1
|
Dalski A, Kular H, Jorgensen JG, Grill-Spector K, Grotheer M. Both mOTS-words and pOTS-words prefer emoji stimuli over text stimuli during a lexical judgment task. Cereb Cortex 2024; 34:bhae339. [PMID: 39191663 PMCID: PMC11349430 DOI: 10.1093/cercor/bhae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual word form area in the occipitotemporal sulcus (here OTS-words) is crucial for reading and shows a preference for text stimuli. We hypothesized that this text preference may be driven by lexical processing. Hence, we performed three fMRI experiments (n = 15), systematically varying participants' task and stimulus, and separately evaluated middle mOTS-words and posterior pOTS-words. Experiment 1 contrasted text with other visual stimuli to identify both OTS-words subregions. Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words as texts or emojis. In experiment 3, participants performed a lexical or color judgment task on compound words in text or emoji format. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both formats. In experiment 3, both subregions showed higher responses to compound words in emoji format. Moreover, mOTS-words showed higher responses during the lexical judgment task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode stimulus and distributed responses in mOTS-words encode stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, Gutenbergstraße 18, Marburg 35032, Germany
- Center for Mind, Brain and Behavior—CMBB, Philipps-Universität Marburg, Justus-Liebig-Universität Giessen and Technische Universität Darmstadt Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Holly Kular
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
| | - Julia G Jorgensen
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, 288 Stanford Drive, Stanford, CA 94305, United States
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Gutenbergstraße 18, Marburg 35032, Germany
- Center for Mind, Brain and Behavior—CMBB, Philipps-Universität Marburg, Justus-Liebig-Universität Giessen and Technische Universität Darmstadt Hans-Meerwein-Straße 6, Marburg 35032, Germany
| |
Collapse
|
2
|
Rifi Z, Harary M, Walshaw PD, Frew AJ, Everson RG, Fallah A, Salamon N, Kim W. Functional magnetic resonance imaging (fMRI) as adjunct for planning laser interstitial thermal therapy (LITT) near eloquent structures. Acta Neurochir (Wien) 2024; 166:66. [PMID: 38316692 PMCID: PMC10844152 DOI: 10.1007/s00701-024-05970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
LITT is a minimally-invasive laser ablation technique used to treat a wide variety of intracranial lesions. Difficulties performing intraoperative mapping have limited its adoption for lesions in/near eloquent regions. In this institutional case series, we demonstrate the utility of fMRI-adjunct planning for LITT near language or motor areas. Six out of 7 patients proceeded with LITT after fMRI-based tractography determined adequate safety margins for ablation. All underwent successful ablation without new or worsening postoperative symptoms requiring adjuvant corticosteroids, including those with preexisting deficits. fMRI is an easily accessible adjunct which may potentially reduce chances of complications in LITT near eloquent structures.
Collapse
Affiliation(s)
- Ziad Rifi
- David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Patricia D Walshaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Andrew J Frew
- Department of Neurosurgery, University of California, Los Angeles, USA
- Department of Radiology, University of California, Los Angeles, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Noriko Salamon
- Department of Radiology, University of California, Los Angeles, USA
| | - Won Kim
- Department of Neurosurgery, University of California, Los Angeles, USA.
| |
Collapse
|
3
|
Liuzzi AG, Meersmans K, Peeters R, De Deyne S, Dupont P, Vandenberghe R. Semantic representations in inferior frontal and lateral temporal cortex during picture naming, reading, and repetition. Hum Brain Mapp 2024; 45:e26603. [PMID: 38339900 PMCID: PMC10836176 DOI: 10.1002/hbm.26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Reading, naming, and repetition are classical neuropsychological tasks widely used in the clinic and psycholinguistic research. While reading and repetition can be accomplished by following a direct or an indirect route, pictures can be named only by means of semantic mediation. By means of fMRI multivariate pattern analysis, we evaluated whether this well-established fundamental difference at the cognitive level is associated at the brain level with a difference in the degree to which semantic representations are activated during these tasks. Semantic similarity between words was estimated based on a word association model. Twenty subjects participated in an event-related fMRI study where the three tasks were presented in pseudo-random order. Linear discriminant analysis of fMRI patterns identified a set of regions that allow to discriminate between words at a high level of word-specificity across tasks. Representational similarity analysis was used to determine whether semantic similarity was represented in these regions and whether this depended on the task performed. The similarity between neural patterns of the left Brodmann area 45 (BA45) and of the superior portion of the left supramarginal gyrus correlated with the similarity in meaning between entities during picture naming. In both regions, no significant effects were seen for repetition or reading. The semantic similarity effect during picture naming was significantly larger than the similarity effect during the two other tasks. In contrast, several regions including left anterior superior temporal gyrus and left ventral BA44/frontal operculum, among others, coded for semantic similarity in a task-independent manner. These findings provide new evidence for the dynamic, task-dependent nature of semantic representations in the left BA45 and a more task-independent nature of the representational activation in the lateral temporal cortex and ventral BA44/frontal operculum.
Collapse
Affiliation(s)
- Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Radiology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| | - Simon De Deyne
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Neurology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
4
|
Comstock L. The role of research design in the reproducibility of L1 and L2 language networks: A review of bilingual neuroimaging meta-analyses. BRAIN AND LANGUAGE 2024; 249:105377. [PMID: 38171275 DOI: 10.1016/j.bandl.2023.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Meta-analyses are a method by which to increase the statistical power and generalizability of neuroimaging findings. In the neurolinguistics literature, meta-analyses have the potential to substantiate hypotheses about L1 and L2 processing networks and to reveal differences between the two that may escape detection in individual studies. Why then is there so little consensus between the reported findings of even the most recently published and most highly powered meta-analyses? Limitations in the literature, such as the absence of a common method to define and measure descriptive categories (e.g., proficiency level, degree of language exposure, age of acquisition, etc.) are often cited. An equally plausible explanation lies in the technical details of how individual meta-analyses are conducted. This paper provides a review of recent meta-analyses, with a discussion of their methodological choices and the possible effect those choices may have on the reported findings.
Collapse
Affiliation(s)
- Lindy Comstock
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Dalski A, Kular H, Jorgensen JG, Grill-Spector K, Grotheer M. Both mOTS-words and pOTS-words prefer emoji stimuli over text stimuli during a reading task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.565794. [PMID: 37986766 PMCID: PMC10659328 DOI: 10.1101/2023.11.07.565794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The visual word form area in the occipitotemporal sulcus (OTS), here referred to as OTS-words, responds more strongly to text than other visual stimuli and is crucial for reading. We hypothesized, that this text preference may be driven by a preference for reading tasks, as in most prior fMRI studies only the text stimuli were readable. Hence, we performed three fMRI experiments (N=15) and systematically varied the participant's task and the stimulus, investigating mOTS-words and pOTS-words subregions. In experiment 1, we contrasted text stimuli with non-readable visual stimuli (faces, limbs, houses, objects). Experiment 2 utilized an fMRI adaptation paradigm, presenting compound words in text or emoji formats. In experiment 3, participants performed a reading or a color task on compound words in text or emoji format. Using experiment 1 data, we identified mOTS-words and pOTS-words by contrasting texts with non-readable stimuli. In experiment 2, pOTS-words, but not mOTS-words, showed fMRI adaptation for compound words in both text and emoji formats. In experiment 3, surprisingly, both subregions showed higher responses to compound words in emoji than text format. Moreover, mOTS-words showed higher responses during the reading than the color task and a task-stimulus interaction. Multivariate analyses revealed that distributed responses in pOTS-words encode the visual stimulus, while responses in mOTS-words encode both stimulus and task. Together, our findings suggest that the function of the OTS-words subregions goes beyond the specific visual processing of text and that these regions are flexibly recruited whenever semantic meaning needs to be assigned to visual input.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg 35032, Germany
| | - Holly Kular
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg 35039, Germany
- Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg 35032, Germany
| |
Collapse
|
6
|
Gkiatis K, Garganis K, Karanasiou I, Chatzisotiriou A, Zountsas B, Kondylidis N, Matsopoulos GK. Independent component analysis: a reliable alternative to general linear model for task-based fMRI. Front Psychiatry 2023; 14:1214067. [PMID: 37663605 PMCID: PMC10468574 DOI: 10.3389/fpsyt.2023.1214067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) is a valuable tool for the presurgical evaluation of patients undergoing neurosurgeries. Although many pre-processing steps have been modified according to advances in recent years, statistical analysis has remained largely the same since the first days of fMRI. In this study, we examined the ability of Independent Component Analysis (ICA) to separate the activation of a language task in fMRI, and we compared it with the results of the General Lineal Model (GLM). Methods Sixty patients undergoing evaluation for brain surgery due to various brain lesions and/or epilepsy and 20 control subjects completed an fMRI language mapping protocol that included three tasks, resulting in 259 fMRI scans. Depending on brain lesion characteristics, patients were allocated to (1) static/chronic not-expanding lesions (Group 1) and (2) progressive/expanding lesions (Group 2). GLM and ICA statistical maps were evaluated by fMRI experts to assess the performance of each technique. Results In the control group, ICA and GLM maps were similar without any superiority of either technique. In Group 1 and Group 2, ICA performed statistically better than GLM, with a p-value of < 0.01801 and < 0.0237, respectively. This indicated that ICA performs as well as GLM when the subjects are able to cooperate well (less movement, good task performance), but ICA could outperform GLM in the patient groups. When both techniques were combined, 240 out of 259 scans produced reliable results, showing that the sensitivity of task-based fMRI can be increased when both techniques are integrated with the clinical setup. Conclusion ICA may be slightly more advantageous, compared to GLM, in patients with brain lesions, across the range of pathologies included in our population and independent of symptoms chronicity. Our findings suggest that GLM analysis may be more susceptible to brain activity perturbations induced by a variety of lesions or scanner-induced artifacts due to motion or other factors. In our research, we demonstrated that ICA is able to provide fMRI results that can be used in surgery, taking into account patient and task-wise aspects that differ from those when fMRI is used in research.
