1
|
Szczepanik K, Oczkowicz M, Dobrowolski P, Świątkiewicz M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals (Basel) 2023; 13:3268. [PMID: 37893992 PMCID: PMC10603637 DOI: 10.3390/ani13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
During the weaning period, piglets are exposed to high levels of stress, which often causes problems with the digestive system. This stress also promotes the production of free radicals, resulting in oxidative stress. Astaxanthin (AST) stands out as one of the most potent antioxidants. Its resistance to light and heat makes it particularly valuable in compound feed production. This study was to determine the effect of AST impact on liver histology and gene expression in piglets. For our experiment, we used 16 weaned piglets of the PL breed, which we divided into two groups: Group I (control group with no AST supplementation) and Group II (supplemented with AST at 0.025 g/kg). Both feed mixtures were iso-proteins and iso-energetic, meeting the nutritional requirements of the piglets. The experiment lasted from day 35 to day 70 of the piglets' age, during which they had ad libitum access. The results indicate that the addition of AST prevents liver fibrosis due to reduced collagen deposition in the tissue. Analysis of gene expression supported these results. In the AST-supplemented group, we noted a decrease in NR1H3 expression, an increase in CYP7A1 expression, and reductions in the expression of NOTCH1 and CREB genes.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| |
Collapse
|
2
|
SOD3 Suppresses the Expression of MMP-1 and Increases the Integrity of Extracellular Matrix in Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11050928. [PMID: 35624792 PMCID: PMC9138143 DOI: 10.3390/antiox11050928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/31/2023] Open
Abstract
The superoxide dismutase (SOD) family functions as a reactive oxygen species (ROS)-scavenging system by converting superoxide anions into hydrogen peroxide in the cytosol (SOD1), mitochondria (SOD2), and extracellular matrix (SOD3). In this study, we examined the potential roles of SOD family members in skin aging. We found that SOD3 expression levels were significantly more reduced in the skin tissues of old mice and humans than in young counterparts, but SOD1 and SOD2 expression levels remained unchanged with aging. Accordingly, we analyzed the effects of SOD3 on intracellular ROS levels and the integrity of the extracellular matrix in fibroblasts. The treatment of foreskin fibroblasts with recombinant SOD3 reduced the intracellular ROS levels and secretion of MMP-1 while increasing the secretion of type I collagen. The effects of SOD3 were greater in fibroblasts treated with the TNF-α. SOD3 treatment also decreased the mRNA levels and promoter activity of MMP-1 while increasing the mRNA levels and promoter activities of COL1A1 and COL1A2. SOD3 treatment reduced the phosphorylation of NF-κB, p38 MAPK, ERK, and JNK, which are essential for MMP-1 transactivation. In a three-dimensional culture of fibroblasts, SOD3 decreased the amount of type I collagen fragments produced by MMP-1 and increased the amount of nascent type I procollagen. These results demonstrate that SOD3 reduces intracellular ROS levels, suppresses MMP-1 expression, and induces type I collagen expression in fibroblasts. Therefore, SOD3 may play a role in delaying or preventing skin aging.
Collapse
|
3
|
Sandoval C, Farías J, Zamorano M, Herrera C. Vitamin Supplements as a Nutritional Strategy against Chronic Alcohol Consumption? An Updated Review. Antioxidants (Basel) 2022; 11:antiox11030564. [PMID: 35326214 PMCID: PMC8945215 DOI: 10.3390/antiox11030564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that blood vitamin levels are low in alcoholic patients. In effect, alcohol use abuse is considered a chronic disease that promotes the pathogenesis of many fatal diseases, such as cancer and liver cirrhosis. The alcohol effects in the liver can be prevented by antioxidant mechanisms, which induces enzymatic as well as other nonenzymatic pathways. The effectiveness of several antioxidants has been evaluated. However, these studies have been accompanied by uncertainty as mixed results were reported. Thus, the aim of the present review article was to examine the current knowledge on vitamin deficiency and its role in chronic liver disease. Our review found that deficiencies in nutritional vitamins could develop rapidly during chronic liver disease due to diminished hepatic storage and that inadequate vitamins intake and alcohol consumption may interact to deplete vitamin levels. Numerous studies have described that vitamin supplementation could reduce hepatotoxicity. However, further studies with reference to the changes in vitamin status and the nutritional management of chronic liver disease are in demand.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Correspondence: ; Tel.: +56-45-2325720
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Zamorano
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Christian Herrera
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
4
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
5
|
Carrasco D, Carrasco C, Souza-Mello V, Sandoval C. Effectiveness of antioxidant treatments on cytochrome P450 2E1 (CYP2E1) activity after alcohol exposure in humans and in vitro models: A systematic review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1961801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Danitza Carrasco
- Carrera De Tecnología Médica, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| | - Camila Carrasco
- Carrera De Tecnología Médica, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| | - Vanessa Souza-Mello
- Laboratorio De Morfometría, Metabolismo Y Enfermedades Cardiovasculares, Centro Biomédico, Instituto De Biología, Universidade Do Estado Do Rio De Janeiro, Rio De Janeiro, Brazil
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
- Departamento De Ciencias Preclínicas, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Sun C, Liu B, Zhou Q, Xiong Z, Shan F, Zhang H. Response of Macrobrachium rosenbergii to Vegetable Oils Replacing Dietary Fish Oil: Insights From Antioxidant Defense. Front Physiol 2020; 11:218. [PMID: 32231592 PMCID: PMC7082322 DOI: 10.3389/fphys.2020.00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/25/2020] [Indexed: 11/27/2022] Open
Abstract
The study was conducted to evaluate the effects of fish oil replacement by vegetable oils on growth performance, histology, and antioxidant capacity of Macrobrachium rosenbergii. Three isonitrogenous and isoenergetic diets were formulated with different lipid sources included. DFO diet contained 6% fish oil, whereas DSO and DRO diets included 6% soybean oil and rapeseed oil (RO) as alternatives for fish oil, respectively. Prawns were fed thrice daily for 8 weeks. The results showed that prawns in DFO group showed significantly lower final weight, weight gain ratio, and specific growth rate (SGR), but higher feed intake and feed coefficient ratio than those in DSO and DRO groups. In hepatocellular ultrastructure, malformed and atrophic nucleus and higher apoptosis ratio were observed in DFO group. In addition, levels of haemolymph proinflammatory cytokines, activities of anti-superoxide anion, inducible-type NO-synthase (iNOS) and content of nitric oxide, and hepatopancreas NF-κB signal pathway gene expression in DFO group increased markedly compared to those of DSO and DRO groups. The results suggested that vegetable oils, such as soybean oil and RO might be the better lipid sources in diets for Macrobrachium rosenbergii than fish oil, it may be attributed to modified oxidative status induced by NF-κB-NO signal pathway.
