1
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Usefulness of diffusion derived vessel density computed from a simplified IVIM imaging protocol: An experimental study with rat biliary duct blockage induced liver fibrosis. Magn Reson Imaging 2021; 84:115-123. [PMID: 34619291 DOI: 10.1016/j.mri.2021.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Liver vessel density can be evaluated by DDVD (diffusion derived vessel density): DDVD(b0b1) = Sb0/ROIarea0 - Sb1/ROIarea1, where Sb0 and Sb1 refer to the liver signal when b is 0 or 1 s/mm2. Sb1 and ROIarea1 may be replaced by other b-values. With a rat biliary duct ligation (BDL) model, this study assesses the usefulness of liver DDVD computed from a simplified IVIM imaging protocol using b = 25 and b = 50 to replace b = 1 s/mm2, alone and in combination with other IVIM parameters. METHODS Male Sprague-Dawley rats were used. The rat number was 5, 5, 5, and 3 respectively, for the timepoints of 7, 14, 21, 28 days post-BDL surgery. 12 rats had partial biliary duct recanalization performed after the rats had BDL for 7 days and then again followed-up for a mean of 14 days. Liver diffusion MRIs were acquired at 3.0 T with a b-value distribution of 0, 25, 50, 75, 100, 150, 300, 700, 1000 s/mm2. DDVDmean (control rats n = 6) was the mean of DDVD(b0b25) and DDVD(b0b50). IVIM fitting started from b = 0 s/mm2 with segmented fitting and a threshold b of 50 s/mm2 (n = 5 for control rats). Three 3-D spaces were constructed using a combination of the four diffusion parameters. RESULTS The control rats and BDL rats (n = 18) had a liver DDVDmean of 84.0 ± 26.2 and 44.7 ± 14.4 au/pixel (p < 0.001). All 3-D spaces totally separated healthy livers and all fibrotic livers (n = 30, BDL rats and recanalization rats). The mean relative distance between healthy liver cluster and fibrotic liver cluster was 0.331 for PF, Dslow, and Dfast; 0.381 for PF, Dfast, and DDVDmean; and 0.384 for PF, Dslow, and DDVDmean. CONCLUSION A combination of PF, Dslow, and Dfast allows total separation of healthy livers and fibrotic livers and the integration of DDVD improved the separation.
Collapse
|
3
|
Kreisel W, Lazaro A, Trebicka J, Grosse Perdekamp M, Schmitt-Graeff A, Deibert P. Cyclic GMP in Liver Cirrhosis-Role in Pathophysiology of Portal Hypertension and Therapeutic Implications. Int J Mol Sci 2021; 22:10372. [PMID: 34638713 PMCID: PMC8508925 DOI: 10.3390/ijms221910372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
The NO-cGMP signal transduction pathway plays a crucial role in tone regulation in hepatic sinusoids and peripheral blood vessels. In a cirrhotic liver, the key enzymes endothelial NO synthase (eNOS), soluble guanylate cyclase (sGC), and phosphodiesterase-5 (PDE-5) are overexpressed, leading to decreased cyclic guanosine-monophosphate (cGMP). This results in constriction of hepatic sinusoids, contributing about 30% of portal pressure. In contrast, in peripheral arteries, dilation prevails with excess cGMP due to low PDE-5. Both effects eventually lead to circulatory dysfunction in progressed liver cirrhosis. The conventional view of portal hypertension (PH) pathophysiology has been described using the "NO-paradox", referring to reduced NO availability inside the liver and elevated NO production in the peripheral systemic circulation. However, recent data suggest that an altered availability of cGMP could better elucidate the contrasting findings of intrahepatic vasoconstriction and peripheral systemic vasodilation than mere focus on NO availability. Preclinical and clinical data have demonstrated that targeting the NO-cGMP pathway in liver cirrhosis using PDE-5 inhibitors or sGC stimulators/activators decreases intrahepatic resistance through dilation of sinusoids, lowering portal pressure, and increasing portal venous blood flow. These results suggest further clinical applications in liver cirrhosis. Targeting the NO-cGMP system plays a role in possible reversal of liver fibrosis or cirrhosis. PDE-5 inhibitors may have therapeutic potential for hepatic encephalopathy. Serum/plasma levels of cGMP can be used as a non-invasive marker of clinically significant portal hypertension. This manuscript reviews new data about the role of the NO-cGMP signal transduction system in pathophysiology of cirrhotic portal hypertension and provides perspective for further studies.
Collapse
Affiliation(s)
- Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Adhara Lazaro
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.L.); (P.D.)
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic Frankfurt, 60590 Frankfurt, Germany;
| | - Markus Grosse Perdekamp
- Institute of Forensic Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | | | - Peter Deibert
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.L.); (P.D.)
| |
Collapse
|
4
|
Jo HS, Han JH, Choi YY, Seok JI, Yoon YI, Kim DS. The beneficial impacts of splanchnic vasoactive agents on hepatic functional recovery in massive hepatectomy porcine model. Hepatobiliary Surg Nutr 2021; 10:325-336. [PMID: 34159160 DOI: 10.21037/hbsn.2019.11.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Excessive portal pressure after massive hepatectomy can cause hepatic sinusoidal injury and have deleterious impacts on hepatic functional recovery, contributing to developing post-hepatectomy liver failure. This study aimed to assess the effects of splanchnic vasoactive agents on hepatic functional recovery and regeneration while clarifying the underlying mechanism, using a 70% hepatectomy porcine model. Methods Eighteen pigs undergoing 70% hepatectomy were involved in this study and divided into three groups: control (n=6), terlipressin (n=6), and octreotide (n=6). Terlipressin (0.5 mg) and octreotide (0.2 mg) were administered 3 times a day for each group with the first dose starting just before surgery until the 7th postoperative day, at which time the surviving pigs were sacrificed. During the period, portal pressure, liver weight, biochemical analysis, histological injury score, and molecular markers were evaluated and compared between groups. Results The 7-day survival rates in the octreotide, terlipressin, and control groups were 100%, 83.3%, and 66.7%, respectively. The portal pressures decreased in both terlipressin and octreotide groups than the control group at 30 minutes, 1 hour and 6 hours after hepatectomy. The amount of regeneration measured by liver weight to body weight ratio at the time of sacrifice in the terlipressin group was smaller than that in the control group (117% vs. 129%, P=0.03). Serum aspartate aminotransferase (AST) and total bilirubin levels at 1 and 6 hours after hepatectomy and prothrombin time/international normalized ratio (PT/INR) at 6 hours after hepatectomy were significantly improved in the terlipressin and octreotide groups compared to the control group. Serum endothelin-1 (ET-1) was significantly lower in the terlipressin group than that in the control group 6 hours after hepatectomy (P<0.01). The histological injury score in the control group was significantly higher than that in the terlipressin group on the 7th postoperative day (P<0.01). Conclusions Splanchnic vasoactive agents, such as terlipressin and octreotide, could effectively decrease portal pressure and attenuate liver injury after massive hepatectomy.