Collapse
Affiliation(s)
- Kostakis Gkiatis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Epilepsy Monitoring Department, St. Luke's Hospital, Thessaloniki, Greece
| | - Kyriakos Garganis
- Epilepsy Monitoring Department, St. Luke's Hospital, Thessaloniki, Greece
| | - Irene Karanasiou
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Department of Mathematic and Engineering Sciences, Hellenic Military Academy, Athens, Greece
| | - Athanasios Chatzisotiriou
- Department of Neurosurgery, St. Luke's Hospital, Thessaloniki, Greece
- Department of Physiology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Basilios Zountsas
- Epilepsy Monitoring Department, St. Luke's Hospital, Thessaloniki, Greece
- Department of Neurosurgery, St. Luke's Hospital, Thessaloniki, Greece
| | | | - George K. Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
7
|
Soroush PZ, Herff C, Ries SK, Shih JJ, Schultz T, Krusienski DJ. The nested hierarchy of overt, mouthed, and imagined speech activity evident in intracranial recordings. Neuroimage 2023; 269:119913. [PMID: 36731812 DOI: 10.1016/j.neuroimage.2023.119913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better understanding and modeling of imagined speech processes are required. The present study uses intracranial brain recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined speech modes, representing various degrees of decreasing behavioral output. Speech activity detection models are constructed using spatial, spectral, and temporal brain activity features, and the features and model performances are characterized and compared across the three degrees of behavioral output. The results indicate the existence of a hierarchy in which the relevant channels for the lower behavioral output modes form nested subsets of the relevant channels from the higher behavioral output modes. This provides important insights for the elusive goal of developing more effective imagined speech decoding models with respect to the better-established overt speech decoding counterparts.
Collapse
|
8
|
Jia F, Liu CY, Tan LH, Siok WT. Lifespan developmental changes in neural substrates and functional connectivity for visual semantic processing. Cereb Cortex 2022; 33:4714-4728. [PMID: 36130092 DOI: 10.1093/cercor/bhac374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Human learning and cognitive functions change with age and experience, with late-developed complex cognitive functions, particularly those served by the prefrontal cortex, showing more age-dependent variance. Reading as a complex process of constructing meaning from print uses the left prefrontal cortex and may show a similar aging pattern. In this study, we delineated the lifespan developmental changes in the neural substrates and functional connectivity for visual semantic processing from childhood (age 6) to late adulthood (age 74). Different from previous studies that reported aging as a form of activation or neuronal changes, we examined additionally how the functional connectivity networks changed with age. A cohort of 122 Chinese participants performed semantic and font-size judgment tasks during functional magnetic resonance imaging. Although a common left-lateralized neural system including the left mid-inferior prefrontal cortex was recruited across all participants, the effect of age, or reading experience, is evident as 2 contrastive developmental patterns: a declining trend in activation strength and extent and an increasing trend in functional connections of the network. This study suggests that visual semantic processing is not prone to cognitive decline, and that continuous reading until old age helps strengthen the functional connections of reading-related brain regions.
Collapse
Affiliation(s)
- Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan 250022, Shandong, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| | - Chun Yin Liu
- Department of Linguistics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Li Hai Tan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518107, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Shenzhen 518020, China.,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266071, Shandong, China
| | - Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
9
|
Guida P, Michiels M, Redgrave P, Luque D, Obeso I. An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits. Neurosci Biobehav Rev 2022; 141:104826. [PMID: 35963543 DOI: 10.1016/j.neubiorev.2022.104826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
The dorsolateral striatum plays a critical role in the acquisition and expression of stimulus-response habits that are learned in experimental laboratories. Here, we use meta-analytic procedures to contrast the neural circuits activated by laboratory-acquired habits with those activated by stimulus-response behaviours acquired in everyday-life. We confirmed that newly learned habits rely more on the anterior putamen with activation extending into caudate and nucleus accumbens. Motor and associative components of everyday-life habits were identified. We found that motor-dominant stimulus-response associations developed outside the laboratory primarily engaged posterior dorsal putamen, supplementary motor area (SMA) and cerebellum. Importantly, associative components were also represented in the posterior putamen. Thus, common neural representations for both naturalistic and laboratory-based habits were found in the left posterior and right anterior putamen. These findings suggest a partial common striatal substrate for habitual actions that are performed predominantly by stimulus-response associations represented in the posterior striatum. The overlapping neural substrates for laboratory and everyday-life habits supports the use of both methods for the analysis of habitual behaviour.
Collapse
Affiliation(s)
- Pasqualina Guida
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Mario Michiels
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - David Luque
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Psicología Básica, Universidad de Málaga, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Psychobiology department, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Boutsen F, Park E, Dvorak JD. Reading Warm-Up, Reading Skill, and Reading Prosody When Reading the My Grandfather Passage: An Exploratory Study Born Out of the Motor Planning Theory of Prosody and Reading Prosody Research. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:2047-2063. [PMID: 35640099 DOI: 10.1044/2022_jslhr-21-00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE The Motor Planning Theory of Prosody and reading prosody research indicate that "out of the blue" oral reading, as practiced in clinical and research settings, invokes surface rather than covert prosody, particularly when readers are recorded, less skilled, and/or speech impaired. Warm-up is not considered in passage reading for motor-speech assessment. We report on a preliminary study aimed to investigate the effect of warm-up on reading prosody in two conditions: silent reading alone and reading "out of the blue" followed by silent reading. A secondary aim of the study was to examine the effect of reading skill on reading prosody. METHOD Twenty-one monolingual, English-speaking volunteers were recorded reading the My Grandfather Passage (GP) while their eye movements were tracked. Participants were randomly assigned to one of two reading conditions: (a) silent-oral (SO) and (b) oral-silent-oral (OSO). In the SO condition, participants read the GP silently as a warm-up for the subsequent oral reading. In the OSO condition, participants first read the GP aloud ("out of the blue") and then read the same passage silently with the instruction to do this in preparation for a second oral reading. Reading skill was quantified using eye-voice span and Wide Range Achievement Test-Fourth Edition testing. Reading prosody was evaluated using pause indexes, the Acoustic Multidimensional Prosody Index, and speech rate. CONCLUSIONS One oral reading before a silent reading but not a silent reading alone before oral reading was shown to affect reading prosody. In terms of reading skill, results indicate that predictive associations patterned differently in the reading conditions explored, suggesting different underlying skill sets.
Collapse
Affiliation(s)
- Frank Boutsen
- Department of Communication Disorders, New Mexico State University, Las Cruces
| | - Eunsun Park
- Department of Communication Disorders and Sciences, William Paterson University, Wayne, NJ
| | - Justin D Dvorak
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
11
|
Gkiatis K, Garganis K, Benjamin CF, Karanasiou I, Kondylidis N, Harushukuri J, Matsopoulos GK. Standardization of presurgical language fMRI in Greek population: Mapping of six critical regions. Brain Behav 2022; 12:e2609. [PMID: 35587046 PMCID: PMC9226851 DOI: 10.1002/brb3.2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mapping the language system has been crucial in presurgical evaluation especially when the area to be resected is near relevant eloquent cortex. Functional magnetic resonance imaging (fMRI) proved to be a noninvasive alternative of Wada test that can account not only for language lateralization but also for localization when appropriate tasks and MRI sequences are being used. The tasks utilized during the fMRI acquisition are playing a crucial role as to which areas will be activated. Recent studies demonstrated that key language regions exist outside the classical model of "Wernicke-Lichtheim-Geschwind," but sensitive tasks must take place in order to be revealed. On top of that, the tasks should be in mother tongue for appropriate language mapping to be possible. METHODS For that reason, in this study, we adopted an English protocol that can reveal six language critical regions even in clinical setups and we translated it into Greek to prove its efficacy in Greek population. Twenty healthy right-handed volunteers were recruited and performed the fMRI acquisition in a standardized manner. RESULTS Results demonstrated that all six language critical regions were activated in all subjects as well as the group mean map. Furthermore, activations were found in the thalamus, the caudate, and the contralateral cerebellum. CONCLUSION In this study, we standardized an fMRI protocol in Greek and proved that it can reliably activate six language critical regions. We have validated its efficacy for presurgical language mapping in Greek patients capable to be adopted in clinical setup.
Collapse
Affiliation(s)
- Kostakis Gkiatis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.,Epilepsy Monitoring Unit, St. Luke's Hospital, Thessaloniki, Greece
| | | | - Christopher F Benjamin
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irene Karanasiou
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jean Harushukuri
- Epilepsy Monitoring Unit, St. Luke's Hospital, Thessaloniki, Greece
| | - George K Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
12
|
Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. CHILDREN 2022; 9:children9060782. [PMID: 35740719 PMCID: PMC9221994 DOI: 10.3390/children9060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have associated brain changes in children with future reading and language skills, but few studies have investigated the association between language skills and white matter structure in preschool-aged children. Using 208 data sets acquired in 73 healthy children aged 2–7 years, we investigated the relationship between developmental brain microstructure and phonological processing ability as measured using their phonological processing raw score (PPRS). The correlation analysis showed that across the whole age group, with increasing age, PPRS increased, fractional anisotropy (FA) of the internal capsule and inferior fronto-occipital fasciculus and some other regions increased, and mean diffusivity (MD) of the corpus callosum and internal capsule and some other regions decreased. The results of the mediation analysis suggest that increased FA may be the basis of phonological processing ability development during this period, and the increased number of fiber connections between the right inferior parietal lobule and right supramarginal gyrus may be a key imaging feature of phonological processing ability development. Our study reflects the changes in brain microstructure and contributes to understanding the underlying neural mechanisms of language development in preschool children.