Collapse
Affiliation(s)
- Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zhe Xiong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
7
|
Hayashida M, Hashimoto K, Ishikawa T, Miyamoto Y. Vitronectin deficiency attenuates hepatic fibrosis in a non-alcoholic steatohepatitis-induced mouse model. Int J Exp Pathol 2019; 100:72-82. [PMID: 30887659 DOI: 10.1111/iep.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Vitronectin (VN), an extracellular matrix protein, is a promising immune biomarker of non-alcoholic steatohepatitis (NASH); however, its precise function remains unclear. This study investigated how VN deficiency contributes to the development of NASH. Towards this aim, wild-type (WT) and VN-/- mice were fed with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 6 and 10 weeks to induce NASH, and the livers were isolated. In WT mice fed with CDAHFD for 6 and 10 weeks, the expression of Vn mRNA and protein was up-regulated compared with that in mice fed with the MF control diet, indicating that VN is regulated in NASH condition. VN-/- mice showed decreased picrosirius red staining in the liver area and Col1a2 mRNA expression levels, compared with WT mice, indicating that the severity of hepatic fibrosis is attenuated in the CDAHFD-fed VN-/- mice. In addition, VN deficiency did not affect the area of lipid droplets in haematoxylin-eosin staining and the mRNA expression levels of fatty acid synthases, Srebp, Acc and Fas in the CDAHFD-fed mice. Moreover, VN deficiency decreased the inflammation score and the mRNA expression levels of Cd11b and F4/80, macrophage markers, as well as Tnf-α and Il-1β, inflammatory cytokines in the CDAHFD-fed mice. Furthermore, VN deficiency decreased the protein and mRNA expression levels of α-smooth muscle actin in the CDAHFD-fed mice, suggesting that VN deficiency inhibits the activation of hepatic stellate cells (HSCs). Our findings indicate that VN contributes to the development of fibrosis in the NASH model mice via modulation of the inflammatory reaction and activation of HSCs.
Collapse
Affiliation(s)
- Momoka Hayashida
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Kei Hashimoto
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoko Ishikawa
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
8
|
Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr 2018; 59:S116-S129. [PMID: 30580553 DOI: 10.1080/10408398.2018.1544542] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess alcohol exposure leads to alcoholic liver disease (ALD), a predominant cause of liver-related morbidity and mortality worldwide. In the past decade, increasing attention has been paid to understand the association between n-3 polyunsaturated fatty acids (n-3 PUFAs) and ALD. In this review, we summarize the metabolism of n-3 PUFAs, animal model of ALD, and the findings from recent studies determining the role of n-3 PUFAs in ALD as a possible treatment. The animal models of acute ethanol exposure, chronic ethanol exposure and chronic-plus-single binge ethanol feeding have been widely used to explore the impact of n-3 PUFAs. Although the results of studies regarding the role of n-3 PUFAs in ALD have been inconsistent or controversial, increasing evidence has demonstrated that n-3 PUFAs may be useful in alleviating alcoholic steatosis and alcohol-induced liver injury through multiple mechanisms, including decreased de novo lipogenesis and lipid mobilization from adipose tissue, enhanced mitochondrial fatty acid β-oxidation, reduced hepatic inflammation and oxidative stress, and promoted intestinal homeostasis, positively suggesting that n-3 PUFAs might be promising for the management of ALD. The oxidation of n-3 PUFAs ex vivo in an experimental diet was rarely considered in most n-3 PUFA-related studies, likely contributing to the inconsistent results. Thus, the role of n-3 PUFAs in ALD deserves greater research efforts and remains to be evaluated in randomized, placebo-controlled clinic trial. ABBREVIATION AA arachidonic acid ACC acetyl-CoA carboxylase ACLY ATP-citrate lyase ACO acyl-CoA oxidase ALA α-linolenic acid ALD alcoholic liver disease ALP alkaline phosphatase ALT alanine aminotransferase AMPK AMP-activated protein kinase AST aspartate aminotransferase ATGL adipose triglyceride lipase cAMP cyclic adenosine 3',5'-monophosphate COX cyclooxygenases CPT1 carnitine palmitoyltransferase 1 CYP2E1 cytochrome P450 2E1 DGAT2 diacylglycerol acyltransferase 2 DGLA dihomo-γ-linolenic acid DHA docosahexaenoic acid DPA docosapentaenoic acid DTA docosatetraenoic acid EPA eicosapentaenoic acid ER endoplasmic reticulum ETA eicosatetraenoic acid FAS fatty acid synthase FATPs fatty acid transporter proteins GLA,γ linolenic acid GPR120 G protein-coupled receptor 120 GSH glutathione; H&E haematoxylin-eosin; HO-1 heme oxygenase-1; HSL hormone-sensitive lipase; IL-6 interleukin-6 iNOS nitric oxide synthase LA linoleic acid LBP lipopolysaccharide binding protein LOX lipoxygenases LXR liver X receptor LXREs LXR response elements MCP-1 monocyte chemotactic protein-1 MTP microsomal triglyceride transfer protein MUFA monounsaturated fatty acids MyD88 myeloid differentiation factor 88 n-3 PUFAs omega-3 polyunsaturated fatty acid NAFLD nonalcoholic fatty liver disease NASH nonalcoholic steatohepatitis NF-κB transcription factor nuclear factor κB PDE3B phosphodiesterase 3B PPAR peroxisome proliferator-activated receptor ROS reactive oxygen species RXR retinoid X receptor SCD-1 stearyl CoA desaturase-1 SDA stearidonic acid SFA saturated fatty acids SIRT1 sirtuin 1 SOD superoxide dismutase SREBP sterol regulatory element-binding protein TB total bilirubin TC total cholesterol TG triacylglycerol TLR4 Toll-like receptor-4 TNF-α tumor necrosis factor-α VLDLR very low-density lipoprotein receptor WT wild type; ZO-1 zonula occludens-1.
Collapse
Affiliation(s)
- Meng Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China.,b Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University , Shijiazhuang , Hebei , China
| | - Li-Juan Ma
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yan Yang
- c Department of Nutrition, School of Public Health , Sun Yat-Sen University , Guangzhou , China
| | - Zeyu Xiao
- d Collaborative Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bo Wan
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
9
|
Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol 2018; 19:56-64. [PMID: 29853428 DOI: 10.1016/j.ajg.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/09/2016] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of various chronic liver diseases (CLD) and increasing evidence have confirmed the contributory role of oxidative stress in the pathogenesis of drugs and chemical-induced CLD. Chronic liver injury is manifested as necrosis, cholestasis, fibrosis, and cirrhosis. Chronic administration of anti-tubercular, anti-retroviral, immunosuppressive drugs is reported to induce free radical generation during their biotransformation in the liver. Further, these reactive intermediates are said to induce profibrogenic cytokines, several inflammatory markers, collagen synthesis during the progression of hepatic fibrosis. Oxidative stress and free radicals are reported to induce activation and proliferation of hepatic stellate cells in the injured liver leading to the progression of CLD. Hence, to counteract or to scavenge these reactive intermediates, several plant-derived antioxidant principles have been effectively employed against oxidative stress and came out with promising results in human and experimental models of CLD. This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu-600 077, India.
| |
Collapse
|
10
|
Xu J, Ma H, Liang S, Sun M, Karin G, Koyama Y, Hu R, Quehenberger O, Davidson NO, Dennis EA, Kisseleva T, Brenner DA. The role of human cytochrome P450 2E1 in liver inflammation and fibrosis. Hepatol Commun 2017; 1:1043-1057. [PMID: 29404441 PMCID: PMC5721400 DOI: 10.1002/hep4.1115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/22/2017] [Accepted: 09/01/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human CYP2E1 gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries. After intragastric alcohol feeding, CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation, fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipidomics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins support these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057).