Collapse
Affiliation(s)
- Hye-Sung Jo
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Republic of Korea
| | - Jin-I Seok
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Xiao BH, Huang H, Wang LF, Qiu SW, Guo SW, Wáng YXJ. Diffusion MRI Derived per Area Vessel Density as a Surrogate Biomarker for Detecting Viral Hepatitis B-Induced Liver Fibrosis: A Proof-of-Concept Study. SLAS Technol 2020; 25:474-483. [PMID: 32292088 DOI: 10.1177/2472630320915838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liver vessel density can be evaluated by an imaging biomarker diffusion-derived vessel density (DDVD): DDVD/area(b0b2) = Sb0/ROIarea0 - Sb2/ROIarea2, where Sb0 and Sb2 refer to the liver signal when b is 0 or 2 (s/mm2); ROIarea0 and ROIarea2 refer to the region of interest (ROI) on b = 0 or 2 images; and Sb2 may be replaced by Sb15 (b = 15). This concept was validated in this study. Liver diffusion images were acquired at 1.5 T. For a scan-rescan repeatability study of six subjects, b values of 0 and 2 were used. The validation study was composed of 26 healthy volunteers and 19 consecutive suspected chronic viral hepatitis B patients, and diffusion images with b values of 0, 2, 15, 20, 30, 45, 50, 60, 80, 100, 200, 300, 600, and 800 were acquired. Four patients did not have liver fibrosis, and the rest were four stage 1, three stage 2, four stage 3, and one stage 4 patients, respectively. The intraclass correlation coefficient for repeatability was 0.994 for DDVD/area(Sb0Sb2) and 0.978 for DDVD/area(Sb0Sb15). In the validation study, DDVD/area(Sb0Sb2) and area(Sb0Sb15) were 14.80 ± 3.06 and 26.58 ± 3.97 for healthy volunteers, 10.51 ± 1.51 and 20.15 ± 2.21 for stage 1-2 fibrosis patients, and 9.42 ± 0.87 and 19.42 ± 1.89 for stage 3-4 fibrosis patients. For 16 patients where IVIM analysis was performed, a combination of DDVD/area, PF, and Dfast achieved the best differentiation for nonfibrotic livers and fibrotic livers. DDVD/area were weakly correlated with PF or Dfast. Both DDVD/area(Sb0Sb2) and area(Sb0Sb15) are useful imaging biomarkers to separate fibrotic and nonfibrotic livers, with fibrotic livers having lower measurements.
Collapse
Affiliation(s)
- Ben-Heng Xiao
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Hua Huang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Li-Fei Wang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shi-Wen Qiu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Sheng-Wen Guo
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yì Xiáng J Wáng
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Al-Jawad FH, Al-Attar Z, Abbood MS. The Protective Effect of Nitroglycerin, N-Acetyl Cysteine and Metoprolol in CCL4 Induced Animal Model of Acute Liver Injury. Open Access Maced J Med Sci 2019; 7:1739-1743. [PMID: 31316651 PMCID: PMC6614250 DOI: 10.3889/oamjms.2019.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE: The current study was designed to determine the hepatoprotective effect of well-known drugs. Nitroglycerin, N-acetyl cysteine and Metoprolol in acute liver injury induced by CCL4. The antioxidant effects of b-blockers, especially carvedilol, have been described by several investigators. However, for metoprolol, the effect is a bit query as there is only one in-vitro study showing a little hepatoprotective effect. Thus, it is worthy to re-study the hepatoprotective effect of metoprolol. AIM: To explore the possible hepatoprotective effect of Nitroglycerin, N-acetyl cysteine and Metoprolol Tartrate MATERIAL AND METHODS: The normal serum values of ALP, AST, ALT, TSB and TSP were determined in 35 healthy rabbits allocated to 5 groups before CCL4 induction and at three occasions 24, 72, 120 hrs after induction by CCL4 and treatment with the tested drugs: Nitroglycerin, N-acetyl cysteine and Metoprolol for five successive days. RESULTS: Showed significant decrease in serum levels of ALP, AST, ALT and TSB with a significant increase in TSP level of all the tested drugs measured at 120 hrs compared with the control and their levels measured at 24, 72 hrs. CONCLUSION: All the tested drugs proved in having a hepatoprotective effect when they are given orally to animals. The histopathological sections of the liver tissue supported the real effect of these drugs in the management of ALI.
Collapse
Affiliation(s)
- Faruk H Al-Jawad
- Department of Pharmacology & Therapeutics, Al-Nahrain College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Zaid Al-Attar
- Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Muayyad S Abbood
- The High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
7
|
Does prostaglandin-E1 modulate d-galactosamine induced cell death in primary culture of human hepatocytes? ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Li T, Che-Nordin N, Wáng YXJ, Rong PF, Qiu SW, Zhang SW, Zhang P, Jiang YF, Chevallier O, Zhao F, Xiao XY, Wang W. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis. Quant Imaging Med Surg 2019; 9:371-385. [PMID: 31032185 PMCID: PMC6462566 DOI: 10.21037/qims.2019.02.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent two studies reported that intravoxel incoherent motion (IVIM) analysis can separate healthy livers and viral hepatitis B (VHB) induced liver fibrosis. However, in these two studies the starting b value for bi-exponential decay analysis was b =10 and 15 s/mm2 respectively. The current study has two primary aims. The first is to further confirm the diagnostic value of IVIM in detecting liver fibrosis. The second is to test whether by sampling very low b value densely, then b =0 s/mm2 image could be included to improve IVIM's diagnostic performance. METHODS This was a prospective study with data acquired at the Third Xiangya Hospital of Central South University, Changsha, China. Healthy volunteers and patients suspected of VHB induced liver fibrosis with liver biopsy performed, as well as hepatocellular carcinoma patients scheduled for surgery, were recruited. All the hepatocellular carcinoma patients had liver fibrosis. After exclusions based on pre-defined criteria for image data quality, for IVIM analysis this study included 20 healthy volunteers; 4 chronic VHB patients with biopsy showing no liver fibrosis; 11 stage-1 liver fibrosis patients, 10 stage-2 liver fibrosis patients, 2 stage-3 liver fibrosis patients, and 5 stage-4 liver fibrosis patients. In the liver fibrosis patients, 1, 19, and 8 cases had inflammation grade-0, grade-1, and grade-2 respectively. The reference IVIM bi-exponential decay curve fitting analysis was segmented fitting performed with b =2 s/mm2 image as the starting point and a threshold-b of 60 s/mm2. This reference fitting method was compared with threshold-b of 40 s/mm2, full fitting, fitting starting from b =0, 5, and 10 s/mm2 respectively. The potential correlation between IVIM readouts and liver function was assessed for the liver fibrosis patients. RESULTS Based on the smaller coefficient of variation (CoV) for the volunteer group and the smaller patient/volunteer ratios [= (mean measurement for patient groups)/(mean measurement for healthy volunteers)], the comparison of fitting methods favored the reference approach starting from b =2 s/mm2 with a threshold-b of 60 s/mm2. The IVIM measures of four patients without liver fibrosis resembled those of healthy subjects. PF offered the best diagnostic value for separating healthy livers and fibrotic livers, and a threshold of PF =0.1406 separated all fibrotic livers and healthy livers with an exception of one hepatocellular carcinoma patient (fibrosis grade-2/inflammation grade-2). The correlation between fibrosis grading and inflammation grading was weakly positive; while compared with fibrotic livers with inflammation grade-1, fibrotic livers with inflammation grade-2 showed a trend of higher Dfast. A weak correlation is shown with lower PF and lower Dfast associated with lower total protein, lower albumin; higher alanine transaminase, higher aspartate transaminase; higher total bilirubin, and higher direct bilirubin. CONCLUSIONS Segmented-fitting with threshold-b =60 s/mm2 and starting from non-zero very low b value outperforms other methods. IVIM has high sensitivity in detecting liver fibrosis, and PF and Dfast have potential correlation with serum liver function biomarkers. IVIM measures and liver fibrosis grading are not in a linear relationship.