Collapse
|
13
|
Bishop J. Exploring the Similarity Between Implicit and Explicit Prosody: Prosodic Phrasing and Individual Differences. LANGUAGE AND SPEECH 2021; 64:873-899. [PMID: 33238799 DOI: 10.1177/0023830920972732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, work carried out in the context of the implicit prosody hypothesis (IPH) has called into question the assumption that implicit (i.e., silently generated) prosody and explicit (overtly produced) prosody are similar in form. Focusing on prosodic phrasing, the present study explored this issue using an individual differences approach, and using methods that do not rely on the sentence comprehension tests characteristic of work within the IPH program. A large group of native English speakers participated in a production experiment intended to identify individual differences in average prosodic phrase length, phonologically defined. We then explored whether these (explicit) prosodic differences were related to two other kinds of variation, each with a connection to implicit prosody. First, we tested whether individual differences in explicit prosodic phrase length were predicted by individual differences in working memory capacity, a relationship that has been established for implicit prosody. Second, we explored whether participants' explicit prosodic phrase lengths were predictive of their behavior in a silent-reading task in which they had to identify their own implicit prosodic groupings. In both cases, the findings are argued to be consistent with a similarity between explicit and implicit prosody. First, participants with higher working memory capacity (as estimated by reading spans) were associated with longer prosodic phrases. Second, participants who produced longer explicit prosodic phrases in speech tended to report generating longer prosodic phrases in silent reading. Implications for the nature of implicit prosody, and how it can be studied, are discussed.
Collapse
Affiliation(s)
- Jason Bishop
- City University of New York (College of Staten Island & The Graduate Center), USA
| |
Collapse
|
14
|
Wanigatunga AA, Wang H, An Y, Simonsick EM, Tian Q, Davatzikos C, Urbanek JK, Zipunnikov V, Spira AP, Ferrucci L, Resnick SM, Schrack JA. Association Between Brain Volumes and Patterns of Physical Activity in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:1504-1511. [PMID: 33230557 PMCID: PMC8495900 DOI: 10.1093/gerona/glaa294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Larger brain volumes are often associated with more free-living physical activity (PA) in cognitively normal older adults. Yet, whether greater brain volumes are associated with more favorable (less fragmented) PA patterns, and whether this association is stronger than with total PA, remains unknown. METHODS Brain magnetic resonance imaging and wrist-worn accelerometer data were collected in 301 participants (mean age = 77 [SD = 7] years, 59% women) enrolled in the Baltimore Longitudinal Study of Aging. Linear regression models were fit to examine whether brain volumes (cc) were cross-sectionally associated with: (a) total daily PA minutes and (b) activity fragmentation (mean number of PA bouts / total PA minutes × 100). Sensitivity analyses were conducted by adjusting for counterpart PA variables (eg, fragmentation covariate included in the PA minutes model). RESULTS Greater white matter volumes in the parietal and temporal lobes were associated with higher daily PA minutes (2.6 [SE = 1.0] and 3.8 [0.9] min/day, respectively; p < .009 for both) after adjusting for demographics, behavioral factors, medical conditions, gait speed, apolipoprotein E e4 status, and intracranial volume. Greater temporal white matter volume was associated with lower fragmentation (-0.16% [0.05], p = .003). In sensitivity analyses, observed associations between brain volumes and daily PA minutes remained significant while associations with fragmentation no longer remained significant. CONCLUSIONS Our results suggest white matter brain structure in cognitively normal older adults is associated with the total amount of PA and, to a lesser extent, the PA accumulation patterns. More work is needed to elucidate the longitudinal relationship between brain structure and function and PA patterns with aging.
Collapse
Affiliation(s)
- Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, Maryland
- Center on Aging and Health, Johns Hopkins
University, Baltimore, Maryland
| | - Hang Wang
- Center on Aging and Health, Johns Hopkins
University, Baltimore, Maryland
| | - Yang An
- Intramural Research Program, National Institute on
Aging, Baltimore, Maryland
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on
Aging, Baltimore, Maryland
| | - Qu Tian
- Intramural Research Program, National Institute on
Aging, Baltimore, Maryland
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics,
University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacek K Urbanek
- Division of Geriatric Medicine, Johns Hopkins University
and Medical Institutions, Baltimore, Maryland
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health, Baltimore, Maryland
| | - Adam P Spira
- Center on Aging and Health, Johns Hopkins
University, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg
School of Public Health, Baltimore, Maryland
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on
Aging, Baltimore, Maryland
| | - Susan M Resnick
- Intramural Research Program, National Institute on
Aging, Baltimore, Maryland
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, Maryland
- Center on Aging and Health, Johns Hopkins
University, Baltimore, Maryland
| |
Collapse
|
15
|
Panachakel JT, Ramakrishnan AG. Decoding Covert Speech From EEG-A Comprehensive Review. Front Neurosci 2021; 15:642251. [PMID: 33994922 PMCID: PMC8116487 DOI: 10.3389/fnins.2021.642251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, many researchers have come up with different implementations of systems for decoding covert or imagined speech from EEG (electroencephalogram). They differ from each other in several aspects, from data acquisition to machine learning algorithms, due to which, a comparison between different implementations is often difficult. This review article puts together all the relevant works published in the last decade on decoding imagined speech from EEG into a single framework. Every important aspect of designing such a system, such as selection of words to be imagined, number of electrodes to be recorded, temporal and spatial filtering, feature extraction and classifier are reviewed. This helps a researcher to compare the relative merits and demerits of the different approaches and choose the one that is most optimal. Speech being the most natural form of communication which human beings acquire even without formal education, imagined speech is an ideal choice of prompt for evoking brain activity patterns for a BCI (brain-computer interface) system, although the research on developing real-time (online) speech imagery based BCI systems is still in its infancy. Covert speech based BCI can help people with disabilities to improve their quality of life. It can also be used for covert communication in environments that do not support vocal communication. This paper also discusses some future directions, which will aid the deployment of speech imagery based BCI for practical applications, rather than only for laboratory experiments.
Collapse
Affiliation(s)
- Jerrin Thomas Panachakel
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
16
|
Jasińska KK, Shuai L, Lau ANL, Frost S, Landi N, Pugh KR. Functional connectivity in the developing language network in 4-year-old children predicts future reading ability. Dev Sci 2021; 24:e13041. [PMID: 33032375 PMCID: PMC8186432 DOI: 10.1111/desc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
Understanding how pre-literate children's language abilities and neural function relate to future reading ability is important for identifying children who may be at-risk for reading problems. Pre-literate children are already proficient users of spoken language and their developing brain networks for language become highly overlapping with brain networks that emerge during literacy acquisition. In the present longitudinal study, we examined language abilities, and neural activation and connectivity within the language network in pre-literate children (mean age = 4.2 years). We tested how language abilities, brain activation, and connectivity predict children's reading abilities 1 year later (mean age = 5.2 years). At Time 1, children (n = 37) participated in a functional near infrared spectroscopy (fNIRS) experiment of speech processing (listening to words and pseudowords) and completed a standardized battery of language and cognitive assessments. At Time 2, children (n = 28) completed standardized reading assessments. Using psychophysiological interaction (PPI) analyses, we observed significant connectivity between the left IFG and right STG in pre-literate children, which was modulated by task (i.e., listening to words). Neural activation in left IFG and STG and increased task-modulated connectivity between the left IFG and right STG was predictive of multiple reading outcomes. Increased connectivity was associated later with increased reading ability.
Collapse
Affiliation(s)
- Kaja K. Jasińska
- Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
- Haskins Laboratories, New Haven, CT, USA
| | - Lan Shuai
- Haskins Laboratories, New Haven, CT, USA
| | - Airey N. L. Lau
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
| | | | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| | - Kenneth R. Pugh
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Stephan F, Saalbach H, Rossi S. Inner versus Overt Speech Production: Does This Make a Difference in the Developing Brain? Brain Sci 2020; 10:E939. [PMID: 33291489 PMCID: PMC7762104 DOI: 10.3390/brainsci10120939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
Studies in adults showed differential neural processing between overt and inner speech. So far, it is unclear whether inner and overt speech are processed differentially in children. The present study examines the pre-activation of the speech network in order to disentangle domain-general executive control from linguistic control of inner and overt speech production in 6- to 7-year-olds by simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Children underwent a picture-naming task in which the pure preparation of a subsequent speech production and the actual execution of speech can be differentiated. The preparation phase does not represent speech per se but it resembles the setting up of the language production network. Only the fNIRS revealed a larger activation for overt, compared to inner, speech over bilateral prefrontal to parietal regions during the preparation phase. Findings suggest that the children's brain can prepare the subsequent speech production. The preparation for overt and inner speech requires different domain-general executive control. In contrast to adults, the children´s brain did not show differences between inner and overt speech when a concrete linguistic content occurs and a concrete execution is required. This might indicate that domain-specific executive control processes are still under development.