Collapse
Affiliation(s)
- Jun Xu
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Hsiao‐Yen Ma
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Shuang Liang
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Mengxi Sun
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Gabriel Karin
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Yukinori Koyama
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Ronglin Hu
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Oswald Quehenberger
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of PharmacologyUniversity of California San DiegoLa JollaCA
| | | | - Edward A. Dennis
- Department of PharmacologyUniversity of California San DiegoLa JollaCA
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCA
| | | | - David A. Brenner
- Department of MedicineUniversity of California San DiegoLa JollaCA
| |
Collapse
|
11
|
Lavoie EG, Fausther M, Goree JR, Dranoff JA. The Cholangiocyte Adenosine-IL-6 Axis Regulates Survival During Biliary Cirrhosis. Gene Expr 2017; 17:327-340. [PMID: 28893353 PMCID: PMC5885153 DOI: 10.3727/105221617x15042723767876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial response to injury is critical to the pathogenesis of biliary cirrhosis, and IL-6 has been suggested as a mediator of this phenomenon. Several liver cell types can secrete IL-6 following activation by various signaling molecules including circulating adenosine. The aims of this study were to assess whether adenosine can induce IL-6 secretion by cholangiocytes via the A2b adenosine receptor (A2bAR) and to determine the effect of A2bAR-sensitive IL-6 release on injury response in biliary cirrhosis. Human normal cholangiocyte H69 cells were used for in vitro studies to determine the mechanism by which adenosine and the A2bAR induce release of IL-6. In vivo, control and A2bAR-deficient mice were used to determine the roles of A2bAR-sensitive IL-6 release in biliary cirrhosis induced by common bile duct ligation (BDL). Additionally, the response to exogenous IL-6 was assessed in C57BL/6 and A2bAR-deficient mice. Adenosine induced IL-6 mRNA expression and protein secretion via A2bAR activation. Although activation of A2bAR induced cAMP and intracellular Ca2+ signals, only the Ca2+ signals were linked to IL-6 upregulation. After BDL, A2bAR-deficient mice have impaired survival, which is further impaired by exogenous IL-6; however, decreased survival is not due to changes in fibrosis and no changes in inflammatory cells. Exogenous IL-6 is associated with the increased presence of bile infarcts. Extracellular adenosine induces cholangiocyte IL-6 release via the A2bAR. This signaling pathway is important in the pathogenesis of injury response in biliary cirrhosis but does not alter fibrosis. Adenosine upregulates IL-6 release by cholangiocytes via the A2bAR in a calcium-sensitive fashion. Mice deficient in A2bAR experience impaired survival after biliary cirrhosis induced by common bile duct ligation independent of changes in fibrosis.
Collapse
Affiliation(s)
- Elise G. Lavoie
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- †Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, USA
| | - Michel Fausther
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- †Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, USA
| | - Jessica R. Goree
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- †Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, USA
| | - Jonathan A. Dranoff
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- †Research Service, Central Arkansas VA Healthcare System, Little Rock, AR, USA
| |
Collapse
|
12
|
Hu B, Xu G, Zheng Y, Tong F, Qian P, Pan X, Zhou X, Shen R. Chelerythrine Attenuates Renal Ischemia/Reperfusion-induced Myocardial Injury by Activating CSE/H 2S via PKC/NF-κB Pathway in Diabetic Rats. Kidney Blood Press Res 2017. [DOI: 10.1159/000477948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Huang W, Wang B, Li X, Kang JX. Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis. Biofactors 2015; 41:453-62. [PMID: 26637972 DOI: 10.1002/biof.1246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
Abstract
Effective means for the prevention of alcohol-induced liver disease, a global health problem, have yet to be developed. We evaluated whether the high endogenous levels of omega-3 polyunsaturated acids (n-3 PUFA) in fat-1 transgenic mice could protect them against acute ethanol-induced liver steatosis. We induced alcoholic liver steatosis in 9-week-old male heterozygous fat-1 mice and their wild-type (WT) male littermates through three oral gavages of 60% ethanol at 4.7 g/kg body weight. Hepatic lipid accumulation was significantly increased in both alcohol treatment groups, but by much less in the fat-1 group compared with the WT group. Fat-1 mice exhibited significantly lower levels of total hepatic/plasma TG and plasma alanine aminotransferase activity. Accordingly, hepatic expression of lipogenesis-related genes (e.g., SREBP-1c, FAS, and SCD-1) and plasma levels of inflammatory cytokines (e.g., IL-6, TNF-α, and MCP-1) were reduced in the fat-1 mice. Furthermore, decreased hepatic expression of cytochrome P450 2E1 (CYP2E1) and increased hepatic levels of PPAR-α and HO-1 were observed in the fat-1 mice, compared to the WT mice. These findings show that elevated tissue n-3 PUFA protect against acute ethanol-induced liver steatosis in fat-1 mice, possibly through the down-regulation of hepatic lipogenesis, inflammatory response, and oxidative stress.
Collapse
Affiliation(s)
- Wei Huang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Biomedical Analysis Center, Third Military Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiangyong Li
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Jiang ZH, Khoso PA, Yao HD, Zhang ZW, Zhang XY, Xu SW. SelW regulates inflammation-related cytokines in response to H2O2in Se-deficient chicken liver. RSC Adv 2015. [DOI: 10.1039/c4ra16055j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) deficiency-induced liver damage is related to oxidative stress, and the alternative transcription of cytokines has been linked to liver disease.
Collapse
Affiliation(s)
- Zhi-Hui Jiang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
- College of Veterinary Medicine
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Hai-Dong Yao
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Zi-Wei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Xiao-Ying Zhang
- College of Veterinary Medicine
- Northwest A&F University
- Yangling
- P. R. China
| | - Shi-wen Xu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
15
|
|
16
|
Arriazu E, Ruiz de Galarreta M, Cubero FJ, Varela-Rey M, Pérez de Obanos MP, Leung TM, Lopategi A, Benedicto A, Abraham-Enachescu I, Nieto N. Extracellular matrix and liver disease. Antioxid Redox Signal 2014; 21:1078-97. [PMID: 24219114 PMCID: PMC4123471 DOI: 10.1089/ars.2013.5697] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. CRITICAL ISSUES This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. RECENT ADVANCES Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF' apoptosis, senescence, and reversal to quiescence. FUTURE DIRECTIONS We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new "omics" tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs.
Collapse
Affiliation(s)
- Elena Arriazu
- 1 Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine , New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fujii H, Kawada N. Fibrogenesis in alcoholic liver disease. World J Gastroenterol 2014; 20:8048-8054. [PMID: 25009376 PMCID: PMC4081675 DOI: 10.3748/wjg.v20.i25.8048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. In developed countries, ALD is a major cause of end-stage liver disease that requires transplantation. The spectrum of ALD includes simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Alcohol abstinence is the most effective therapy for ALD. However, targeted therapies are urgently needed for patients with severe ALD (i.e., alcoholic hepatitis) or those who do not abstain from alcohol. The lack of studies and the availability of animal models that do not reflect all the features of this disease in humans inhibit the development of new drugs for ALD. In ALD-associated fibrosis, hepatic stellate cells are the principal cell type responsible for extracellular matrix production. Although the mechanisms underlying fibrosis in ALD are largely similar to those observed in other chronic liver diseases, oxidative stress, methionine metabolism abnormalities, hepatocyte apoptosis, and endotoxin lipopolysaccharides that activate Kupffer cells may play unique roles in disease-related fibrogenesis. Lipogenesis during the early stages of ALD has recently been implicated as a risk factor for the progression of cirrhosis. Other topics include osteopontin, interleukin-1 signaling, and genetic polymorphism. In this review, we discuss the basic pathogenesis of ALD and focus on liver fibrogenesis.