Collapse
Affiliation(s)
- Ting Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Nazmi Che-Nordin
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yì Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Peng-Fei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shi-Wen Qiu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Sheng-Wang Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Pan Zhang
- Department of Infectious Diseases, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yong-Fang Jiang
- Liver Diseases Research Center, The Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Olivier Chevallier
- Department of Vascular and Interventional Radiology, François-Mitterrand Teaching Hospital, Université de Bourgogne, Dijon, France
| | - Feng Zhao
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xiao-Yi Xiao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
9
|
Dong Z, Su L, Esmaili S, Iseli TJ, Ramezani-Moghadam M, Hu L, Xu A, George J, Wang J. Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells. J Mol Med (Berl) 2015; 93:1327-39. [PMID: 26153548 DOI: 10.1007/s00109-015-1313-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
UNLABELLED Adiponectin protects against liver fibrosis, but the mechanisms have not been fully elucidated. Here, we showed that adiponectin upregulated inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) and protein expression in hepatic non-parenchymal cells, particularly in hepatic stellate cells (HSCs), and increased nitric oxide (NO2-/NO3-) concentration in HSC-conditioned medium. Adiponectin attenuated HSC proliferation and migration but promoted apoptosis in a NO-dependent manner. More advanced liver fibrosis with decreased iNOS/NO levels was observed in adiponectin knockout mice comparing to wide-type mice when administered with CCI4 while NO donor supplementation rescued the phenotype. Further experiments demonstrated that adiponectin-induced iNOS/NO system activation is mediated through adipoR2-AMPK-JNK/Erk1/2-NF-κB signaling. These data suggest that adiponectin inhibits HSC function, further limiting the development of liver fibrosis at least in part through adiponectin-induced NO release. Therefore, adiponectin-mediated NO signaling may be a novel target for the treatment of liver fibrosis. KEY MESSAGES • Adiponectin activates HSC iNOS/NO and SEC eNOS/NO systems. • Adiponectin inhibits HSC proliferation and migration but promotes its apoptosis. • Adiponectin inhibits CCL4-induced liver fibrosis by modulation of liver iNOS/NO. • Adiponectin stimulates HSC iNOS/NO via adipoR2-AMPK-JNK/ErK1/2-NF-κB pathway.
Collapse
Affiliation(s)
- Zhixia Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lin Su
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Saeed Esmaili
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Tristan J Iseli
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Mehdi Ramezani-Moghadam
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Liangshuo Hu
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, and Department of Medicine, the University of Hong Kong, Hong Kong, Hong Kong
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia
| | - Jianhua Wang
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
10
|
Kus K, Walczak M, Maslak E, Zakrzewska A, Gonciarz-Dytman A, Zabielski P, Sitek B, Wandzel K, Kij A, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics. Drug Metab Dispos 2015; 43:1028-36. [PMID: 25870102 PMCID: PMC11024901 DOI: 10.1124/dmd.115.063388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/09/2015] [Indexed: 04/20/2024] Open
Abstract
V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.
Collapse
Affiliation(s)
- Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Anna Gonciarz-Dytman
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Piotr Zabielski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Adrian Chabowski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Ryan J Holland
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Joseph E Saavedra
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Larry K Keefer
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| |
Collapse
|
11
|
Duong HTT, Dong Z, Su L, Boyer C, George J, Davis TP, Wang J. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2291-2304. [PMID: 25641921 DOI: 10.1002/smll.201402870] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Polymeric nanoparticles are designed to transport and deliver nitric oxide (NO) into hepatic stellate cells (HSCs) for the potential treatment of both liver fibrosis and portal hypertension. The nanoparticles, incorporating NO donor molecules (S-nitrosoglutathione compound), are designed for liver delivery, minimizing systemic delivery of NO. The nanoparticles are decorated with vitamin A to specifically target HSCs. We demonstrate, using in vitro and in vivo experiments, that the targeted nanoparticles are taken up specifically by rat primary HSCs and the human HSC cell line accumulating in the liver. When nanoparticles, coated with vitamin A, release NO in liver cells, we find inhibition of collagen I and α-smooth muscle actin (α-SMA), fibrogenic genes associated with activated HSCs expression in primary rat liver and human activated HSCs without any obvious cytotoxic effects. Finally, NO-releasing nanoparticles targeted with vitamin A not only attenuate endothelin-1 (ET-1) which elicites HSC contraction but also acutely alleviates haemodynamic disorders in bile duct-ligated-induced portal hypertension evidenced by decreasing portal pressure (≈20%) and unchanging mean arterial pressure. This study clearly shows, for the first time, the potential for HSC targeted nanoparticle delivery of NO as a treatment for liver diseases with proven efficacy for alleviating both liver fibrosis and portal hypertension.
Collapse
Affiliation(s)
- Hien T T Duong
- Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhixia Dong
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Shanghai First People's hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lin Su
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Jianhua Wang
- Storr Liver Unit, Westmead Millenium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Jin XY, Fan SY, Li HW, Shi WG, Chen W, Wang HF, Zhong BH. Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both NO carrier and targeting ligand. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Sarin SK, Kumar C. Deeper insights into the relevance of lymphatic circulation in cirrhosis of the liver: a Trojan horse or the Holy Grail? Hepatology 2013; 58:2201-4. [PMID: 23813621 DOI: 10.1002/hep.26603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | |
Collapse
|
14
|
Ramasamy U, Anwer MS, Schonhoff CM. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake. Am J Physiol Gastrointest Liver Physiol 2013; 305:G513-9. [PMID: 23886862 PMCID: PMC3798720 DOI: 10.1152/ajpgi.00089.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+) taurocholate (TC) cotransporting polypeptide Ntcp/NTCP mediates TC uptake across the sinusoidal membrane of hepatocytes. Previously, we demonstrated that nitric oxide (NO) inhibits TC uptake through S-nitrosylation of a cysteine residue. Our current aim was to determine which of the eight cysteine residues of Ntcp is responsible for NO-mediated S-nitrosylation and inhibition of TC uptake. Thus, we tested the effect of NO on TC uptake in HuH-7 cells transiently transfected with cysteine-to-alanine mutant Ntcp constructs. Of the eight mutants tested, only C44A Ntcp displayed decreased total and plasma membrane (PM) levels that were also reflected in decreased TC uptake. C266A Ntcp showed a decrease in TC uptake that was not explained by a decrease in total expression or PM localization, indicating that C266 is required for optimal uptake. We speculated that NO would target C266 since a previous report had shown the thiol reactive compound [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET) inhibits TC uptake by wild-type NTCP but not by C266A NTCP. We confirmed that MTSET targets C266 of Ntcp, but, surprisingly, we found that C266 was not responsible for NO-mediated inhibition of TC uptake. Instead, we found that C96 was targeted by NO since C96A Ntcp was insensitive to NO-mediated inhibition of TC uptake. We also found that wild-type but not C96A Ntcp is S-nitrosylated by NO, suggesting that C96 is important in regulating Ntcp function in response to elevated levels of NO.