Collapse
Affiliation(s)
- Franziska Stephan
- Department of Educational Psychology, Faculty of Education, University Leipzig, 04109 Leipzig, Germany;
- Leipzig Research Center for Early Child Development, 04109 Leipzig, Germany
- ICONE, Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Henrik Saalbach
- Department of Educational Psychology, Faculty of Education, University Leipzig, 04109 Leipzig, Germany;
- Leipzig Research Center for Early Child Development, 04109 Leipzig, Germany
| | - Sonja Rossi
- ICONE, Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Grechuta K, Rubio Ballester B, Espín Munné R, Usabiaga Bernal T, Molina Hervás B, Mohr B, Pulvermüller F, San Segundo RM, Verschure PFMJ. Multisensory cueing facilitates naming in aphasia. J Neuroeng Rehabil 2020; 17:122. [PMID: 32907594 PMCID: PMC7487671 DOI: 10.1186/s12984-020-00751-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Impaired naming is a ubiquitous symptom in all types of aphasia, which often adversely impacts independence, quality of life, and recovery of affected individuals. Previous research has demonstrated that naming can be facilitated by phonological and semantic cueing strategies that are largely incorporated into the treatment of anomic disturbances. Beneficial effects of cueing, whereby naming becomes faster and more accurate, are often attributed to the priming mechanisms occurring within the distributed language network. OBJECTIVE We proposed and explored two novel cueing techniques: (1) Silent Visuomotor Cues (SVC), which provided articulatory information of target words presented in the form of silent videos, and (2) Semantic Auditory Cues (SAC), which consisted of acoustic information semantically relevant to target words (ringing for "telephone"). Grounded in neurophysiological evidence, we hypothesized that both SVC and SAC might aid communicative effectiveness possibly by triggering activity in perceptual and semantic language regions, respectively. METHODS Ten participants with chronic non-fluent aphasia were recruited for a longitudinal clinical intervention. Participants were split into dyads (i.e., five pairs of two participants) and required to engage in a turn-based peer-to-peer language game using the Rehabilitation Gaming System for aphasia (RGSa). The objective of the RGSa sessions was to practice communicative acts, such as making a request. We administered SVCs and SACs in a pseudorandomized manner at the moment when the active player selected the object to be requested from the interlocutor. For the analysis, we compared the times from selection to the reception of the desired object between cued and non-cued trials. RESULTS Naming accuracy, as measured by a standard clinical scale, significantly improved for all stimuli at each evaluation point, including the follow-up. Moreover, the results yielded beneficial effects of both SVC and SAC cues on word naming, especially at the early intervention sessions when the exposure to the target lexicon was infrequent. CONCLUSIONS This study supports the efficacy of the proposed cueing strategies which could be integrated into the clinic or mobile technology to aid naming even at the chronic stages of aphasia. These findings are consistent with sensorimotor accounts of language processing, suggesting a coupling between language, motor, and semantic brain regions. TRIAL REGISTRATION NCT02928822 . Registered 30 May 2016.
Collapse
Affiliation(s)
- Klaudia Grechuta
- Institute for Bioengineering of Catalonia (IBEC), Av. d'Eduard Maristany 16, 08019, Barcelona, Spain
| | - Belén Rubio Ballester
- Institute for Bioengineering of Catalonia (IBEC), Av. d'Eduard Maristany 16, 08019, Barcelona, Spain
| | - Rosa Espín Munné
- Servei de Medicina Física i Rehabilitació de l'Hospital Univ. de Tarragona, 43-005, Tarragona, Spain
| | - Teresa Usabiaga Bernal
- Servei de Medicina Física i Rehabilitació de l'Hospital Univ. de Tarragona, 43-005, Tarragona, Spain
| | - Begoña Molina Hervás
- Servei de Medicina Física i Rehabilitació de l'Hospital Univ. de Tarragona, 43-005, Tarragona, Spain
| | - Bettina Mohr
- Charite Universitätsmedizin Berlin, 10-117, Berlin, Germany
| | - Friedemann Pulvermüller
- Freie University Berlin, Brain Language Laboratory, DPH, WE4, 14-195, Berlin, Germany
- Humboldt Universität, BSMB, 10-099, Berlin, Germany
- Einstein Center for Neurosciences, 10-117, Berlin, Germany
| | - Rosa Maria San Segundo
- Servei de Medicina Física i Rehabilitació de l'Hospital Univ. de Tarragona, 43-005, Tarragona, Spain
| | - Paul F M J Verschure
- Institute for Bioengineering of Catalonia (IBEC), Av. d'Eduard Maristany 16, 08019, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, 08-010, Barcelona, Spain.
| |
Collapse
|
19
|
Bosch-Bayard J, Girini K, Biscay RJ, Valdes-Sosa P, Evans AC, Chiarenza GA. Resting EEG effective connectivity at the sources in developmental dysphonetic dyslexia. Differences with non-specific reading delay. Int J Psychophysiol 2020; 153:135-147. [DOI: 10.1016/j.ijpsycho.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
20
|
Vissers CTWM, Tomas E, Law J. The Emergence of Inner Speech and Its Measurement in Atypically Developing Children. Front Psychol 2020; 11:279. [PMID: 32256423 PMCID: PMC7090223 DOI: 10.3389/fpsyg.2020.00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
Inner speech (IS), or the act of silently talking to yourself, occurs in humans regardless of their cultural and linguistic background, suggesting its key role in human cognition. The absence of overt articulation leads to methodological challenges to studying IS and its effects on cognitive processing. Investigating IS in children is particularly problematic due to cognitive demands of the behavioral tasks and age restrictions for collecting neurophysiological data [e.g., functional magnetic resonance imaging (fMRI) or electromyography (EMG)]; thus, the developmental aspects of IS remain poorly understood despite the long history of adult research. Studying developmental aspects of IS could shed light on the variability in types and amount of IS in adults. In addition, problems in mastering IS might account for neuropsychological deficits observed in children with neurodevelopmental conditions. For example, deviance in IS development might influence these children's general cognitive processing, including social cognition, executive functioning, and related social-emotional functioning. The aim of the present paper is to look at IS from a developmental perspective, exploring its theory and identifying experimental paradigms appropriate for preschool and early school-aged children in Anglophone and Russian literature. We choose these two languages because the original work carried out by Vygotsky on IS was published in Russian, and Russian scientists have continued to publish on this topic since his death. Since the 1960s, much of the experimental work in this area has been published in Anglophone journals. We discuss different measurements of IS phenomena, their informativeness about subtypes of IS, and their potential for studying atypical language development. Implications for assessing and stimulating IS in clinical populations are discussed.
Collapse
Affiliation(s)
- Constance Th W M Vissers
- Royal Dutch Kentalis, Sint-Michielsgestel, Netherlands.,Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Ekaterina Tomas
- National Research University - Higher School of Economics, Moscow, Russia
| | - James Law
- School of Education, Communication and Language Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Stephan F, Saalbach H, Rossi S. The Brain Differentially Prepares Inner and Overt Speech Production: Electrophysiological and Vascular Evidence. Brain Sci 2020; 10:E148. [PMID: 32143405 PMCID: PMC7139369 DOI: 10.3390/brainsci10030148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Speech production not only relies on spoken (overt speech) but also on silent output (inner speech). Little is known about whether inner and overt speech are processed differently and which neural mechanisms are involved. By simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), we tried to disentangle executive control from motor and linguistic processes. A preparation phase was introduced additionally to the examination of overt and inner speech directly during naming (i.e., speech execution). Participants completed a picture-naming paradigm in which the pure preparation phase of a subsequent speech production and the actual speech execution phase could be differentiated. fNIRS results revealed a larger activation for overt rather than inner speech at bilateral prefrontal to parietal regions during the preparation and at bilateral temporal regions during the execution phase. EEG results showed a larger negativity for inner compared to overt speech between 200 and 500 ms during the preparation phase and between 300 and 500 ms during the execution phase. Findings of the preparation phase indicated that differences between inner and overt speech are not exclusively driven by specific linguistic and motor processes but also impacted by inhibitory mechanisms. Results of the execution phase suggest that inhibitory processes operate during phonological code retrieval and encoding.
Collapse
Affiliation(s)
- Franziska Stephan
- Department of Educational Psychology, Faculty of Education, Leipzig University, 04109 Leipzig, Germany;
- Leipzig Research Center for Early Child Development, Leipzig University, 04109 Leipzig, Germany
| | - Henrik Saalbach
- Department of Educational Psychology, Faculty of Education, Leipzig University, 04109 Leipzig, Germany;
- Leipzig Research Center for Early Child Development, Leipzig University, 04109 Leipzig, Germany
| | - Sonja Rossi
- ICONE—Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Al-Fahad R, Yeasin M, Bidelman GM. Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions. J Neural Eng 2020; 17:016045. [PMID: 31822643 PMCID: PMC7004853 DOI: 10.1088/1741-2552/ab6040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Categorical perception (CP) is an inherent property of speech perception. The response time (RT) of listeners' perceptual speech identification is highly sensitive to individual differences. While the neural correlates of CP have been well studied in terms of the regional contributions of the brain to behavior, functional connectivity patterns that signify individual differences in listeners' speed (RT) for speech categorization is less clear. In this study, we introduce a novel approach to address these questions. APPROACH We applied several computational approaches to the EEG, including graph mining, machine learning (i.e., support vector machine), and stability selection to investigate the unique brain states (functional neural connectivity) that predict the speed of listeners' behavioral decisions. MAIN RESULTS We infer that (i) the listeners' perceptual speed is directly related to dynamic variations in their brain connectomics, (ii) global network assortativity and efficiency distinguished fast, medium, and slow RTs, (iii) the functional network underlying speeded decisions increases in negative assortativity (i.e., became disassortative) for slower RTs, (iv) slower categorical speech decisions cause excessive use of neural resources and more aberrant information flow within the CP circuitry, (v) slower responders tended to utilize functional brain networks excessively (or inappropriately) whereas fast responders (with lower global efficiency) utilized the same neural pathways but with more restricted organization. SIGNIFICANCE Findings show that neural classifiers (SVM) coupled with stability selection correctly classify behavioral RTs from functional connectivity alone with over 92% accuracy (AUC = 0.9). Our results corroborate previous studies by supporting the engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP using an entirely data-driven approach.