Collapse
|
18
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
19
|
Galicia-Moreno M, Gutiérrez-Reyes G. Papel del estrés oxidativo en el desarrollo de la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014; 79:135-44. [DOI: 10.1016/j.rgmx.2014.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022]
|
20
|
Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014. [DOI: 10.1016/j.rgmxen.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Sergent O, Podechard N, Aliche-Djoudi F, Lagadic-Gossmann D. Acides gras polyinsaturés oméga 3 et toxicité hépatique de l’éthanol : rôle du remodelage membranaire. NUTR CLIN METAB 2014. [DOI: 10.1016/j.nupar.2013.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Kim BH, Yoon JH, Yang JI, Myung SJ, Lee JH, Jung EU, Yu SJ, Kim YJ, Lee HS, Kim CY. Guggulsterone attenuates activation and survival of hepatic stellate cell by inhibiting nuclear factor kappa B activation and inducing apoptosis. J Gastroenterol Hepatol 2013; 28:1859-68. [PMID: 23808824 DOI: 10.1111/jgh.12314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Liver fibrosis is associated with the deposition of the extracellular matrix, and hepatic stellate cells (HSCs) are the major source of these matrix proteins. Guggulsterone has recently been shown to induce apoptosis in several cell lines. Thus, the aim of this study was to evaluate whether guggulsterone has antifibrotic activities by reducing the activation and survival of HSCs. METHODS Apoptotic and fibrosis-related signaling pathways and nuclear factor kappa B (NF-κB) activity were explored in LX-2 cells, an immortalized human HSC line, and in a mice model of liver fibrosis. RESULTS Guggulsterone suppressed LX-2 cell growth in a dose- and activation-dependent manner. This growth suppression was due to the induction of HSC apoptosis, which was mediated by the activation of c-Jun N-terminal kinase and mitochondrial apoptotic signaling. Additionally, guggulsterone regulated phosphorylation of Akt and adenosine monophosphate-activated protein kinase, which were subsequently proven responsible for the guggulsterone-induced HSC growth suppression. Guggulsterone inhibited NF-κB activation in LX-2 cells, which is one of the major mediators in HSC activation. Indeed, guggulsterone decreased collagen α1 synthesis and α-smooth muscle actin expression in these cells. Compared with the control mice or mice treated with a low dose of guggulsterone, high dose of guggulsterone significantly decreased the extent of collagen deposition and the percentage of activated HSCs undergoing apoptosis. CONCLUSIONS These results demonstrate that guggulsterone suppressed HSC activation and survival by inhibiting NF-κB activation and inducing apoptosis. Therefore, guggulsterone may be useful as an antifibrotic agent in chronic liver diseases.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea; Center for Liver Cancer, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang C, Li X, Wang H, Xie Q, Xu Y. Notch1-Nuclear Factor κB Involves in Oxidative Stress-Induced Alcoholic Steatohepatitis. Alcohol Alcohol 2013; 49:10-6. [DOI: 10.1093/alcalc/agt167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Leung TM, Wang X, Kitamura N, Fiel MI, Nieto N. Osteopontin delays resolution of liver fibrosis. J Transl Med 2013; 93:1082-9. [PMID: 23999249 DOI: 10.1038/labinvest.2013.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/30/2022] Open
Abstract
To date, considerable progress has been made both in the mechanisms driving liver fibrosis and in the prevention of disease progression. Resolution of liver fibrosis is an emerging field in hepatology; yet, the mediators involved remain elusive. Earlier work from our laboratory demonstrated that the matricellular cytokine osteopontin (OPN) is pro-fibrogenic by promoting hepatic stellate cell (HSC) activation and extracellular matrix (ECM) deposition in vitro and in vivo and specifically by governing fibrillar collagen-I expression, the key pro-fibrogenic protein. Here we hypothesized that OPN could also delay the resolution of liver fibrosis by sustaining collagen-I synthesis or by preventing its degradation. To demonstrate this, wild-type (WT) and OPN-knockout (Opn(-/-)) mice were administered thioacetamide (TAA) in the drinking water for 4 months. Half of the mice were killed at 4 months to assess the extent of fibrosis at the peak of injury, and the rest of the mice were killed 2 months after TAA withdrawal to determine the rate of fibrosis resolution. Following TAA cessation, livers from Opn(-/-) mice showed no centrilobular and parenchymal necrosis along with faster ECM remodeling than WT mice. The latter was quantified by less fibrillar collagen-I immunostaining. Western blot analysis demonstrated a significant decrease in fibrillar collagen-I and in tissue inhibitor of metalloproteinase-1 (TIMP-1) in Opn(-/-) mice undergoing fibrosis resolution compared with WT mice. In conclusion, these results suggest that OPN delays liver fibrosis resolution due to sustained fibrillar collagen-I deposition; hence, inhibiting OPN could be an effective therapeutic strategy for resolving liver fibrosis.
Collapse
Affiliation(s)
- Tung-Ming Leung
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
25
|
Tian W, Xu H, Fang F, Chen Q, Xu Y, Shen A. Brahma-related gene 1 bridges epigenetic regulation of proinflammatory cytokine production to steatohepatitis in mice. Hepatology 2013; 58:576-88. [PMID: 23281043 DOI: 10.1002/hep.26207] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 12/11/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Chronic inflammation, inflicted by the spillover of proinflammatory mediators, links metabolic dysfunction to nonalcoholic steatohepatitis (NASH). The epigenetic maneuverings that underscore accelerated synthesis of proinflammatory mediators in response to nutritional inputs are not clearly defined. Here we report that the ATP-dependent chromatin remodeling proteins Brahma-related gene 1 (Brg1) and Brahma (Brm) were up-regulated in vitro in cultured hepatocytes treated with free fatty acid or glucose and in vivo in animal models of NASH. Occupancy of Brg1 and Brm on the promoter regions of proinflammatory genes was increased in vitro in cells and ex vivo in liver tissues. Estradiol suppressed the induction and recruitment of Brg1/Brm by palmitate. Recruitment of Brg1 and Brm relied on nuclear factor kappa B/p65; reciprocally, Brg1 and Brm contributed to the stabilization of p65 binding. Importantly, overexpression of Brg1/Brm enhanced, whereas knockdown of Brg1/Brm attenuated, the induction of proinflammatory mediators in hepatocytes challenged with excessive nutrient. Mechanistically, Brg1 and Brm were involved in the maintenance of a chromatin microenvironment marked by active histone modifications and friendly to the access of the general transcriptional machinery. Finally, depletion of Brg1/Brm by short hairpin RNA attenuated the release of proinflammatory mediators in the liver and significantly ameliorated hepatic pathology in NASH mice. CONCLUSION Our data illustrate a Brg1-dependent pathway that connects the epigenetic regulation of proinflammatory genes to the pathogenesis of NASH and point to a potential druggable target in the therapeutic intervention of NASH.
Collapse
Affiliation(s)
- Wenfang Tian
- State Key Laboratory of Reproductive Medicine, Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
26
|
Aliche-Djoudi F, Podechard N, Collin A, Chevanne M, Provost E, Poul M, Le Hégarat L, Catheline D, Legrand P, Dimanche-Boitrel MT, Lagadic-Gossmann D, Sergent O. A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes. Food Chem Toxicol 2013; 60:286-96. [PMID: 23907024 DOI: 10.1016/j.fct.2013.07.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
Abstract
Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures.