Collapse
Affiliation(s)
- Umadevi Ramasamy
- Dept. of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA, 01536.
| | | | | |
Collapse
|
15
|
Yardimci S, Bostanci EB, Ozer I, Dalgic T, Surmelioglu A, Aydog G, Akoglu M. Sildenafil accelerates liver regeneration after partial hepatectomy in rats. Transplant Proc 2013; 44:1747-50. [PMID: 22841261 DOI: 10.1016/j.transproceed.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The regeneration process causes the liver to achieve an adequate volume and function after major hepatectomy or living donor liver transplantation. Sildenafil, a selective phosphodiesterase-5 inhibitor used for erectile dysfunction, impacts the liver by enhancing the effects of nitric oxide. The aim of this study was to investigate the influence of sildenafil on liver regeneration in rats after partial hepatectomy. METHODS Sixty young female Wistar Albino rats were randomly divided into three equal groups before 70% hepatectomy. Thereafter, we administered intraperitoneal saline to the control group (G1); 10 μg/kg sildenafil to the low-dose group (G2) and 100 μg/kg to the high-dose sildenafil group (G3). Half of the rats per group were sacrificed on the first and the other half on the fifth postoperative day after partial hepatectomy. Regeneration was assessed using three methods: (1) the formula described by Kwon et al formula, (2) the average number of mitotic figures in 10 microscopic fields, and (3) the average of Ki-67-positive nuclei in 1000 cells using immunohistochemistry. RESULTS Although, the hepatic regeneration and mitosis rates were similar in all three groups, Ki-67 levels were significantly higher in both G2 and G3 than the control group on the first postoperative day. Hepatic regeneration was significantly greater in G2 and G3 than the control group as was the mitosis rate in the G2 group versus the two groups. By the 5th postoperative day Ki-67 levels were similar in the three groups. CONCLUSION Sildenafil treatment accelerated hepatic regeneration after partial hepatectomy in rats.
Collapse
Affiliation(s)
- S Yardimci
- Department of Gastrointestinal Surgery, Turkiye Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1393] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
17
|
Das SK, Mukherjee S. Biochemical and immunological basis of silymarin effect, a milk thistle (Silybum marianum) against ethanol-induced oxidative damage. Toxicol Mech Methods 2012; 22:409-13. [PMID: 22409310 DOI: 10.3109/15376516.2012.673090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ethanol metabolism induces generation of excessive amount of reactive oxygen species (ROS) which results in immune dysfunction. We examined the efficacy of silymarin on ethanol-induced oxidative stress, immunomodulatory activity, and vascular function in mice blood. Effectiveness of silymarin was compared with potent antioxidant ascorbic acid. In the present study, 8- to 10-week-old male BALB/c mice (20-30 g) were divided into the four groups of six each. One group were fed with ethanol (1.6 g/kg body weight), while second group were fed with ethanol (1.6 g/kg body weight) and silybin (250 mg/kg body weight), and the third group were exposed to ethanol (250 mg/kg body weight) and ascorbic acid (250 mg/kg body weight) per day for 12 weeks. The control group was fed with isocaloric glucose solution instead of ethanol. Ethanol exposure significantly increased thiobarbituric acid reactive substance (TBARS) and nitrite levels besides glutathione-S-transferase (GST) activity, and significantly decreased reduced glutathione (GSH) content and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in whole blood hemolyzate, while silymarin treatment significantly normalized these altered parameters. Silymarin significantly prevented ethanol-induced, elevated activities of interleukin (IL)-10, tumor necrosis factor (TNF)-α, γ interferon (IFN-γ), vascular endothelial growth factor (VEGF)-A, and transforming growth factor (TGF)-β1, as well as decreased IL-4 activity in mice blood. These results were comparable with the activity of ascorbic acid.
Collapse
Affiliation(s)
- Subir Kumar Das
- Department of Biochemistry, College of Medicine & JNM Hospital, West Bengal University of Health Sciences, Nadia, India.
| | | |
Collapse
|
18
|
Basaranoglu M, Basaranoglu G. Pathophysiology of insulin resistance and steatosis in patients with chronic viral hepatitis. World J Gastroenterol 2011; 17:4055-62. [PMID: 22039318 PMCID: PMC3203355 DOI: 10.3748/wjg.v17.i36.4055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis due to any cause leads to cirrhosis and end-stage liver disease. A growing body of literature has also shown that fatty liver due to overweight or obesity is a leading cause of cirrhosis. Due to the obesity epidemic, fatty liver is now a significant problem in clinical practice. Steatosis has an impact on the acceleration of liver damage in patients with chronic hepatitis due to other causes. An association between hepatitis C virus (HCV) infection, steatosis and the onset of insulin resistance has been reported. Insulin resistance is one of the leading factors for severe fibrosis in chronic HCV infections. Moreover, hyperinsulinemia has a deleterious effect on the management of chronic HCV. Response to therapy is increased by decreasing insulin resistance by weight loss or the use of thiazolidenediones or metformin. The underlying mechanisms of this complex interaction are not fully understood. A direct cytopathic effect of HCV has been suggested. The genomic structure of HCV (suggesting that some viral sequences are involved in the intracellular accumulation of triglycerides), lipid metabolism, the molecular links between the HCV core protein and lipid droplets (the core protein of HCV and its transcriptional regulatory function which induce a triglyceride accumulation in hepatocytes) and increased neolipogenesis and inhibited fatty acid degradation in mitochondria have been investigated.
Collapse
|
19
|
Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and portal hypertension. THE KOREAN JOURNAL OF HEPATOLOGY 2011; 16:347-52. [PMID: 21415576 PMCID: PMC3304610 DOI: 10.3350/kjhep.2010.16.4.347] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Portal hypertension (PHT) is associated with hemodynamic changes in intrahepatic, systemic, and portosystemic collateral circulation. Increased intrahepatic resistance and hyperdynamic circulatory alterations with expansion of collateral circulation play a central role in the pathogenesis of PHT. PHT is also characterized by changes in vascular structure, termed vascular remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such as shear stress. Angiogenesis, the formation of new blood vessels, also occurs with PHT related in particular to the expansion of portosystemic collateral circulation. The complementary processes of vasoreactivity, vascular remodeling, and angiogenesis represent important targets for the treatment of portal hypertension. Systemic and splanchnic vasodilatation can induce hyperdynamic circulation which is related with multi-organ failure such as hepatorenal syndrome and cirrhotic cadiomyopathy.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | |
Collapse
|
20
|
Stewart JM, Nafday A, Ocon AJ, Terilli C, Medow MS. Cutaneous constitutive nitric oxide synthase activation in postural tachycardia syndrome with splanchnic hyperemia. Am J Physiol Heart Circ Physiol 2011; 301:H704-11. [PMID: 21642500 DOI: 10.1152/ajpheart.00171.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models of microgravity are linked to excessive constitutive nitric oxide (NO) synthase (NOS), splanchnic vasodilation, and orthostatic intolerance. Normal-flow postural tachycardia syndrome (POTS) is a form of chronic orthostatic intolerance associated with splanchnic hyperemia. To test the hypothesis that there is excessive constitutive NOS in POTS, we determined whether cutaneous microvascular neuronal NO and endothelial NO are increased. We performed two sets of experiments in POTS and control subjects aged 21.4 ± 2 yr. We used laser-Doppler flowmetry to measure the cutaneous response to local heating as an indicator of bioavailable neuronal NO. To test for bioavailable endothelial NO, we infused intradermal acetylcholine through intradermal microdialysis catheters and used the selective neuronal NOS inhibitor l-N(ω)-nitroarginine-2,4-L-diamino-butyric amide (N(ω), 10 mM), the selective inducible NOS inhibitor aminoguanidine (10 mM), the nonspecific NOS inhibitor nitro-l-arginine (NLA, 10 mM), or Ringer solution. The acetylcholine dose response and the NO-dependent plateau of the local heating response were increased in POTS compared with those in control subjects. The local heating plateau was significantly higher, 98 ± 1%maximum cutaneous vascular conductance (%CVC(max)) in POTS compared with 88 ± 2%CVC(max) in control subjects but decreased to the same level with N(ω) (46 ± 5%CVC(max) in POTS compared with 49 ± 4%CVC(max) in control) or with NLA (45 ± 3%CVC(max) in POTS compared with 47 ± 4%CVC(max) in control). Only NLA blunted the acetylcholine dose response, indicating that NO produced by endothelial NOS was released by acetylcholine. Aminoguanidine was without effect. This is consistent with increased endothelial and neuronal NOS activity in normal-flow POTS.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York, New York, USA.
