximized at binding potentials of approximately 1 to 2. Both measures increased with faster tissue-to-blood clearance of tracer and lower nonspecific binding. These simulations provide a guideline for interpreting the results of neurotransmitter release studies and for selecting radiotracers and experimental design.
Collapse
Affiliation(s)
- C J Endres
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892-1180, USA
| | | |
Collapse
|
36
|
Weckesser M, Fixmann A, Holschbach M, Müller-Gärtner HW. Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors. Nucl Med Biol 1998; 25:777-80. [PMID: 9863566 DOI: 10.1016/s0969-8051(98)00039-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[125I]iododexetimide in a dose-dependent manner. A concentration of 500 microM acetylcholine inhibited 50% of total specific 4-[125I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 microM acetylcholine solution reduced total specific 4-[125I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[125I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[123I]iododexetimide. Conversely, 4-[123I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography.
Collapse
Affiliation(s)
- M Weckesser
- Institute of Medicine, Research Center Jülich, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Studies in animals implicate endogenous release of opioid peptides as a mechanism for terminating partial and generalised seizures. To localise dynamic changes in opioid neurotransmission associated with partial seizures and higher cognitive function, we investigated the release of endogenous opioids in patients with reading-induced seizures compared with healthy controls. METHODS Five patients who had reading epilepsy and six controls had 11C-diprenorphine (DPN) positron-emission-tomography (PET) scans while reading a string of symbols (baseline) or a scientific paper (activation). Statistical parametric mapping was used to find areas with differences in opioid-receptor binding. FINDINGS On activation scans mean 11C-DPN binding to opioid receptors was significantly lower (p<0.05 corrected for multiple non-independent comparisons) in the left parieto-temporo-occipital cortex (Brodmann area 37) in reading-epilepsy patients compared with controls. INTERPRETATION These findings suggest that opioid-like substances are involved in the termination of reading-induced seizures.
Collapse
Affiliation(s)
- M J Koepp
- MRC Cyclotron Unit Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
38
|
Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM. Evidence for striatal dopamine release during a video game. Nature 1998; 393:266-8. [PMID: 9607763 DOI: 10.1038/30498] [Citation(s) in RCA: 620] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dopaminergic neurotransmission may be involved in learning, reinforcement of behaviour, attention, and sensorimotor integration. Binding of the radioligand 11C-labelled raclopride to dopamine D2 receptors is sensitive to levels of endogenous dopamine, which can be released by pharmacological challenge. Here we use 11C-labelled raclopride and positron emission tomography scans to provide evidence that endogenous dopamine is released in the human striatum during a goal-directed motor task, namely a video game. Binding of raclopride to dopamine receptors in the striatum was significantly reduced during the video game compared with baseline levels of binding, consistent with increased release and binding of dopamine to its receptors. The reduction in binding of raclopride in the striatum positively correlated with the performance level during the task and was greatest in the ventral striatum. These results show, to our knowledge for the first time, behavioural conditions under which dopamine is released in humans, and illustrate the ability of positron emission tomography to detect neurotransmitter fluxes in vivo during manipulations of behaviour.
Collapse
Affiliation(s)
- M J Koepp
- MRC Cyclotron Unit, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morris E, Bonab A, Chefer S, London E. Comparison of Quantitative Measures of Neurotransmitter Changes Based on PET: A Simulation Study. Neuroimage 1998. [DOI: 10.1016/s1053-8119(18)31934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Andersson JL. Within-study repeated measurements to increase sensitivity for positron emission tomography activation studies. J Cereb Blood Flow Metab 1998; 18:319-31. [PMID: 9498849 DOI: 10.1097/00004647-199803000-00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel data collection strategy was examined for positron emission tomography activation studies. After an injection of H2(15)O, data were collected in multiple 10-second frames and analyzed with a blocked analysis of variance design in which blocking was performed across frames. An estimate of residual error based on a larger number of statistically independent measurements was hence obtained and the statistical significance of detected differences increased. The feasibility of the suggested scheme was demonstrated on phantom data, where higher significance was achieved when dividing the same data into more frames. The method was further used for single-subject analysis of data from eight human subjects participating in a study on visceral sensation. The results show agreement with the group-based analysis and indicate that it is possible to detect areas with changes of 10 mL/(min x 100 mL) or more in single subjects. The residuals from the statistical analysis were analyzed and did not indicate any violations of the assumptions of statistical independence between frames, normal distribution of errors, and homoscedasticity across blocks. The specificity was worse than the theoretically expected 0.05, but this may have resulted from lack of complete control over the experimental situation rather than the statistical method per se.