Collapse
Affiliation(s)
- Rakib Al-Fahad
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
23
|
Roine T, Roine U, Tokola A, Balk MH, Mannerkoski M, Åberg L, Lönnqvist T, Autti T. Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis. AJNR Am J Neuroradiol 2019; 40:2146-2153. [PMID: 31727742 DOI: 10.3174/ajnr.a6306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging are typically not visually apparent in children aged <10 years, we previously found significant microstructural abnormalities by using diffusion MR imaging. Therefore, we hypothesized that the structural connectivity networks would also be affected in the disease. MATERIALS AND METHODS We acquired diffusion MR imaging data from 14 children with juvenile neuronal ceroid lipofuscinosis (mean ± SD age, 9.6 ± 3.4 years; 10 boys) and 14 control subjects (mean ± SD age, 11.2 ± 2.3 years; 7 boys). A follow-up MR imaging was performed for 12 of the patients (mean ± SD age, 11.4 ± 3.2 years; 8 boys). We used graph theoretical analysis to investigate the global and local properties of the structural brain connectivity networks reconstructed with constrained spherical deconvolution-based whole-brain probabilistic tractography. RESULTS We found significantly increased characteristic path length (P = .003) and decreased degree (P = .003), which indicated decreased network integration and centrality in children with juvenile neuronal ceroid lipofuscinosis. The findings were similar for the follow-up MR imaging, and there were no significant differences between the two acquisitions of the patients. In addition, we found that the disease severity correlated negatively (P < .007) with integration, segregation, centrality, and small-worldness of the networks. Moreover, we found significantly (P < .0003) decreased local efficiency in the left supramarginal gyrus and temporal plane, and decreased strength in the right lingual gyrus. CONCLUSIONS We found significant global and local network alterations in juvenile neuronal ceroid lipofuscinosis that correlated with the disease severity and in areas related to the symptomatology.
Collapse
Affiliation(s)
- T Roine
- Radiology, Child Psychiatry (M.M.)
- Turku Brain and Mind Center (T.R.), University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering (T.R.), Aalto University School of Science, Espoo, Finland
| | - U Roine
- Radiology, Child Psychiatry (M.M.)
| | - A Tokola
- Radiology, Child Psychiatry (M.M.)
| | - M H Balk
- Radiology, Child Psychiatry (M.M.)
| | | | - L Åberg
- Department of Psychiatry (L.Å.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Lönnqvist
- Department of Child Neurology (T.L.), Children's Hospital, University of Helsinki and Helsinki University, Helsinki, Finland
| | - T Autti
- Radiology, Child Psychiatry (M.M.)
| |
Collapse
|
24
|
Geva S, Fernyhough C. A Penny for Your Thoughts: Children's Inner Speech and Its Neuro-Development. Front Psychol 2019; 10:1708. [PMID: 31474897 PMCID: PMC6702515 DOI: 10.3389/fpsyg.2019.01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Inner speech emerges in early childhood, in parallel with the maturation of the dorsal language stream. To date, the developmental relations between these two processes have not been examined. We review evidence that the dorsal language stream has a role in supporting the psychological phenomenon of inner speech, before considering pediatric studies of the dorsal stream's anatomical development and evidence for its emerging functional roles. We examine possible causal accounts of the relations between these two developmental processes and consider their implications for phylogenetic theories about the evolution of inner speech and the accounts of the ontogenetic relations between language and cognition.
Collapse
Affiliation(s)
- Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
25
|
Miao Q, Zhang G, Yan W, Liu B. Investigating the Brain Neural Mechanism when Signature Objects were Masked during a Scene Categorization Task using Functional MRI. Neuroscience 2018; 388:248-262. [PMID: 30056114 DOI: 10.1016/j.neuroscience.2018.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022]
Abstract
Objects play vital roles in scene categorization. Although a number of studies have researched on the neural responses during object and object-based scene recognition, few studies have investigated the neural mechanism underlying object-masked scene categorization. Here, we used functional magnetic resonance imaging (fMRI) to measure the changes in brain activations and functional connectivity (FC) while subjects performed a visual scene-categorization task with different numbers of 'signature objects' masked. The object-selective region in the lateral occipital complex (LOC) showed a decrease in activations and changes in FC with the default mode network (DMN), indicating changes in object attention after the masking of signature objects. Changes in top-down modulation effect were revealed in the FC from the dorsolateral prefrontal cortex (DLPFC) to LOC and the extrastriate visual cortex, possibly participating in conscious object recognition. The whole-brain analyses showed the participation of fronto-parietal network (FPN) in scene categorization judgment, and right DLPFC served as the core hub in this network. Another core hub was found in left middle temporal gyrus (MTG) and its connection with middle cingulate cortex (MCC), supramarginal gyrus (SMG) and insula might serve in the processing of motor response and the semantic relations between objects and scenes. Brain-behavior correlation analysis substantiated the contributions of the FC to the different processes in the object-masked scene-categorization tasks. Altogether, the results suggest that masking of objects significantly affected the object attention, cognitive demand, top-down modulation effect, and semantic judgment.
Collapse
Affiliation(s)
- Qiaomu Miao
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China
| | - Gaoyan Zhang
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China
| | - Weiran Yan
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China
| | - Baolin Liu
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Intelligent Technology and Systems, National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
26
|
Chivukula S, Pikul BK, Black KL, Pouratian N, Bookheimer SY. Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. BRAIN AND LANGUAGE 2018; 183:41-46. [PMID: 29783125 PMCID: PMC6499625 DOI: 10.1016/j.bandl.2018.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We evaluated plasticity in speech supplemental motor area (SMA) tissue in two patients using functional magnetic resonance imaging (fMRI), following resection of tumors in or associated with the dominant hemisphere speech SMA. Patient A underwent resection of a anaplastic astrocytoma NOS associated with the left speech SMA, experienced SMA syndrome related mutism postoperatively, but experienced full recovery 14 months later. FMRI performed 32 months after surgery demonstrated a migration of speech SMA to homologous contralateral hemispheric regional tissue. Patient B underwent resection of a oligodendroglioma NOS in the left speech SMA, and postoperatively experienced speech hesitancy, latency and poor fluency, which gradually resolved over 18 months. FMRI performed at 64 months after surgery showed a reorganization of speech SMA to the contralateral hemisphere. These data support the hypothesis of dynamic, time based plasticity in speech SMA tissue, and may represent a noninvasive neural marker for SMA syndrome recovery.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Brian K Pikul
- Kaiser Permanente, Los Angeles Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Susan Y Bookheimer
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Semel Neuropsychiatric Institute, Brain Research Institute, Center for Cognitive Neurosciences and Department of Pscychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Berisha V, Gilton D, Baxter LC, Corman SR, Blais C, Brewer G, Ruston S, Hunter Ball B, Wingert KM, Peter B, Rogalsky C. Structural neural predictors of Farsi-English bilingualism. BRAIN AND LANGUAGE 2018; 180-182:42-49. [PMID: 29723828 DOI: 10.1016/j.bandl.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 03/24/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
The neurobiology of bilingualism is hotly debated. The present study examines whether normalized cortical measurements can be used to reliably classify monolinguals versus bilinguals in a structural MRI dataset of Farsi-English bilinguals and English monolinguals. A decision tree classifier classified bilinguals with an average correct classification rate of 85%, and monolinguals with a rate of 71.4%. The most relevant regions for classification were the right supramarginal gyrus, left inferior temporal gyrus and left inferior frontal gyrus. Larger studies with carefully matched monolingual and bilingual samples are needed to confirm that features of these regions can reliably categorize monolingual and bilingual brains. Nonetheless, the present findings suggest that a single structural MRI scan, analyzed with measures readily available using default procedures in a free open-access software (Freesurfer), can be used to reliably predict an individual's language experience using a decision tree classifier, and that Farsi-English bilingualism implicates regions identified in previous group-level studies of bilingualism in other languages.
Collapse
Affiliation(s)
- Visar Berisha
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Davis Gilton
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Leslie C Baxter
- Barrow Neurological Institute and St. Joseph's Medical Center and Hospital, Phoenix, AZ 85013, USA
| | - Steven R Corman
- The Hugh Downs School of Human Communication, Arizona State University, Tempe, AZ 85281, USA
| | - Chris Blais
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Gene Brewer
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Scott Ruston
- The Hugh Downs School of Human Communication, Arizona State University, Tempe, AZ 85281, USA
| | - B Hunter Ball
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Kimberly M Wingert
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Beate Peter
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA; Department of Communication Sciences and Disorders, Saint Louis University, Saint Louis, MO 63101, USA
| | - Corianne Rogalsky
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
28
|
Riedel MC, Yanes JA, Ray KL, Eickhoff SB, Fox PT, Sutherland MT, Laird AR. Dissociable meta-analytic brain networks contribute to coordinated emotional processing. Hum Brain Mapp 2018; 39:2514-2531. [PMID: 29484767 DOI: 10.1002/hbm.24018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks.