| | | | | | | | | |
Collapse
|
21
|
Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 2011; 300:G364-70. [PMID: 21109590 PMCID: PMC3043645 DOI: 10.1152/ajpgi.00170.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sodium-taurocholate (TC) cotransporting polypeptide (NTCP) facilitates bile formation by mediating sinusoidal Na(+)-TC cotransport. During sepsis-induced cholestasis, there is a decrease in NTCP-dependent uptake of bile acids and an increase in nitric oxide (NO) levels in hepatocytes. In rat hepatocytes NO inhibits Na(+)-dependent uptake of taurocholate. The aim of this study was to extend these findings to human NTCP and to further investigate the mechanism by which NO inhibits TC uptake. Using a human hepatoma cell line stably expressing NTCP (HuH-NTCP), we performed experiments with the NO donors sodium nitroprusside and S-nitrosocysteine and demonstrated that NO inhibits TC uptake in these cells. Kinetic analyses revealed that NO significantly decreased the V(max) but not the K(m) of TC uptake by NTCP, indicating noncompetitive inhibition. NO decreased the amount of NTCP in the plasma membrane, providing a molecular mechanism for the noncompetitive inhibition of TC uptake. One way that NO can modify protein function is through a posttranslational modification known as S-nitrosylation: the binding of NO to cysteine thiols. Using a biotin switch technique we observed that NTCP is S-nitrosylated under conditions in which NO inhibits TC uptake. Moreover, dithiothreitol reversed NO-mediated inhibition of TC uptake and S-nitrosylation of NTCP, indicating that NO inhibits TC uptake via modification of cysteine thiols. In addition, NO treatment led to a decrease in Ntcp phosphorylation. Taken together these results indicate that the inhibition of TC uptake by NO involves S-nitrosylation of NTCP.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Umadevi Ramasamy
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
22
|
Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol 2010; 53:976-80. [PMID: 20800926 DOI: 10.1016/j.jhep.2010.07.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
Abstract
Portal hypertension accounts for the majority of morbidity and mortality that is encountered in patients with cirrhosis. Portal hypertension is initiated in large part through increases in intrahepatic vascular resistance. Fibrosis, regenerative nodule formation, and intrahepatic vasoconstriction are classical mechanisms that account for increased intrahepatic vascular resistance in cirrhosis. Recent data suggest that intrahepatic angiogenesis and sinusoidal remodeling could also be involved in sinusoidal resistance, fibrosis, and portal hypertension. While angiogenesis is defined as the formation of new vessels deriving from existing ones, sinusoidal remodeling in its pathological form associated with cirrhosis is characterized by increased mural coverage of vessels by contractile HSC. Most attention on the mechanisms of these processes has focused on the liver sinusoidal endothelial cell (SEC), the hepatic stellate cell (HSC), and the paracrine signaling pathways between these two cell types. Interventions that target these vascular structural changes have beneficial effects on portal hypertension and fibrosis in some animal studies which has stimulated interest for pursuing parallel studies in humans with portal hypertension.
Collapse
Affiliation(s)
- Dominique Thabut
- Gastroenterology Research Unit, Advanced Liver Disease Study Group, Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010; 49:307-16. [PMID: 20388537 PMCID: PMC2900489 DOI: 10.1016/j.freeradbiomed.2010.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where it is being produced. The organ where nitric oxide is produced is relevant, and within the organ, which types of cells are actually contributing to this production seem to play a major determinant of its effect. Subcellular compartmentalization of specific nitric oxide synthase enzymes has been shown to play a major role in health and disease. Pathophysiological conditions affect the cellular expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this study, we describe the compartmentalization of nitric oxide in organs, cells, and subcellular organelles and how its localization relates to several relevant clinical conditions. Understanding the complexity of the compartmentalization of nitric oxide production and the implications of this compartmentalization in terms of cellular targets and downstream effects will eventually contribute toward the development of better strategies for treating or preventing pathological events associated with the increase, inhibition, or mislocalization of nitric oxide production.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F. 11320
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
- Corresponding author: Dr. Cecilia Giulivi, Department of Molecular Biosciences, 1120 Haring Hall, University of California, Davis, CA. 95616, Tel. 530 754 8603, Fax. 530 754 9342,
| |
Collapse
|
24
|
Hoffman BG, Robertson G, Zavaglia B, Beach M, Cullum R, Lee S, Soukhatcheva G, Li L, Wederell ED, Thiessen N, Bilenky M, Cezard T, Tam A, Kamoh B, Birol I, Dai D, Zhao Y, Hirst M, Verchere CB, Helgason CD, Marra MA, Jones SJM, Hoodless PA. Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Res 2010; 20:1037-51. [PMID: 20551221 DOI: 10.1101/gr.104356.109] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver and pancreas share a common origin and coexpress several transcription factors. To gain insight into the transcriptional networks regulating the function of these tissues, we globally identify binding sites for FOXA2 in adult mouse islets and liver, PDX1 in islets, and HNF4A in liver. Because most eukaryotic transcription factors bind thousands of loci, many of which are thought to be inactive, methods that can discriminate functionally active binding events are essential for the interpretation of genome-wide transcription factor binding data. To develop such a method, we also generated genome-wide H3K4me1 and H3K4me3 localization data in these tissues. By analyzing our binding and histone methylation data in combination with comprehensive gene expression data, we show that H3K4me1 enrichment profiles discriminate transcription factor occupied loci into three classes: those that are functionally active, those that are poised for activation, and those that reflect pioneer-like transcription factor activity. Furthermore, we demonstrate that the regulated presence of H3K4me1-marked nucleosomes at transcription factor occupied promoters and enhancers controls their activity, implicating both tissue-specific transcription factor binding and nucleosome remodeling complex recruitment in determining tissue-specific gene expression. Finally, we apply these approaches to generate novel insights into how FOXA2, PDX1, and HNF4A cooperate to drive islet- and liver-specific gene expression.
Collapse
Affiliation(s)
- Brad G Hoffman
- Department of Cancer Endocrinology, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li R, Zhang N, Zhao J, Xu LH, Li YJ, Liu F, Chen WG. Peripheral and portal plasma iNOS activity and hepatic expression of iNOS in patients with chronic hepatitis or liver cirrhosis. Shijie Huaren Xiaohua Zazhi 2010; 18:664-668. [DOI: 10.11569/wcjd.v18.i7.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of nitric oxide (NO) in the development and progression of hepatitis and liver cirrhosis.
METHODS: Peripheral and portal plasma inducible nitric oxide synthase (iNOS) activity was measured by the nitric acid reductase method. The expression of iNOS mRNA and protein in the liver was measured by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemisty, respectively.
RESULTS: Peripheral and portal plasma iNOS activity, especially the latter, was significantly higher in patients with chronic hepatitis or liver cirrhosis than in normal controls (F = 102.793 and 25.052, respectively; both P < 0.01). The expression levels of iNOS protein in the liver of patients with chronic hepatitis or liver cirrhosis were enhanced when compared to that in normal controls (F = 46.796, P < 0.05). The expression levels of iNOS mRNA in the liver of patients with chronic hepatitis or hepatic cirrhosis were also higher than that in normal controls (F = 26.832, P < 0.01), showing an increasing trend with the progression of the diseases.
CONCLUSION: The iNOS/NO system plays an important role in the development and progression of chronic hepatitis and hepatic cirrhosis perhaps by dilating blood vessels.