Collapse
Affiliation(s)
- J L Andersson
- Uppsala University PET-Centre, and Subfemtomole Biorecognition Project, Sweden
| |
Collapse
|
41
|
Vocci FJ, London ED. Assessment of neurotoxicity from potential medications for drug abuse: ibogaine testing and brain imaging. Ann N Y Acad Sci 1997; 820:29-39; discussion 39-40. [PMID: 9237447 DOI: 10.1111/j.1749-6632.1997.tb46187.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
New technologies utilized for monitoring brain function can be more sensitive in the assessment of desired or undesired pharmacological effects than can clinical examination. Nonetheless, careful case-by-case analysis is required to determine to what extent a change detected with a sensitive imaging modality will have clinical significance. Whereas in some instances the technology may suggest a subclinical condition years before clinical signs develop, in other instances changes seen may be compensated for through system reserves, redundancy, or plasticity. Furthermore, simultaneous application of several assay instruments, including behavioral, electrophysiological, and nuclear medicine approaches, may be appropriate and useful for establishing correlations between changes in specific aspects of brain function and amelioration of a disease (drug abuse disorder) or its sequelae. In the example of ibogaine, a testing strategy was developed to assess human subjects for possible changes in cerebellar function (that were suggested by preclinical findings indicating subtle damage). Thus, subjects may be tested for subclinical alterations during and immediately following a clinical trial. This "harbinger of toxicity" approach would provide clinicians the critical data necessary for appropriate follow-up of subjects as well as the propriety of continuance of the clinical trials within the ibogaine project.
Collapse
Affiliation(s)
- F J Vocci
- Medications Development Division, National Institute on Drug Abuse, Rockville, Maryland 20857, USA.
| | | |
Collapse
|
42
|
Friston KJ, Malizia AL, Wilson S, Cunningham VJ, Jones T, Nutt DJ. Analysis of dynamic radioligand displacement or "activation" studies. J Cereb Blood Flow Metab 1997; 17:80-93. [PMID: 8978390 DOI: 10.1097/00004647-199701000-00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a simple way of assessing dynamic or time-dependent changes in displacement during single-subject radioligand positron emission tomography (PET) activation studies. The approach is designed to facilitate dynamic activation studies using selective radioligands. These studies are, in principle, capable of characterising functional neurochemistry by analogy with the study of functional neuroanatomy using rCBF activation studies. The proposed approach combines time-dependent compartmental models of tracer kinetics and the general linear model used in statistical parametric mapping. This provides for a comprehensive, voxel-based and data-led assessment of regionally specific effects. The statistical model proposed in this paper is predicated on a single-compartment model extended to allow for time-dependent changes in kinetics. We have addressed the sensitivity and specificity of the analysis, as it would be used operationally, by applying the analysis to 11C-Flumazenil dynamic displacement studies. The activation used in this demonstration study was a pharmacological (i.v. midazolam) challenge, 30 min after administration of the tracer. We were able to demonstrate, and make statistical inferences about, regional increases in k2 (or decreases in the volume of distribution) in prefrontal and other cortical areas.
Collapse
Affiliation(s)
- K J Friston
- Wellcome Department of Cognitive Neurology, National Hospital, London, UK
| | | | | | | | | | | |
Collapse
|