Collapse
Affiliation(s)
- Fatiha Aliche-Djoudi
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, 2, av Pr Léon Bernard, 35043 Rennes Cédex, France; Université de Rennes 1, Biosit UMS3080, 2, av Pr Léon Bernard, 35043 Rennes Cédex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
García-Heredia A, Kensicki E, Mohney RP, Rull A, Triguero I, Marsillach J, Tormos C, Mackness B, Mackness M, Shih DM, Pedro-Botet J, Joven J, Sáez G, Camps J. Paraoxonase-1 deficiency is associated with severe liver steatosis in mice fed a high-fat high-cholesterol diet: a metabolomic approach. J Proteome Res 2013; 12:1946-55. [PMID: 23448543 DOI: 10.1021/pr400050u] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a determinant of liver steatosis and the progression to more severe forms of disease. The present study investigated the effect of paraoxonase-1 (PON1) deficiency on histological alterations and hepatic metabolism in mice fed a high-fat high-cholesterol diet. We performed nontargeted metabolomics on liver tissues from 8 male PON1-deficient mice and 8 wild-type animals fed a high-fat, high-cholesterol diet for 22 weeks. We also measured 8-oxo-20-deoxyguanosine, reduced and oxidized glutathione, malondialdehyde, 8-isoprostanes and protein carbonyl concentrations. Results indicated lipid droplets in 14.5% of the hepatocytes of wild-type mice and in 83.3% of the PON1-deficient animals (P < 0.001). The metabolomic assay included 322 biochemical compounds, 169 of which were significantly decreased and 16 increased in PON1-deficient mice. There were significant increases in lipid peroxide concentrations and oxidative stress markers. We also found decreased glycolysis and the Krebs cycle. The urea cycle was decreased, and the pyrimidine cycle had a significant increase in orotate. The pathways of triglyceride and phospholipid synthesis were significantly increased. We conclude that PON1 deficiency is associated with oxidative stress and metabolic alterations leading to steatosis in the livers of mice receiving a high-fat high-cholesterol diet.
Collapse
Affiliation(s)
- Anabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili , Reus, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
29
|
Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J Nutr Biochem 2012; 24:868-76. [PMID: 22902330 DOI: 10.1016/j.jnutbio.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
Because the interaction between omega-3 fatty acids and mast cells has remained largely unknown in allergies, we investigated whether omega-3 fatty acids affect the activation of mast cells by examining Th2-associated cytokine production and possible molecular mechanisms. Alpha-linolenic acid and its metabolites including eicosapentaenoic acid and decosahexaenoic acid induced a dramatic decrease in the production of interleukin (IL)-4, IL-5 and IL-13 in a dose-dependent manner, as well as mRNA expression of their genes, in activated MC/9 mast cells and bone marrow-derived mast cells. The effects were comparable to those of cyclosporin A (1 μM), a well-known immunosuppressive agent. Nuclear expression of GATA binding protein-1 (GATA-1) and GATA binding protein-2 (GATA-2), essential transcription factors for mast cell activation, was also greatly suppressed. However, their mRNA expressions were not affected. In P815 mast cells, which do not express GATA-1, the suppressive effects on cytokines were abolished. On the contrary, omega-3 fatty acids had less significant effects on IL-4 and IL-5 and resulted in a slight decrease in IL-13 production in EL-4 T cells. Finally, oral administration of fish oil containing high level of omega-3 fatty acids significantly reduced the severity of dermatitis and the thickening of epidermis/dermis in a NC/Nga murine atopic model. The number of cells expressing CD117(+) and FcεRIα(+) was greatly decreased and GATA-1 expression in the cells was also diminished. Taken together, omega-3 fatty acids might target mast cells to a greater extent than T cells to suppress Th2 cytokine expression by inhibiting GATAs for alleviation of allergic disease.
Collapse
|
30
|
Mormone E, Lu Y, Ge X, Fiel MI, Nieto N. Fibromodulin, an oxidative stress-sensitive proteoglycan, regulates the fibrogenic response to liver injury in mice. Gastroenterology 2012; 142:612-621.e5. [PMID: 22138190 PMCID: PMC3800000 DOI: 10.1053/j.gastro.2011.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Collagen I deposition contributes to liver fibrosis, yet little is known about other factors that mediate this process. Fibromodulin is a liver proteoglycan that regulates extracellular matrix organization and is induced by fibrogenic stimuli. We propose that fibromodulin contributes to the pathogenesis of fibrosis by regulating the fibrogenic phenotype of hepatic stellate cells (HSCs). METHODS We analyzed liver samples from patients with hepatitis C-associated cirrhosis and healthy individuals (controls). We used a coculture model to study interactions among rat HSCs, hepatocytes, and sinusoidal endothelial cells. We induced fibrosis in livers of wild-type and Fmod(-/-) mice by bile duct ligation, injection of CCl(4), or administration of thioacetamide. RESULTS Liver samples from patients with cirrhosis had higher levels of fibromodulin messenger RNA and protein than controls. Bile duct ligation, CCl(4), and thioacetamide each increased levels of fibromodulin protein in wild-type mice. HSCs, hepatocytes, and sinusoidal endothelial cells produced and secreted fibromodulin. Infection of HSCs with an adenovirus that expressed fibromodulin increased expression of collagen I and α-smooth muscle actin, indicating increased activation of HSCs and fibrogenic potential. Recombinant fibromodulin promoted proliferation, migration, and invasion of HSCs, contributing to their fibrogenic activity. Fibromodulin was sensitive to reactive oxygen species. HepG2 cells that express cytochrome P450 2E1 produced fibromodulin, and HSCs increased fibromodulin production in response to pro-oxidants. In mice, administration of an antioxidant prevented the increase in fibromodulin in response to CCl(4). Coculture of hepatocytes or sinusoidal endothelial cells with HSCs increased the levels of reactive oxygen species in the culture medium, along with collagen I and fibromodulin proteins; this increase was prevented by catalase. Fibromodulin bound to collagen I, but the binding did not prevent collagen I degradation by matrix metalloproteinase 13. Bile duct ligation caused liver fibrosis in wild-type but not Fmod(-/-) mice. CONCLUSIONS Fibromodulin levels are increased in livers of patients with cirrhosis. Hepatic fibromodulin activates HSCs and promotes collagen I deposition, which leads to liver fibrosis in mice.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Yongke Lu
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Xiaodong Ge
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Maria Isabel Fiel
- Division of Liver Diseases, Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Natalia Nieto
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
31
|
Fujii H, Kawada N. Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol 2012; 47:215-25. [PMID: 22310735 DOI: 10.1007/s00535-012-0527-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease consists of a range of disorders characterized by excess accumulation of triglyceride within the liver. Whereas simple steatosis is clinically benign, nonalcoholic steatohepatitis (NASH) often progresses to cirrhosis. Inflammation and fibrogenesis are closely inter-related and are major targets of NASH research. Experimental data have shown that inflammation in NASH is caused by insulin resistance, systemic lipotoxicity due to overnutrition, lipid metabolites, the production of proinflammatory cytokines and adipokines by visceral adipose tissue, gut-derived bacteria, and oxidative stress. In NASH-associated fibrosis, the principal cell type responsible for extracellular matrix production is recognized as the hepatic stellate cell. Although the fibrotic mechanisms underlying NASH are largely similar to those observed in other chronic liver diseases, the altered patterns of circulating adipokines, the generation of oxidative stress, and the hormonal profile associated with the metabolic syndrome might play unique roles in the fibrogenesis associated with the disease. Information on the basic pathogenesis of NASH with a focus on the generation of inflammation and fibrosis will be discussed.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | |
Collapse
|
32
|
Abstract