Collapse
|
26
|
Das SK, Dhanya L, Varadhan S, Mukherjee S, Vasudevan DM. Effects of chronic ethanol consumption in blood: A time dependent study on rat. Indian J Clin Biochem 2009; 24:301-6. [PMID: 23105853 PMCID: PMC3453313 DOI: 10.1007/s12291-009-0056-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alcohol consumption and health outcomes are complex and multidimensional. Ethanol (1.6g / kg body weight/ day) exposure initially affects liver function followed by renal function of 16-18 week-old male albino rats of Wistar strain weighing 200-220 g. Chronic ethanol ingestion increased in thiobarbituric acid reactive substances level and glutathione s-transferase activity; while decreased reduced gluatathione content and activities of catalase, glutathione peroxidase and glutathione reductase in a time dependent manner in the hemolysate. Though superoxide dismutase activity increased initially might be due to adaptive response, but decreased later. Elevation of serum nitrite level and transforming growth factor-b(1) activity indicated that long-term ethanol consumption may cause hepatic fibrosis and can elicit pro-angiogenic factors. However, no alteration in vascular endothelial growth factor-C activity indicated that ethanol consumption is not associated with lymphangiogenesis. Therefore, we conclude that long-term ethanol-induced toxicity is linked to an oxidative stress, which may aggravate to fibrosis and elevate pro-angiogenic factors, but not associated with lymphangiogenesis.
Collapse
Affiliation(s)
- Subir Kumar Das
- Department of Biochemistry, Amrita Institute of Medical Sciences, Elamakkara, Cochin, 682026 Kerala India
- Department of Biochemistry, Agartala Govt. Medical College, Kunjaban PO, Agartala, 799006 Tripura India
| | - L. Dhanya
- Department of Biochemistry, Amrita Institute of Medical Sciences, Elamakkara, Cochin, 682026 Kerala India
| | - Sowmya Varadhan
- Department of Biochemistry, Amrita Institute of Medical Sciences, Elamakkara, Cochin, 682026 Kerala India
| | - Sukhes Mukherjee
- Department of Biochemistry, Amrita Institute of Medical Sciences, Elamakkara, Cochin, 682026 Kerala India
| | - D. M. Vasudevan
- Department of Biochemistry, Amrita Institute of Medical Sciences, Elamakkara, Cochin, 682026 Kerala India
| |
Collapse
|
27
|
Kemp W, Colman J, Thompson K, Madan A, Vincent M, Chin-Dusting J, Kompa A, Krum H, Roberts S. Norfloxacin treatment for clinically significant portal hypertension: results of a randomised double-blind placebo-controlled crossover trial. Liver Int 2009; 29:427-33. [PMID: 18673434 DOI: 10.1111/j.1478-3231.2008.01850.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND While selective intestinal decontamination (SID) can alter the hyperdynamic circulatory state of cirrhosis, the impact of SID on portal pressure remains unclear especially in the setting of clinically significant portal hypertension. AIMS To examine the impact of SID with norfloxacin on portal pressure in subjects with clinically significant portal hypertension and explore the potential mechanisms by which norfloxacin exerts its haemodynamic effects. METHODS Randomised, double blind, placebo-controlled, crossover trial of norfloxacin 400 mg twice daily for 4 weeks. The portal pressure was assessed by hepatic venous pressure gradient (HVPG). Endotoxaemia was assessed by the Limulus amebocyte lysate (LAL) assay. l-arginine (l-Arg) transporter function was assessed in peripheral blood mononuclear cells (PBMCs). Plasma levels of urotensin II (UII) and tumour necrosis factor were measured before and after therapy. RESULTS Sixteen subjects with clinically significant portal hypertension (16.5+/-1.1 mmHg) completed the study. Norfloxacin therapy was not superior to placebo in reducing HVPG (13.8+/-1.0 mmHg vs 13.6+/-1.2 mmHg, P=0.3). Furthermore, no alteration in l-Arg transport was detected after 4 weeks of norfloxacin therapy. Plasma UII levels correlated positively with HVPG (P=0.01) and the Child-Pugh score (P<0.05). However, UII levels following therapy did not parallel HVPG changes. CONCLUSIONS Norfloxacin is not superior to placebo in reducing HVPG in subjects with clinically significant portal hypertension. Furthermore, norfloxacin does not appear to modulate the l-Arg transporter mechanism in this patient population. Although plasma UII correlates positively with HVPG, UII does not appear to have a direct role in modulating HVPG.
Collapse
Affiliation(s)
- William Kemp
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells. Mol Cell Biochem 2008; 319:91-8. [DOI: 10.1007/s11010-008-9881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/03/2008] [Indexed: 01/16/2023]
|
29
|
Iwakiri Y, Grisham M, Shah V. Vascular biology and pathobiology of the liver: Report of a single-topic symposium. Hepatology 2008; 47:1754-63. [PMID: 18393322 PMCID: PMC2724750 DOI: 10.1002/hep.22203] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Portal hypertension and its complications account for the majority of morbidity and mortality that occurs in patients with cirrhosis. In addition to portal hypertension, a number of other vascular syndromes are also of great importance, especially the ischemia-reperfusion (IR) injury. With the identification of major vascular defects that could account for many of the clinical sequelae of these syndromes, the liver vasculature field has now integrated very closely with the broader vascular biology discipline. In that spirit, the Henry and Lillian Stratton Basic Research Single Topic Conference was held on the topic of Vascular Biology and Pathobiology of the Liver. The course took place approximately 10 years after the first American Association for the Study of Liver Disease (AASLD)-sponsored conference on this topic that occurred in Reston, Virginia. The conference initiated with an introduction to basic vascular cell signaling and then explored vascular biology specifically as it relates to liver cells. Subsequently, specific disease syndromes were discussed in more detail including portal hypertension and IR injury. Finally, clinical and translational sessions focused on emerging therapies and technologies to treat vascular diseases of the liver.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew Grisham
- Department of Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Vijay Shah
- GI Research Unit and Fitterman Center for Digestive Disease, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
30
|
Essential factors associated with hepatic angiogenesis. Life Sci 2007; 81:1555-64. [DOI: 10.1016/j.lfs.2007.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 01/20/2023]
|
31
|
Abstract
Portal hypertension is associated with changes in the intrahepatic, systemic, and portosystemic collateral circulation. Alterations in vasoreactivity (vasodilation and vasoconstriction) play a central role in the pathogenesis of portal hypertension by contributing to increased intrahepatic resistance, hyperdynamic circulation, and expansion of the collateral circulation. Portal hypertension is also importantly characterized by changes in vascular structure; termed vascular remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such as shear stress. These complementary processes of vasoreactivity and vascular remodeling contribute importantly to increased intrahepatic resistance and represent important targets in the treatment of portal hypertension. This review will focus on these processes within the intrahepatic circulation, a circulatory bed whose study, that Dr Roberto Groszmann has pioneered.