Collapse
Affiliation(s)
- Michael C Riedel
- Department of Physics, Florida International University, Miami, Florida
| | - Julio A Yanes
- Department of Psychology, Auburn University, Auburn, Alabama
| | - Kimberly L Ray
- Department of Psychology, University of Texas, Austin, Texas
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | | | - Angela R Laird
- Department of Physics, Florida International University, Miami, Florida
| |
Collapse
|
29
|
Singh T, Phillip L, Behroozmand R, Gleichgerrcht E, Piai V, Fridriksson J, Bonilha L. Pre-articulatory electrical activity associated with correct naming in individuals with aphasia. BRAIN AND LANGUAGE 2018; 177-178:1-6. [PMID: 29421267 PMCID: PMC5835213 DOI: 10.1016/j.bandl.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 05/17/2023]
Abstract
Picture naming is a language task that involves multiple neural networks and is used to probe aphasia-induced language deficits. The pattern of neural activation seen in healthy individuals during picture naming is disrupted in individuals with aphasia, but the time-course of the disruption remains unclear. Specifically, it remains unclear which anatomical and temporal aspects of neural processing are necessary for correct naming. Here, we tested two individuals with stroke induced aphasia, and compared the differences in the event-related potentials (ERPs) and current sources when they made correct vs. erroneous responses during picture naming. The pre-articulatory ERP activity was significantly different between the two responses. Current source analysis revealed that the ability to recruit left temporal and frontal areas within a 300-550 ms time window after stimulus onset contributed to correct responses. These results suggest that targeted neuromodulation in these areas could lead to better treatment outcomes in patients with aphasia.
Collapse
Affiliation(s)
- Tarkeshwar Singh
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Lorelei Phillip
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
30
|
Canini M, Della Rosa PA, Catricalà E, Strijkers K, Branzi FM, Costa A, Abutalebi J. Semantic interference and its control: A functional neuroimaging and connectivity study. Hum Brain Mapp 2018; 37:4179-4196. [PMID: 27355179 DOI: 10.1002/hbm.23304] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
During picture naming, the ease with which humans generate words is dependent upon the context in which they are named. For instances, naming previously presented items results in facilitation. Instead, naming a picture semantically related to previous items displays persistent interference effects (i.e., cumulative semantic interference, CSI). The neural correlates of CSI are still unclear and it is a matter of debate whether semantic control, or cognitive control more in general, is necessary for the resolution of CSI. We carried out an event-related fMRI experiment to assess the neural underpinnings of the CSI effect and the involvement and nature of semantic control. Both left inferior frontal gyrus (LIFG) and the left caudate nucleus (LCN) showed a linear increase of BOLD response positively associated with the consecutive number of presentations of semantically related pictures independently of task-load. The generalized psychophysiological interaction analysis showed that LIFG demonstrated a quantitative neural connectivity difference with the left supramarginal and angular gyri for increases of task-load and with the fusiform gyri for linear CSI increases. Furthermore, seed-to-voxel functional connectivity showed that LIFG activity coupled with different regions involved in cognitive control and lexicosemantic processing when semantic interference was elicited to a minimum or maximum degree. Our results are consistent with the lexical-competitive nature of the CSI effect, and we provide novel evidence that semantic control lies upon a more general cognitive control network (i.e., LIFG and LCN) responsible for resolving interference between competing semantically related items through connectivity with different brain areas in order to guarantee the correct response. Hum Brain Mapp 37:4179-4196, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matteo Canini
- Faculty of Psychology, San Raffaele University & San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | - Francesca Martina Branzi
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Albert Costa
- Universitat De Pompeu Fabra, Barcelona & ICREA, Barcelona, Spain
| | - Jubin Abutalebi
- Faculty of Psychology, San Raffaele University & San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
31
|
Benjamin CF, Walshaw PD, Hale K, Gaillard WD, Baxter LC, Berl MM, Polczynska M, Noble S, Alkawadri R, Hirsch LJ, Constable RT, Bookheimer SY. Presurgical language fMRI: Mapping of six critical regions. Hum Brain Mapp 2017; 38:4239-4255. [PMID: 28544168 PMCID: PMC5518223 DOI: 10.1002/hbm.23661] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher F Benjamin
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Patricia D Walshaw
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| | - Kayleigh Hale
- U.S. Department of Veterans Affairs, War Related Illness and Injury Study Center, Washington, DC
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Leslie C Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Madison M Berl
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Monika Polczynska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rafeed Alkawadri
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence J Hirsch
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Susan Y Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| |
Collapse
|
32
|
Owen T, Adegboye D, Gimeno H, Selway R, Lin JP. Stable cognitive functioning with improved perceptual reasoning in children with dyskinetic cerebral palsy and other secondary dystonias after deep brain stimulation. Eur J Paediatr Neurol 2017; 21:193-201. [PMID: 27836441 DOI: 10.1016/j.ejpn.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/28/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. Secondary dystonias are described as a heterogeneous group of disorders with both exogenous and endogenous causes. There is a growing body of literature on the effects of deep brain stimulation (DBS) surgery on the motor function in childhood secondary dystonias, however research on cognitive function after DBS is scarce. METHODS Cognitive function was measured in a cohort of 40 children with secondary dystonia following DBS surgery using a retrospective repeated measures design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. RESULTS There was no significant change in the assessed domains of cognitive function following DBS surgery. A significant improvement across the group was found on the Picture Completion subtest, measuring perceptual reasoning ability, following DBS. CONCLUSION Cognition remained stable in children with secondary dystonia following DBS surgery, with some improvements noted in a domain of perceptual reasoning. Further research with a larger sample is necessary to further explore this, in particular to further subdivide this group to account for its heterogeneity. This preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within the childhood secondary dystonia population.
Collapse
Affiliation(s)
- Tamsin Owen
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Clinical Psychology, Royal Holloway, University of London, UK.
| | - Dolapo Adegboye
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, King's College London, UK
| | - Richard Selway
- Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Quevedo K, Martin J, Scott H, Smyda G, Pfeifer JH. The neurobiology of self-knowledge in depressed and self-injurious youth. Psychiatry Res 2016; 254:145-55. [PMID: 27442923 PMCID: PMC5737906 DOI: 10.1016/j.pscychresns.2016.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
Abstract
There is limited information regarding the neurobiology underlying non-suicidal self-injury (NSSI) in clinically-referred youth. However, the salience of disturbed interpersonal relationships and disrupted self-processing associated with NSSI suggests the neural basis of social processes as a key area for additional study. Adolescent participants (N=123; M=14.75 years, SD=1.64) were divided into three groups: NSSI plus depression diagnosis (NSSI), depression only (DEP), healthy controls (HC). In the scanner, participants completed an Interpersonal Self-Processing task by taking direct (own) and indirect (mothers', best friends', or classmates') perspectives regarding self-characteristics. Across all perspectives, NSSI showed higher BOLD activation in limbic areas, and anterior and posterior cortical midline structures versus DEP and HC, while HC showed greater activity in rostrolateral, frontal pole and occipital cortex than NSSI and DEP youth. Moreover, NSSI youth showed heightened responses in amygdala, hippocampus, parahippocampus, and fusiform when taking their mothers' perspective, which were negatively correlated with self-reports of the mother's support of adolescents' emotional distress in the NSSI group. NSSI youth also yielded greater precuneus and posterior cingulate cortex activity during indirect self-processing from their classmates' perspective. Findings suggest a role for disruptions in self- and emotion-processing, and conflicted social relationships in the neurobiology of NSSI among depressed adolescents.
Collapse
Affiliation(s)
- Karina Quevedo
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| | - Jodi Martin
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Scott
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Garry Smyda
- School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
34
|
Abstract
Surgery is an important therapeutic alternative for patients with uncontrolled epilepsy. Preoperative identification of brain regions important for language is important to reduce the risk of functional impairment after surgery. The Wada test suffers from several technical and clinical disadvantages and provides hemispheric data at best. More invasive methods such as intraoperative or chronic subdural cortical mapping have more limited application. New approaches using neuroimaging methods offer the opportunity to localize, as well as lateralize, language. In addition, normal volunteers can be studied with the same techniques, providing comparative and control data. Although most normal studies have been reported as group data, it is important for individual scans to be available for comparison with patient studies to understand the normal range of interindividual variability. Two techniques, PET with 15O-water-PET and fMRI, have been used. Both detect signal changes associated with increased regional blood flow during neuronal activity. Usually, scans performed during a language task are compared with those obtained during control conditions. It is important to choose activation tasks carefully, to make sure one is imaging activation associated with the particular process of interest. PET has advantages, including a fully diffusible tracer, standardized analytic methods, a more comfortable environment, and less sensitivity to movement artifact. On the other hand, it involves a cyclotron-produced tracer, radiation exposure, and is more difficult to repeat. FMRI over represents the effects of large vascular structures and is very sensitive to movement but uses widely available equipment and has no limitation on the number of studies. For both studies, it is important to understand the potential effects of such factors as attention, fatigue, and familiarity with the material. Several studies comparing 15O-water-PET and fMRI to the Wada test found that the former are at least as accurate for language lateralization. In addition, we compared 15O-water-PET to direct subdural electrode cortical stimulation and found that regions showing increased cerebral blood flow during naming tasks co-registered with subdural electrodes that disrupted language during electrical stimulation. In this and other studies, PET detected more regions than electrical stimulation techniques. The whole brain cannot be covered with electrodes, but some areas participating in a task may not be crucial for it. FMRI is particularly useful for children. We compared cortical activation patterns in normal children, adolescents, and adults. The activation patterns, and laterality of language dominance, in children 8 years and above, were similar to adults, although some differences could reflect maturation and evolving focality of cognitive processes. In children with epilepsy, fMRI successfully identified language laterality and provided data on intrahemispheric localization. Studies also showed the effects of the epileptic focus on normal activation patterns for several tasks. Neuroimaging functional mapping is an important tool, still in the process of development and evolution. Although potentially of great clinical and scientific value, it should be used and interpreted cautiously.