Among the pathogenesis and risk factors of alcoholic liver disease (ALD) are the source of dietary fat, obesity, insulin resistance, adipokines and acetaldehyde. Translocation of Gram-negative bacteria from the gut, the subsequent effects mediated by endotoxin, and the increased production of matricellular proteins, cytokines, chemokines and growth factors, actively participate in the progression of liver injury. In addition, generation of reactive oxygen and nitrogen species and the activation of non-parenchymal cells also contribute to the pathophysiology of ALD. A key event leading to liver damage is the transition of quiescent hepatic stellate cells into activated myofibroblasts, with the consequent deposition of fibrillar collagen I resulting in significant scarring. Thus, it is becoming clearer that matricellular proteins are critical players in the pathophysiology of liver disease; however, additional mechanistic insight is needed to understand the signalling pathways involved in the up-regulation of collagen I protein. At present, systems biology approaches are helping to answer the many unresolved questions in this field and are allowing to more comprehensively identify protein networks regulating pathological collagen I deposition in hopes of determining how to prevent the onset of liver fibrosis and/or to slow disease progression. Thus, this review article provides a snapshot on current efforts for identifying pathological protein regulatory networks in the liver using systems biology tools. These approaches hold great promise for future research in liver disease.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
33
|
Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, Ge X, Fiel MI, Nieto N. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012; 55:594-608. [PMID: 21953216 PMCID: PMC3561739 DOI: 10.1002/hep.24701] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED A key feature in the pathogenesis of liver fibrosis is fibrillar Collagen-I deposition; yet, mediators that could be key therapeutic targets remain elusive. We hypothesized that osteopontin (OPN), an extracellular matrix (ECM) cytokine expressed in hepatic stellate cells (HSCs), could drive fibrogenesis by modulating the HSC pro-fibrogenic phenotype and Collagen-I expression. Recombinant OPN (rOPN) up-regulated Collagen-I protein in primary HSCs in a transforming growth factor beta (TGFβ)-independent fashion, whereas it down-regulated matrix metalloprotease-13 (MMP13), thus favoring scarring. rOPN activated primary HSCs, confirmed by increased α-smooth muscle actin (αSMA) expression and enhanced their invasive and wound-healing potential. HSCs isolated from wild-type (WT) mice were more profibrogenic than those from OPN knockout (Opn(-/-)) mice and infection of primary HSCs with an Ad-OPN increased Collagen-I, indicating correlation between both proteins. OPN induction of Collagen-I occurred via integrin α(v)β(3) engagement and activation of the phosphoinositide 3-kinase/phosphorylated Akt/nuclear factor kappa B (PI3K/pAkt/NFκB)-signaling pathway, whereas cluster of differentiation 44 (CD44) binding and mammalian target of rapamycin/70-kDa ribosomal protein S6 kinase (mTOR/p70S6K) were not involved. Neutralization of integrin α(v) β(3) prevented the OPN-mediated activation of the PI3K/pAkt/NFκB-signaling cascade and Collagen-I up-regulation. Likewise, inhibition of PI3K and NFκB blocked the OPN-mediated Collagen-I increase. Hepatitis C Virus (HCV) cirrhotic patients showed coinduction of Collagen-I and cleaved OPN compared to healthy individuals. Acute and chronic liver injury by CCl(4) injection or thioacetamide (TAA) treatment elevated OPN expression. Reactive oxygen species up-regulated OPN in vitro and in vivo and antioxidants prevented this effect. Transgenic mice overexpressing OPN in hepatocytes (Opn(HEP) Tg) mice developed spontaneous liver fibrosis compared to WT mice. Last, chronic CCl(4) injection and TAA treatment caused more liver fibrosis to WT than to Opn(-/-) mice and the reverse occurred in Opn(HEP) Tg mice. CONCLUSION OPN emerges as a key cytokine within the ECM protein network driving the increase in Collagen-I protein contributing to scarring and liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Isabel Fiel
- Division of Liver Diseases, Departments of Medicine and Pathology, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | | |
Collapse
|
34
|
Aliche-Djoudi F, Podechard N, Chevanne M, Nourissat P, Catheline D, Legrand P, Dimanche-Boitrel MT, Lagadic-Gossmann D, Sergent O. Physical and chemical modulation of lipid rafts by a dietary n-3 polyunsaturated fatty acid increases ethanol-induced oxidative stress. Free Radic Biol Med 2011; 51:2018-30. [PMID: 21945097 DOI: 10.1016/j.freeradbiomed.2011.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/28/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to modulate lipid raft-dependent signaling, but not yet lipid raft-dependent oxidative stress. Previously, we have shown that ethanol-induced membrane remodeling, i.e., an increase in membrane fluidity and alterations in physical and biochemical properties of lipid rafts, participated in the development of oxidative stress. Thus, we decided to study n-3 PUFA effects in this context, by pretreating hepatocytes with eicosapentaenoic acid (EPA), a long-chain n-3 PUFA, before addition of ethanol. EPA was found to increase ethanol-induced oxidative stress through membrane remodeling. Addition of EPA resulted in a marked increase in lipid raft aggregation compared to ethanol alone. In addition, membrane fluidity of lipid rafts was markedly enhanced. Interestingly, EPA was found to preferentially incorporate into nonraft membrane regions, leading to raft cholesterol increase. Lipid raft aggregation by EPA enhanced phospholipase Cγ translocation into these microdomains. Finally, phospholipase Cγ was shown to participate in the potentiation of oxidative stress by promoting lysosome accumulation, a major source of low-molecular-weight iron. To conclude, the ability of EPA to modify lipid raft physical and chemical properties plays a key role in the enhancement, by this dietary n-3 PUFA, of ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Fatiha Aliche-Djoudi
- EA 4427 SeRAIC/IRSET, IFR 140, UFR des Sciences Pharmaceutiques et Biologiques, Université de Rennes 1, Rennes Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Interrelationships between paraoxonase-1 and monocyte chemoattractant protein-1 in the regulation of hepatic inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 660:5-18. [PMID: 20221866 DOI: 10.1007/978-1-60761-350-3_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress and inflammation play a central role in the onset and development of liver diseases irrespective of the agent causing the hepatic impairment. The monocyte chemoattractant protein-1 is intimately involved in the inflammatory reaction and is directly correlated with the degree of hepatic inflammation in patients with chronic liver disease. Recent studies showed that hepatic paraoxonase-1 may counteract the production of the monocyte chemoattractant protein-1, thus playing an anti-inflammatory role. The current review summarises experiments suggesting how paraoxonase-1 activity and expression are altered in liver diseases, and their relationships with the monocyte chemoattractant protein-1 and inflammation.
Collapse
|
36
|
Nieto N, Lutolf MP. Extracellular matrix bioengineering and systems biology approaches in liver disease. SYSTEMS AND SYNTHETIC BIOLOGY 2011; 5:11-20. [PMID: 22654992 DOI: 10.1007/s11693-011-9085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) in the liver as well as in many organs comprises a peripheral network linking numerous macromolecules typically classified into collagens, microfibrillar proteins, proteoglycans, chemokines, growth factors and glycoproteins. In addition to its role as an essential structural and physiological component, it plays a vital role in driving key cellular events such as cell adhesion, migration, proliferation, differentiation and survival. Any structural inherited or acquired defect and/or metabolic or pathologic alteration in the hepatic ECM may cause cellular and organ responses leading to the development or progression of liver disease. Therefore, the ECM molecules are key players in tissue engraftment and in the pathophysiology of liver disease. In this review we provide a snapshot on current efforts for understanding its role in physiological and non-physiological states, by describing how tissue engineering platforms can enhance in vitro and in vivo models of liver disease, by providing examples where bioengineered ECM can serve as systems biology approaches to study the ECM, and then by evaluating pathological protein regulatory networks in the liver using systems biology tools. These approaches hold great promise for future research.