Collapse
|
32
|
Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 2007; 45:817-25. [PMID: 17326208 DOI: 10.1002/hep.21564] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- June Sung Lee
- Department of Internal Medicine, Inje University Ilsanpaik Hospital, Gyeonggi-do, South Korea
| | | | | | | |
Collapse
|
33
|
Rose R, Banerjee A, Ramaiah SK. Calpain inhibition attenuates iNOS production and midzonal hepatic necrosis in a repeat dose model of endotoxemia in rats. Toxicol Pathol 2007; 34:785-94. [PMID: 17162536 DOI: 10.1080/01926230600932497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic exposure to bacterial lipopolysaccharide (LPS, endotoxin) induces hypotension, disseminated intravascular coagulation and neutrophil infiltration in various organs including the lung, kidney and liver. A rat endotoxemic neutrophilic hepatitis model (repeat dose LPS, 10 mg/kg, i.v. 24 hours apart) was developed exhibiting hepatic neutrophil infiltration and mid-zonal hepatic necrosis. The goal of the study was to investigate the role of the intracellular enzyme calpain in the development of neutrophilic hepatitis with midzonal necrosis in this model. A second goal was to compare the observed protective effects of calpain inhibition with a relatively selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) and an inhibitor of coagulation, heparin. When compared to rats administered LPS alone, administration of calpain 1 inhibitor prior to LPS significantly reduced hepatic iNOS expression, hepatic neutrophil infiltration and attenuated midzonal hepatic necrosis. Administration of AG or heparin prior to LPS also decreased liver iNOS expression, hepatic neutrophil infiltration and liver pathology comparable to calpain inhibition. Blood neutrophil activation, as measured by the neutrophil adhesion molecule CD11b integrin, was upregulated in all the LPS treated groups regardless of inhibitor administration. We conclude that amelioration of liver pathology via calpain inhibition is likely dependent on the down-regulation of iNOS expression in the rat model of LPS-mediated hepatitis.
Collapse
Affiliation(s)
- Robert Rose
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | |
Collapse
|
34
|
Fiorucci S, Distrutti E, Cirino G, Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 2006; 131:259-71. [PMID: 16831608 DOI: 10.1053/j.gastro.2006.02.033] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/15/2006] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide, like nitric oxide, was best known as a toxic pollutant before becoming recognized as a key regulator of several physiologic processes. In recent years, evidence has accumulated to suggest important roles for hydrogen sulfide as a mediator of several aspects of gastrointestinal and liver function. Moreover, alterations in hydrogen sulfide production could contribute to disorders of the gastrointestinal tract and liver. For example, nonsteroidal anti-inflammatory drugs can reduce production of hydrogen sulfide in the stomach, and this has been shown to contribute to the generation of mucosal injury. Hydrogen sulfide has also been shown to play a key role in modulation of visceral hyperalgesia. Inhibitors of hydrogen sulfide synthesis and drugs that can generate safe levels of hydrogen sulfide in vivo have been developed and are permitting interventional studies in experimental models and, in the near future, humans.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimenti di Medicina Clinica and Patologia, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
35
|
Rondonotti E, Villa F, Signorelli C, de Franchis R. Portal hypertensive enteropathy. Gastrointest Endosc Clin N Am 2006; 16:277-86. [PMID: 16644456 DOI: 10.1016/j.giec.2006.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The available data on the use of VCE in patients who have cirrhosis and portal hypertension are inadequate to reach a firm conclusion about the usefulness of this diagnostic tool in this patient population. In fact, only retrospective case series exist, in which the characteristics of the patients are heterogeneous in terms of severity of liver disease and of portal hypertension, etiology of cirrhosis, and indication for VCE. In addition, the controls included in the studies are heterogeneous or poorly described. In spite of this, it appears that in patients with portal hypertension, the small bowel frequently shows mucosal abnormalities. Such abnormalities appear to be particularly frequent in patients who have severe portal hypertension and in those with low hemoglobin levels. The clinical significance of these findings remains undefined, however, especially in view of the fact that small bowel lesions also have been found in about 10% of patients with arthritis not taking nonsteroidal anti-inflammatory drugs and in 13.8% of healthy subjects [41,42]. Therefore,large prospective studies are needed to evaluate the prevalence and clinical significance of small bowel mucosal changes in patients who have cirrhosis. Such studies should compare patients who have cirrhosis with healthy subjects. A comparison between cirrhotic patients with a history of intestinal bleeding and bleeding patients without cirrhosis also would be interesting.
Collapse
Affiliation(s)
- Emanuele Rondonotti
- Gastroenterology and Gastrointestinal Endoscopy Unit, Ospedale Maggiore Policlinico, University of Milan, Via Pace 9, Milan 20122, Italy
| | | | | | | |
Collapse
|
36
|
Perri RE, Langer DA, Chatterjee S, Gibbons SJ, Gadgil J, Cao S, Farrugia G, Shah VH. Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation. Am J Physiol Gastrointest Liver Physiol 2006; 290:G535-42. [PMID: 16269521 DOI: 10.1152/ajpgi.00297.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.
Collapse
Affiliation(s)
- Roman E Perri
- Gastroenterology Research Unit, Department of Physiology, and Tumor Biology Program, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rodríguez-Ariza A, López-Sánchez LM, González R, Corrales FJ, López P, Bernardos A, Muntané J. Altered protein expression and protein nitration pattern during d-galactosamine-induced cell death in human hepatocytes: a proteomic analysis. Liver Int 2005; 25:1259-69. [PMID: 16343079 DOI: 10.1111/j.1478-3231.2005.01172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Hepatic injury by d-galactosamine (d-GalN) is a suitable experimental model of hepatocellular injury. The induction of oxidative and nitrosative stress participates during d-GalN-induced cell death in cultured rat hepatocytes. This study aimed to identify protein expression changes during the induction of apoptosis and necrosis by d-GalN in cultured human hepatocytes. METHODS A proteomic approach was used to identify the proteins involved and those altered by tyrosine nitration. A high dose of d-GalN (40 mM) was used to induce apoptosis and necrosis in primary culture of human hepatocytes. Cellular lysates prepared at different times after addition of d-GalN were separated by two-dimensional electrophoresis. Gel spots with an altered expression and those matching nitrotyrosine-immunopositive proteins were excised and analyzed by mass spectrometry. RESULTS d-GalN treatment upregulated microsomal cytochrome b5, fatty acid binding protein and manganese superoxide dismutase, and enhanced annexin degradation. d-GalN increased tyrosine nitration of four cytosolic (Hsc70, Hsp70, annexin A4 and carbonyl reductase) and three mitochondrial (glycine amidinotransferase, ATP synthase beta chain, and thiosulfate sulfurtransferase) proteins in human hepatocytes. CONCLUSIONS The results provide evidences that oxidative stress and nitric oxide-derived reactive oxygen intermediates induce specific alterations in protein expression that may be critical for the induction of apoptosis and necrosis by d-GalN in cultured human hepatocytes.