Collapse
Affiliation(s)
- William D. Gaillard
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland, Children’s National Medical Center, Washington, D.C
| | - William H. Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland,
| |
Collapse
|
35
|
fMRI brain response during sentence reading comprehension in children with benign epilepsy with centro-temporal spikes. Epilepsy Res 2015; 117:42-51. [DOI: 10.1016/j.eplepsyres.2015.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023]
|
36
|
Halje P, Seeck M, Blanke O, Ionta S. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings. Neuropsychologia 2015; 79:206-14. [PMID: 26282276 DOI: 10.1016/j.neuropsychologia.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions.
Collapse
Affiliation(s)
- Pär Halje
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Silvio Ionta
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland.
| |
Collapse
|
37
|
Repetition priming in picture naming: sustained learning through the speeding of multiple processes. Psychon Bull Rev 2015; 21:1301-8. [PMID: 24590468 DOI: 10.3758/s13423-014-0610-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Picture naming has been used by vision researchers to study object identification, by language researchers to study word production, and by memory researchers to study implicit memory. Response times for naming repeated pictures decrease with successive repetitions. Repetition priming in picture naming involves an implicit, nonhippocampal form of memory. In this review, the processes speeded with repetition are decomposed, the time course of the effect is characterized, the factors affecting the magnitude of priming are enumerated, and possible mechanisms of priming are evaluated. Both behavioral response time and neuroimaging studies are considered. The processes that are speeded with repetition include high-level object identification and word production processes, but not low-level visual processes or articulation. Repetition priming lasts for at least several weeks and follows a typical forgetting function. The mechanism of priming is concluded to be speeded completion of the component processes of picture naming.
Collapse
|
38
|
Plenger P, Krishnan K, Cloud M, Bosworth C, Qualls D, Marquez de la Plata C. fNIRS-based investigation of the Stroop task after TBI. Brain Imaging Behav 2015; 10:357-66. [DOI: 10.1007/s11682-015-9401-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Mayseless N, Eran A, Shamay-Tsoory SG. Generating original ideas: The neural underpinning of originality. Neuroimage 2015; 116:232-9. [PMID: 26003860 DOI: 10.1016/j.neuroimage.2015.05.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
One of the key aspects of creativity is the ability to produce original ideas. Originality is defined in terms of the novelty and rarity of an idea and is measured by the infrequency of the idea compared to other ideas. In the current study we focused on divergent thinking (DT) - the ability to produce many alternate ideas - and assessed the neural pathways associated with originality. Considering that generation of original ideas involves both the ability to generate new associations and the ability to overcome automatic common responses, we hypothesized that originality would be associated with activations in regions related to associative thinking, including areas of the default mode network (DMN) such as medial prefrontal areas, as well as with areas involved in cognitive control and inhibition. Thirty participants were scanned while performing a DT task that required the generation of original uses for common objects. The results indicate that the ability to produce original ideas is mediated by activity in several regions that are part of the DMN including the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC). Furthermore, individuals who are more original exhibited enhanced activation in the ventral anterior cingulate cortex (vACC), which was also positively coupled with activity in the left occipital-temporal area. These results are in line with the dual model of creativity, according to which original ideas are a product of the interaction between a system that generates ideas and a control system that evaluates these ideas.
Collapse
Affiliation(s)
- Naama Mayseless
- Department of Psychology, University of Haifa, Haifa 31905, Israel.
| | - Ayelet Eran
- Department of Radiology, Rambam Health Care Campus, Haifa, Israel.
| | | |
Collapse
|
40
|
Lau JKL, Humphreys GW, Douis H, Balani A, Bickerton WL, Rotshtein P. The relation of object naming and other visual speech production tasks: a large scale voxel-based morphometric study. Neuroimage Clin 2015; 7:463-75. [PMID: 25685713 PMCID: PMC4325087 DOI: 10.1016/j.nicl.2015.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/09/2023]
Abstract
We report a lesion-symptom mapping analysis of visual speech production deficits in a large group (280) of stroke patients at the sub-acute stage (<120 days post-stroke). Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a 'shared' component that loaded across all the visual speech production tasks and a 'unique' component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual-speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.
Collapse
Affiliation(s)
| | - Glyn W. Humphreys
- School of Psychology, University of Birmingham, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Hassan Douis
- School of Psychology, University of Birmingham, Birmingham, UK
- Department of Radiology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Alex Balani
- School of Psychology, University of Birmingham, Birmingham, UK
- Department of Psychology, Edge Hill University, Lancashire, UK
| | | | - Pia Rotshtein
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Zhu Z, Gold BT, Chang CF, Wang S, Juan CH. Left middle temporal and inferior frontal regions contribute to speed of lexical decision: a TMS study. Brain Cogn 2014; 93:11-7. [PMID: 25463244 DOI: 10.1016/j.bandc.2014.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/09/2014] [Accepted: 11/03/2014] [Indexed: 11/30/2022]
Abstract
Activation of left anterior inferior frontal gyrus (aLIFG) and left middle temporal gyrus (LMTG) has been observed in some functional neuroimaging studies of lexical decision but not others. It is thus unclear whether these two regions are necessary for word recognition. By applying continuous theta-burst transcranial magnetic stimulation (TMS) which temporally suppresses local brain function, we examined whether aLIFG and LMTG play causal roles in word recognition in a visual lexical decision task (LDT). Furthermore, we manipulated stimulus onset asynchrony (SOA) between prime and target to test whether these regions contribute to word recognition differently. In the LDT task, target words were preceded by semantically related primes (Related Condition; RC) or semantically unrelated words (Unrelated Condition; UC), under both short (150 ms) and long (600 ms) SOA conditions. TMS of aLIFG and LMTG significantly affected the word recognition speed compared to TMS of Vertex. Our results provide evidence that both aLIFG and LMTG contribute to word recognition speed. Furthermore, at short SOA, TMS of aLIFG or LMTG prolonged reaction time (RT). In contrast, at long SOA, there was a significant region by SOA by TMS interaction such that TMS of aLIFG prolonged RT, whereas TMS of LMTG speeded RT. These results suggest that aLIFG and LMTG may play different roles in word recognition.
Collapse
Affiliation(s)
- Zude Zhu
- Center for the Study of Applied Psychology, South China Normal University, Guangzhou 510631, China; Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Brian T Gold
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan
| | - Suiping Wang
- Center for the Study of Applied Psychology, South China Normal University, Guangzhou 510631, China.
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan.
| |
Collapse
|
42
|
Jasińska KK, Petitto LA. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging. Dev Neuropsychol 2014; 39:421-39. [PMID: 25144256 DOI: 10.1080/87565641.2014.939180] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
What neural changes underlie reading development in monolingual and bilingual children? We examined neural activation patterns of younger (ages 6-8) and older (ages 8-10) children and adults to see whether early-life language experience influences the development of neural systems for reading. Using functional Near Infrared Spectroscopy, we observed an age-related shift in neural recruitment of language areas (left inferior frontal gyrus [LIFG], superior temporal gyrus [STG]). Bilinguals showed a greater extent and variability of neural activation in bilateral IFG and STG, and higher cognitive areas (dorsolateral prefrontal cortex, rostrolateral prefrontal cortex). This bilingual "neural signature" reveals the extent that neural systems underlying reading development can be modified through differences in early-life language experience.
Collapse
Affiliation(s)
- K K Jasińska
- a Haskins Laboratories , New Haven , Connecticut
| | | |
Collapse
|
43
|
Bourguignon NJ. A rostro-caudal axis for language in the frontal lobe: the role of executive control in speech production. Neurosci Biobehav Rev 2014; 47:431-44. [PMID: 25305636 DOI: 10.1016/j.neubiorev.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
The present article promotes a formal executive model of frontal functions underlying speech production, bringing together hierarchical theories of adaptive behavior in the (pre-)frontal cortex (pFC) and psycho- and neurolinguistic approaches to spoken language within an information-theoretic framework. Its biological plausibility is revealed through two Activation Likelihood Estimation meta-analyses carried out on a total of 41 hemodynamic studies of overt word and continuous speech production respectively. Their principal findings, considered in light of neuropsychological evidence and earlier models of speech-related frontal functions, support the engagement of a caudal-to-rostral gradient of pFC activity operationalized by the nature and quantity of speech-related information conveyed by task-related external cues (i.e., cue codability) on the one hand, and the total informational content of generated utterances on the other. In particular, overt reading or repetition and picture naming recruit primarily caudal motor-premotor regions involved in the sensorimotor and phonological aspects of speech; word and sentence generation engage mid- ventro- and dorsolateral areas supporting its basic predicative and syntactic functions; finally, rostral- and fronto-polar cortices subsume domain-general strategic processes of discourse generation for creative speech. These different levels interact in a top-down fashion, ranging representationally and temporally from the most general and extended to the most specific and immediate. The end-result is an integrative theory of pFC as the main executive component of the language cortical network, which supports the existence of areas specialized for speech communication and articulation and regions subsuming internal reasoning and planning. Prospective avenues of research pertaining to this model's principal predictions are discussed.