Collapse
|
37
|
Okiyama W, Tanaka N, Nakajima T, Tanaka E, Kiyosawa K, Gonzalez FJ, Aoyama T. Polyenephosphatidylcholine prevents alcoholic liver disease in PPARalpha-null mice through attenuation of increases in oxidative stress. J Hepatol 2009; 50:1236-46. [PMID: 19398233 PMCID: PMC2809859 DOI: 10.1016/j.jhep.2009.01.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/18/2009] [Accepted: 01/27/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Alcoholic liver disease (ALD) is one of the leading causes of cirrhosis and yet efficient therapeutic strategies are lacking. Polyenephosphatidylcholine (PPC), a major component of essential phospholipids, prevented alcoholic liver fibrosis in baboons, but its precise mechanism remains uncertain. We aimed to explore the effects of PPC on ALD using ethanol-fed peroxisome proliferator-activated receptor alpha (Ppara)-null mice, showing several similarities to human ALD. METHODS Male wild-type and Ppara-null mice were pair-fed a Lieber-DeCarli control or 4% ethanol-containing diet with or without PPC (30 mg/kg/day) for 6 months. RESULTS PPC significantly ameliorated ethanol-induced hepatocyte damage and hepatitis in Ppara-null mice. These effects were likely a consequence of decreased oxidative stress through down-regulation of reactive oxygen species (ROS)-generating enzymes, including cytochrome P450 2E1, acyl-CoA oxidase, and NADPH oxidases, in addition to restoration of increases in Toll-like receptor 4 and CD14. PPC also decreased Bax and truncated Bid, thus inhibiting apoptosis. Furthermore, PPC suppressed increases in transforming growth factor-beta1 expression and hepatic stellate cell activation, which retarded hepatic fibrogenesis. CONCLUSIONS PPC exhibited anti-inflammatory, anti-apoptotic, and anti-fibrotic effects on ALD as a result of inhibition of the overexpression of ROS-generating enzymes. Our results demonstrate detailed molecular mechanisms of the anti-oxidant action of PPC.
Collapse
Affiliation(s)
- Wataru Okiyama
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan,Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan,Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan,Corresponding author. Fax: +81 263 37 3094., (N. Tanaka)
| | - Tamie Nakajima
- Department of Occupational Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eiji Tanaka
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kendo Kiyosawa
- Department of Internal Medicine, Nagano Red Cross Hospital, Nagano, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
| |
Collapse
|
38
|
Camps J, Marsillach J, Joven J. Measurement of serum paraoxonase-1 activity in the evaluation of liver function. World J Gastroenterol 2009; 15:1929-33. [PMID: 19399923 PMCID: PMC2675081 DOI: 10.3748/wjg.15.1929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paraoxonase-1 (PON1) is an esterase and lactonase synthesized by the liver and found in the circulation associated with high-density lipoproteins. The physiological function of PON1 seems to be to degrade specific oxidized cholesteryl esters and oxidized phospholipids in lipoproteins and cell membranes. PON1 is, therefore, an antioxidant enzyme. Alterations in circulating PON1 levels have been reported in a variety of diseases involving oxidative stress including chronic liver diseases. Measurement of serum PON1 activity has been proposed as a potential test for the evaluation of liver function. However, this measurement is still restricted to research and has not been extensively applied in routine clinical chemistry laboratories. The reason for this restriction is due to the problem that the substrate commonly used for PON1 measurement, paraoxon, is toxic and unstable. The recent development of new assays with non-toxic substrates makes this proposal closer to a practical development. The present editorial summarizes PON1 biochemistry and function, its involvement with chronic liver impairment, and some aspects related to the measurement of PON1 activity in circulation.
Collapse
|
39
|
Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszeń M. Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 2009; 78:301-14. [PMID: 19376089 DOI: 10.1016/j.bcp.2009.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS Zinc has been reported to prevent and reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We therefore aimed to determine the antifibrotic potential of zinc. METHODS Assessed was the influence of preincubation of rat HSCs with 30 microM ZnCl2 on ethanol- (in the presence of 4-methyl pyrazole (4-MP)) or acetaldehyde-induced toxicity, apoptosis, migration, expression of smooth muscle alpha-actin (alpha-SMA) and procollagen I, release of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-alpha), tumor growth factor-beta1 (TGF-beta1), metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMPs) production. Intracellular signals such as nuclear factor-kappaB (NFkappaB), C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol and its metabolite were also assessed. RESULTS 30 microM zinc protected HSCs against ethanol and acetaldehyde toxicity and inhibited their apoptosis. Zinc inhibited the production of ROS by HSCs treated with ethanol and acetaldehyde and inhibited their migration. Zinc also inhibited ethanol- and acetaldehyde-induced TGF-beta1 and TNF-alpha production. Zinc down-regulated ethanol- and acetaldehyde-induced production of TIMP-1 and TIMP-2 and decreased the activity of MMP-2. In ethanol- and acetaldehyde-induced HSCs, zinc inhibited the activation of the p38 MAPK as well as the JNK transduction pathways and phosphorylation of IkappaB and Smad 3. CONCLUSION The results indicated that zinc supplementation inhibited ethanol- and acetaldehyde-induced activation of HSCs on different levels, acting as an antioxidant and inhibitor of MAPK, TGF-beta and NFkappaB/IkappaB transduction signaling. The remarkable inhibition of several markers of HCS activation makes zinc a promising agent for antifibrotic combination therapies.
Collapse
Affiliation(s)
- Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Agnieszka Szuster-Ciesielska, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
40
|
Myung SJ, Yoon JH, Kim BH, Lee JH, Jung EU, Lee HS. Heat shock protein 90 inhibitor induces apoptosis and attenuates activation of hepatic stellate cells. J Pharmacol Exp Ther 2009; 330:276-82. [PMID: 19329756 DOI: 10.1124/jpet.109.151860] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) are major participants in hepatic fibrosis; thus, the induction of HSC apoptosis has been proposed as an antifibrotic treatment strategy. Heat shock protein (Hsp) 90 is a molecular chaperone that stabilizes major signal transduction proteins, and its inhibitors have antitumor activity. In this study, the susceptibility of HSCs to an Hsp90 inhibitor was evaluated. LX-2 cells, an immortalized human HSC line, 17-(allylamino)-17-demethoxygeldanamycin (17AAG), an Hsp90 inhibitor, and monensin, an acidic sphingomyelinase inhibitor, were used in this study. Cellular apoptosis was quantified by 4',6-diamidino-2-phenylindole dihydrochloride staining, and signaling cascades were explored using immunoblotting and immunoprecipitation techniques. Nuclear factor (NF) kappaB activities were evaluated by immunofluorescent microscopy and enzyme-linked immunosorbent assay. Collagen alpha1 and alpha-smooth muscle actin expressions were determined by real-time reverse transcription-polymerase chain reaction and immunoblotting, respectively. It was found that 17AAG induced HSC apoptosis and that caspase 8 cleavage preceded the downstream activation of apoptotic signaling cascades. Furthermore, this caspase 8 activation was dependent on ceramide generation by acidic sphingomyelinase. In addition, 17AAG prevented NFkappaB nuclear translocation and activation, specifically by inducing complex formation between NFkappaB and the glucocorticoid receptor. In accordance, NFkappaB-dependent cellular FLICE-like inhibitory protein expression level was found to be reduced by 17AAG. Finally, 17AAG down-regulated collagen alpha1 and alpha-smooth muscle actin expression levels in HSCs before inducing apoptosis. These results demonstrate that the Hsp90 inhibitor induces HSC apoptosis via a sphingomyelinase- and NFkappaB-dependent mechanism. Because this inhibitor also reduces HSC activation before apoptosis, Hsp90 inhibitor treatment might be therapeutically useful as an antifibrotic strategy in a variety of liver diseases.