Collapse
|
38
|
Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 2005; 42:539-48. [PMID: 16108046 DOI: 10.1002/hep.20817] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulation of sinusoidal resistance is dependent on the contraction of hepatic stellate cells (HSC) around sinusoidal endothelial cell (SEC) through paracrine cross-talk of vasoconstrictor and vasodilator agents. Hydrogen sulfide (H2S), a recently discovered gas neurotransmitter, is a putative vasodilator whose role in hepatic vascular regulation and portal hypertension is unexplored. Four-week bile duct-ligated (BDL) rats with cirrhosis and control rats were treated daily with NaHS (56 micromol/kg) for 5 days. Isolated livers were perfused first with NaHS for 20 minutes and then with norepinephrine (NE) and the intrahepatic resistance studied. In normal rats and animals with cirrhosis, administration of NE resulted in a dose-dependent increase of portal pressure. This effect was attenuated by H2S treatment (P < .05). The H2S-induced relaxation of hepatic microcirculation was attenuated by glibenclamide, an adenosine triphosphate (ATP)-sensitive K+ channel inhibitor. L-Cysteine, a substrate of cystathionine-gamma-lyase (CSE), decreased vasoconstriction in normal rat livers (P < .05) but failed to do so in livers with cirrhosis. BDL resulted in a downregulation of CSE mRNA/protein levels and activity (P < .05). Our in vitro data demonstrate that CSE is expressed in hepatocytes, HSCs, but not in sinusoidal endothelial cells (SEC). HSC activation downregulates CSE mRNA expression, resulting in a defective production of H2S and abrogation of relaxation induced by L-cysteine. In conclusion, CSE-derived H2S is involved in the maintenance of portal venous pressure. The reduction of CSE expression in the liver with cirrhosis contributes to the development of increased intrahepatic resistance and portal hypertension.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina Clinica, Patologia, Clinica di Gastroenterologia ed Endoscopia Digestiva, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ji H, Shen H, Uhanova J, Zhang M, Minuk GY, Gong Y. Effects of sildenafil citrate on hepatic function and regeneration in normal and alcohol-fed rats. Liver Int 2005; 25:913-9. [PMID: 15998444 DOI: 10.1111/j.1478-3231.2005.01061.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Sildenafil citrate is a potent inhibitor of specific phosphodiesterase-5, which mediates metabolism of intracellular second message -- cGMP. Sildenafil citrate has been widely used for erectile dysfunction in men. Moreover, it is known that men with liver diseases have higher rate of erectile dysfunction. Furthermore, it has been demonstrated that nitric oxide plays an important role in liver function and regeneration. The present study evaluates effects of sildenafil citrate on hepatic function and regeneration in normal and alcohol-fed rats. In normal rats sildenafil citrate has a trend to improve hepatic function after partial hepatectomy (PHx). Moreover, sildenafil citrate significantly reduces hepatic regenerative activity at the concentration of 5 mg/kg body weight. However, sildenafil had no effects on hepatic function and regeneration of alcohol-fed rats. In general, sildenafil citrate did not induce significant changes in hepatic function and regenerative activity after PHx in normal and alcohol-fed rats, except at concentration of 5 mg/kg sildenafil citrate significantly inhibit hepatic regeneration in normal rats.
Collapse
Affiliation(s)
- Hong Ji
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The development of portal hypertension plays a major role in the pathogenesis of many of the complications of chronic liver disease. In developed countries, most patients with portal hypertension have cirrhosis, and, in this condition, portal pressure is elevated as a result of both an increase in hepatic resistance to portal perfusion and increased mesenteric blood flow. Bleeding from oesophageal varices is a major cause of mortality in patients with significant portal hypertension. This review concentrates on the recognition, prevention and acute management of this life threatening complication of cirrhosis.
Collapse
Affiliation(s)
- J S Lubel
- Department of Gastroenterology, Austin Health, Melbourne, Victoria, Australia
| | | |
Collapse
|
41
|
Chen Y, Hozawa S, Sawamura S, Sato S, Fukuyama N, Tsuji C, Mine T, Okada Y, Tanino R, Ogushi Y, Nakazawa H. Deficiency of inducible nitric oxide synthase exacerbates hepatic fibrosis in mice fed high-fat diet. Biochem Biophys Res Commun 2005; 326:45-51. [PMID: 15567150 DOI: 10.1016/j.bbrc.2004.10.202] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Indexed: 01/22/2023]
Abstract
The role of inducible nitric oxide synthase (iNOS) in the progression of fibrosis during nonalcoholic steatohepatitis remains to be elucidated. This study examined the role of iNOS in the progression of fibrosis during steatohepatitis by comparing iNOS knockout (iNOS(-/-)) and wild-type (iNOS(+/+)) mice that were fed a high-fat diet. Severe fatty metamorphosis developed in the liver of iNOS(+/+) and iNOS(-/-) mice. Fibrotic changes were marked in iNOS(-/-) mice. Gelatin zymography showed that pro MMP-2 and pro MMP-9 protein expressions were more highly induced in iNOS(+/+) mice than in iNOS(-/-) mice. Active forms of MMP-2 and MMP-9 were clearly present only in the liver tissue of iNOS(+/+) mice. In situ zymography showed strong gelatinolytic activities in the liver tissue of iNOS(+/+) mice, but only spotty activity in iNOS(-/-)mice. iNOS may attenuate the progression of liver fibrosis in steatohepatitis, in part by inducing MMP-2 and MMP-9 expression and augmenting their activity.
Collapse
Affiliation(s)
- Yi Chen
- Department of Physiology, School of Medicine, Tokai University, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miller K, McArdle S, Gale MJ, Geller DA, Tenoever B, Hiscott J, Gretch DR, Polyak SJ. Effects of the hepatitis C virus core protein on innate cellular defense pathways. J Interferon Cytokine Res 2005; 24:391-402. [PMID: 15296650 DOI: 10.1089/1079990041535647] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hepatitis C virus (HCV) core protein is thought to contribute to HCV pathogenesis through its interaction with various signal transduction pathways. In this study, we explored the interaction of the core protein with innate defense pathways (interferon [IFN] regulatory factor [IRF], Jak-Stat, and inducible nitric oxide synthase [iNOS]) in HeLa and Huh7 human cell lines. Expression of a patient-derived genotype 1b core protein activated human IRF-1 and guanylate-binding protein-2 (GBP-2) promoters, induced IRF-1 mRNA, but failed to induce IRF-3 phosphorylation. HCV core protein caused dose-dependent induction of the IFN-beta promoter and IFN-beta mRNA but not the IFN-alpha1 and IFN-alpha4 promoters. In the presence of IFN-alpha, core expression was associated with increased IFN-stimulated gene factor 3 (ISGF3) binding to the IFN-stimulated response element (ISRE) and tyrosine phosphorylation of Stat1. Core expression resulted in dose-dependent activation of the ISRE and gamma activated sequence (GAS) promoters, in both the absence and the presence of either IFN-alpha or IFN-gamma. Core stimulated the human iNOS promoter and induced iNOS protein. The data indicate that HCV core can modulate IRF, Jak-Stat, and iNOS pathways and suggest mechanisms by which core could affect HCV persistence and pathogenesis.
Collapse
Affiliation(s)
- Kristen Miller
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA 98104-2499, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rasaratnam B, Connelly N, Chin-Dusting J. Nitric oxide and the hyperdynamic circulation in cirrhosis: is there a role for selective intestinal decontamination? Clin Sci (Lond) 2004; 107:425-34. [PMID: 15270715 DOI: 10.1042/cs20040157] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal vascular tone is responsible for many of the complications seen in cirrhosis making the identification of the pathophysiology of abnormal dilatation a major focus in hepatology research. The study of abnormal vascular tone is complicated by the multiple vascular beds involved (hepatic, splanchnic, peripheral, renal and pulmonary), the differences in the underlying cause of portal hypertension (hepatic versus pre-hepatic) and the slow evolution of the hyperdynamic state. The autonomic nervous system, circulating vasodilators and abnormalities in vascular smooth muscle cells (receptors, ion channels, signalling systems and contraction) have all been implicated. There is overwhelming evidence for an overproduction of NO (nitric oxide) contributing to the peripheral dilatation in both animal models of, and in humans with, cirrhosis and portal hypertension. This review focuses on the proposal that endotoxaemia, possibly from gut-derived bacterial translocation, causes induction of NOS (NO synthase) leading to increased vascular NO production, which is the primary stimulus for the development of vasodilatation in cirrhosis and its accompanying clinical manifestations. The current controversy lies not in whether NO production is elevated, but in which isoform of NOS is responsible. We review the evidence for endotoxaemia in cirrhosis and the factors contributing to gut-derived bacterial translocation, including intestinal motility and permeability, and finally discuss the possible role of selective intestinal decontamination in the management of circulatory abnormalities in cirrhosis.
Collapse
Affiliation(s)
- Brindhesha Rasaratnam
- Alfred and Baker Medical Unit, Wynn Domain, Baker Heart Research Institute, St Kilda Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|