Collapse
Affiliation(s)
- Nicolas J Bourguignon
- Centre de recherche du CHU Sainte-Justine, Montreal, Canada; Département d'orthophonie et d'audiologie, Université de Montréal, Canada; Centre for Research on the Brain, Language and Music, Montreal, Canada.
| |
Collapse
|
44
|
Perrone-Bertolotti M, Rapin L, Lachaux JP, Baciu M, Lœvenbruck H. What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behav Brain Res 2014; 261:220-39. [PMID: 24412278 DOI: 10.1016/j.bbr.2013.12.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 11/19/2022]
Abstract
The little voice inside our head, or inner speech, is a common everyday experience. It plays a central role in human consciousness at the interplay of language and thought. An impressive host of research works has been carried out on inner speech these last fifty years. Here we first describe the phenomenology of inner speech by examining five issues: common behavioural and cerebral correlates with overt speech, different types of inner speech (wilful verbal thought generation and verbal mind wandering), presence of inner speech in reading and in writing, inner signing and voice-hallucinations in deaf people. Secondly, we review the role of inner speech in cognitive performance (i.e., enhancement vs. perturbation). Finally, we consider agency in inner speech and how our inner voice is known to be self-generated and not produced by someone else.
Collapse
Affiliation(s)
- M Perrone-Bertolotti
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC, UMR 5105, F-38040 Grenoble, France; INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France; INSERM, U836, Grenoble Institut des Neurosciences, 38700 La Tronche, France.
| | - L Rapin
- Laboratoire de phonétique, Département de Linguistique, Université du Québec à Montréal, Canada
| | - J P Lachaux
- INSERM U1028-CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, F-69500 Lyon-Bron, France; University Claude Bernard, Lyon 1, F-69000 Lyon, France
| | - M Baciu
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC, UMR 5105, F-38040 Grenoble, France
| | - H Lœvenbruck
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC, UMR 5105, F-38040 Grenoble, France; GIPSA-lab, Département Parole et Cognition, UMR CNRS 5216, Université de Grenoble, Grenoble, France
| |
Collapse
|
45
|
Emerton BC, Gansler DA, Sandberg EH, Jerram M. Functional anatomic dissociation of description and picture naming in the left temporal lobe. Brain Imaging Behav 2013; 8:570-8. [DOI: 10.1007/s11682-013-9281-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Boltzmann M, Rüsseler J. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials. BMC Neurosci 2013; 14:154. [PMID: 24330622 PMCID: PMC4028813 DOI: 10.1186/1471-2202-14-154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. RESULTS Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. CONCLUSIONS Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills.
Collapse
Affiliation(s)
- Melanie Boltzmann
- Department of Experimental Psychology, University of Bamberg, Markusplatz 3, 96047 Bamberg, Germany
| | - Jascha Rüsseler
- Department of Experimental Psychology, University of Bamberg, Markusplatz 3, 96047 Bamberg, Germany
| |
Collapse
|
47
|
Urooj U, Cornelissen PL, Simpson MIG, Wheat KL, Woods W, Barca L, Ellis AW. Interactions between visual and semantic processing during object recognition revealed by modulatory effects of age of acquisition. Neuroimage 2013; 87:252-64. [PMID: 24212056 DOI: 10.1016/j.neuroimage.2013.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/29/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022] Open
Abstract
The age of acquisition (AoA) of objects and their names is a powerful determinant of processing speed in adulthood, with early-acquired objects being recognized and named faster than late-acquired objects. Previous research using fMRI (Ellis et al., 2006. Traces of vocabulary acquisition in the brain: evidence from covert object naming. NeuroImage 33, 958-968) found that AoA modulated the strength of BOLD responses in both occipital and left anterior temporal cortex during object naming. We used magnetoencephalography (MEG) to explore in more detail the nature of the influence of AoA on activity in those two regions. Covert object naming recruited a network within the left hemisphere that is familiar from previous research, including visual, left occipito-temporal, anterior temporal and inferior frontal regions. Region of interest (ROI) analyses found that occipital cortex generated a rapid evoked response (~75-200 ms at 0-40 Hz) that peaked at 95 ms but was not modulated by AoA. That response was followed by a complex of later occipital responses that extended from ~300 to 850 ms and were stronger to early- than late-acquired items from ~325 to 675 ms at 10-20 Hz in the induced rather than the evoked component. Left anterior temporal cortex showed an evoked response that occurred significantly later than the first occipital response (~100-400 ms at 0-10 Hz with a peak at 191 ms) and was stronger to early- than late-acquired items from ~100 to 300 ms at 2-12 Hz. A later anterior temporal response from ~550 to 1050 ms at 5-20 Hz was not modulated by AoA. The results indicate that the initial analysis of object forms in visual cortex is not influenced by AoA. A fastforward sweep of activation from occipital and left anterior temporal cortex then results in stronger activation of semantic representations for early- than late-acquired objects. Top-down re-activation of occipital cortex by semantic representations is then greater for early than late acquired objects resulting in delayed modulation of the visual response.
Collapse
Affiliation(s)
- Uzma Urooj
- Department of Psychology, University of York, York, UK; York Neuroimaging Centre, University of York, York, UK
| | | | | | - Katherine L Wheat
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands
| | - Will Woods
- Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Victoria, Australia
| | - Laura Barca
- Institute for Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
| | - Andrew W Ellis
- Department of Psychology, University of York, York, UK; York Neuroimaging Centre, University of York, York, UK.
| |
Collapse
|
48
|
Hernandez N, Andersson F, Edjlali M, Hommet C, Cottier JP, Destrieux C, Bonnet-Brilhault F. Cerebral functional asymmetry and phonological performance in dyslexic adults. Psychophysiology 2013; 50:1226-38. [PMID: 24117474 DOI: 10.1111/psyp.12141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Abstract
Developmental dyslexia is a frequent language-based learning disorder characterized by difficulty in reading. The predominant etiologic view postulates that reading impairment is related to phonological and orthographic dysfunction. The aim of this fMRI study was to evaluate the neural bases of phonological processing impairment in remediated dyslexic adults (DD). We used a rhyming words judgment task contrasted with an unreadable fonts font-matching judgment task to compare patterns of activation and functional asymmetry in DD and normal-reading young adults. We found evidence of a link between asymmetry in inferior frontal gyrus and performance during the phonological processing. We also observed that DD recruit a network including regions involved in articulatory control in order to achieve rhyme judgment suggesting that, due to a lack of hemispheric specialization, DD recruit the latter network to achieve rhyme judgment.
Collapse
Affiliation(s)
- N Hernandez
- U930 INSERM, Tours, France; Team 1 Autism-UMR930 Imaging, Brain University François-Rabelais of Tours, Tours, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Bullock-Rest N, Cerny A, Sweeney C, Palumbo C, Kurowski K, Blumstein SE. Neural systems underlying the influence of sound shape properties of the lexicon on spoken word production: do fMRI findings predict effects of lesions in aphasia? BRAIN AND LANGUAGE 2013; 126:159-68. [PMID: 23743183 PMCID: PMC3730128 DOI: 10.1016/j.bandl.2013.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 05/22/2023]
Abstract
Previous behavioral work has shown that the phonetic realization of words in spoken word production is influenced by sound shape properties of the lexicon. A recent fMRI study (Peramunage, Blumstein, Myers, Goldrick, & Baese-Berk, 2011) showed that this influence of lexical structure on phonetic implementation recruited a network of areas that included the supramarginal gyrus (SMG) extending into the posterior superior temporal gyrus (pSTG) and the inferior frontal gyrus (IFG). The current study examined whether lesions in these areas result in a concomitant functional deficit. Ten individuals with aphasia and 8 normal controls read words aloud in which half had a voiced stop consonant minimal pair (e.g. tame; dame), and the other half did not (e.g. tooth; (*)dooth). Voice onset time (VOT) analysis of the initial voiceless stop consonant revealed that aphasic participants with lesions including the IFG and/or the SMG behaved as did normals, showing VOT lengthening effects for minimal pair words compared to non-minimal pair words. The failure to show a functional deficit in the production of VOT as a function of the lexical properties of a word with damage in the IFG or SMG suggests that fMRI findings do not always predict effects of lesions on behavioral deficits in aphasia. Nonetheless, the pattern of production errors made by the aphasic participants did reflect properties of the lexicon, supporting the view that the SMG and IFG are part of a lexical network involved in spoken word production.
Collapse
Affiliation(s)
- Natasha Bullock-Rest
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, United States
| | | | | | | | | | | |
Collapse
|
50
|
Llano DA. Functional imaging of the thalamus in language. BRAIN AND LANGUAGE 2013; 126:62-72. [PMID: 22981716 PMCID: PMC4836874 DOI: 10.1016/j.bandl.2012.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/09/2012] [Accepted: 06/22/2012] [Indexed: 05/07/2023]
Abstract
Herein, the literature regarding functional imaging of the thalamus during language tasks is reviewed. Fifty studies met criteria for analysis. Two of the most common task paradigms associated with thalamic activation were generative tasks (e.g. word or sentence generation) and naming, though activation was also seen in tasks that involve lexical decision, reading and working memory. Typically, thalamic activation was seen bilaterally, left greater than right, along with activation in frontal and temporal cortical regions. Thalamic activation was seen with perceptually challenging tasks, though few studies rigorously correlated thalamic activation with measures of attention or task difficulty. The peaks of activation loci were seen in virtually all thalamic regions, with a bias towards left-sided and midline activation. These analyses suggest that the thalamus may be involved in processes that involve manipulations of lexical information, but point to the need for more systematic study of the thalamus using language tasks.
Collapse
Affiliation(s)
- Daniel A Llano
- University of Illinois at Urbana-Champaign, Department of Molecular and Integrative Physiology, USA.
| |
Collapse
|