Collapse
Affiliation(s)
- Sun Jung Myung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 28 Yungun-dong, Chongno-gu, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Alcoholic liver disease still represents an important cause for death and disability in most well-developed countries and is becoming a leading cause of disease in developing countries. It is now increasingly clear that, besides the formation of acetaldehyde, alcohol effects on the liver include oxidative stress, disturbances in methionine metabolism, endoplasmic reticulum stress, inflammatory/immune responses and adipokine imbalances. This article will discuss the most recent findings on the mechanisms by which alcohol abuse causes hepatic steatosis and steatohepatitis, and now it contributes to the progression of fibrosis. Although still incomplete, these data shed new light on the multifactorial pathogenesis of alcoholic liver disease and open new possibilities in the understanding of how gender and genetic factors can influence disease progression.
Collapse
Affiliation(s)
- Emanuele Albano
- Department of Medical Science, University Amedeo Avogadro of East Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
42
|
Cubero FJ, Nieto N. Ethanol and arachidonic acid synergize to activate Kupffer cells and modulate the fibrogenic response via tumor necrosis factor alpha, reduced glutathione, and transforming growth factor beta-dependent mechanisms. Hepatology 2008; 48:2027-2039. [PMID: 19003881 PMCID: PMC4477289 DOI: 10.1002/hep.22592] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Because of the contribution of ethanol and polyunsaturated fatty acids (PUFAs) to alcoholic liver disease, we investigated whether chronic ethanol administration and arachidonic acid (AA) could synergistically mediate Kupffer cell (KC) activation and modulate the stellate cell (HSC) fibrogenic response. RESULTS (1) the effects of ethanol and AA on KC and HSC were as follows: Cell proliferation, lipid peroxidation, H(2)O(2), O(2).(-), nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activity, and tumor necrosis factor alpha (TNF-alpha) were higher in KC(ethanol) than in KC(control), and were enhanced by AA; HSC(ethanol) proliferated faster, increased collagen, and showed higher GSH than HSC(control), with modest effects by AA. (2) AA effects on the control co-culture: We previously reported the ability of KC to induce a pro-fibrogenic response in HSC via reactive oxygen species (ROS)-dependent mechanisms; we now show that AA further increases cell proliferation and collagen in the control co-culture. The latter was prevented by vitamin E (an antioxidant) and by diphenyleneiodonium (a NADPH oxidase inhibitor). (3) Ethanol effects on the co-cultures: Co-culture with KC(control) or KC(ethanol) induced HSC(control) and HSC(ethanol) proliferation; however, the pro-fibrogenic response in HSC(ethanol) was suppressed because of up-regulation of TNF-alpha and GSH, which was prevented by a TNF-alpha neutralizing antibody (Ab) and by L-buthionine-sulfoximine, a GSH-depleting agent. (4) Ethanol plus AA effects on the co-cultures: AA lowered TNF-alpha in the HSC(control) co-cultures, allowing for enhanced collagen deposition; furthermore, AA restored the pro-fibrogenic response in the HSC(ethanol) co-cultures by counteracting the up-regulation of TNF-alpha and GSH with a significant increase in GSSG and in pro-fibrogenic transforming growth factor beta (TGF-beta). CONCLUSION These results unveil synergism between ethanol and AA to the mechanism whereby KC mediate ECM remodeling and suggest that even if chronic ethanol consumption sensitizes HSC to up-regulate anti-fibrogenic signals, their effects are blunted by a second "hit" such as AA.
Collapse
Affiliation(s)
- Francisco Javier Cubero
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - Natalia Nieto
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| |
Collapse
|
43
|
Roede JR, Stewart BJ, Petersen DR. Decreased expression of peroxiredoxin 6 in a mouse model of ethanol consumption. Free Radic Biol Med 2008; 45:1551-8. [PMID: 18852041 DOI: 10.1016/j.freeradbiomed.2008.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/22/2008] [Accepted: 08/31/2008] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease is multifactorial and oxidative stress is believed to play an intimate role in the initiation and progression of this pathology. The goals of this study were to investigate the effect of chronic ethanol treatment on inducing hepatic oxidative stress and peroxiredoxin 6 expression. After 9 weeks of treatment with an ethanol-containing diet, significant increases in serum ALT activity, liver to body weight ratio, liver triglycerides, CYP2E1 protein expression, and CYP2E1 activity were observed. Chronic ethanol feeding resulted in oxidative stress as evidenced by decreases in hepatic glutathione content and increased deposition of 4-hydroxynonenal and 4-oxononenal protein adducts. In addition, novel findings of decreased PRX6 protein and mRNA and increased levels of carbonylated PRX6 protein were observed in the ethanol-treated animals compared to the pair-fed controls. Lastly, NF-kappaB activity was found to be significantly increased in the ethanol-treated animals. Concurrent with the increase in NF-kappaB activity, decreases in both MEK1/2 and ERK1/2 phosphorylation were also observed in the ethanol-treated animals compared to the pair-fed controls. Together, these data demonstrate that chronic ethanol treatment results in oxidative stress, implicating NF-kappaB activation as an integral mechanism in the negative regulation of PRX6 gene expression in the mouse liver.
Collapse
Affiliation(s)
- James R Roede
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
44
|
Abstract
Uncontrolled production of collagen I is the main feature of liver fibrosis. Following a fibrogenic stimulus such as alcohol, hepatic stellate cells (HSC) transform into an activated collagen-producing cell. In alcoholic liver disease, numerous changes in gene expression are associated with HSC activation, including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses for understanding the molecular basis of the collagen I gene regulation have revealed a complex process involving reactive oxygen species (ROS) as key mediators. Less is known, however, about the contribution of reactive nitrogen species (RNS). In addition, a series of cytokines, growth factors, and chemokines, which activate extracellular matrix (ECM)-producing cells through paracrine and autocrine loops, contribute to the fibrogenic response.
Collapse
Affiliation(s)
- R. Urtasun
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - L. Conde de la Rosa
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | - N. Nieto
- Mount Sinai School of Medicine, Box 1123, Department of Medicine/Division of Liver Diseases, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| |
Collapse
|
45
|
Swindell WR. Genes regulated by caloric restriction have unique roles within transcriptional networks. Mech Ageing Dev 2008; 129:580-92. [PMID: 18634819 DOI: 10.1016/j.mad.2008.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/09/2008] [Accepted: 06/15/2008] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) has received much interest as an intervention that delays age-related disease and increases lifespan. Whole-genome microarrays have been used to identify specific genes underlying these effects, and in mice, this has led to the identification of genes with expression responses to CR that are shared across multiple tissue types. Such CR-regulated genes represent strong candidates for future investigation, but have been understood only as a list, without regard to their broader role within transcriptional networks. In this study, co-expression and network properties of CR-regulated genes were investigated using data generated by more than 600 Affymetrix microarrays. This analysis identified groups of co-expressed genes and regulatory factors associated with the mammalian CR response, and uncovered surprising network properties of CR-regulated genes. Genes downregulated by CR were highly connected and located in dense network regions. In contrast, CR-upregulated genes were weakly connected and positioned in sparse network regions. Some network properties were mirrored by CR-regulated genes from invertebrate models, suggesting an evolutionary basis for the observed patterns. These findings contribute to a systems-level picture of how CR influences transcription within mammalian cells, and point towards a comprehensive understanding of CR in terms of its influence on biological networks.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
46
|
Clarke JO, Mullin GE. A review of complementary and alternative approaches to immunomodulation. Nutr Clin Pract 2008; 23:49-62. [PMID: 18203964 DOI: 10.1177/011542650802300149] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current Western therapies for inflammatory diseases are suboptimal; increasingly, patients are turning to complementary and alternative medicine for symptom relief and improved quality of life. There is emerging evidence that many of these therapies have the ability to modulate the immune system and disrupt the proinflammatory cascade through a variety of mechanisms, including antioxidant effects, alterations in cell signaling (in particular the nuclear factor (NF)-kappaB pathway), cytokines, proinflammatory mediators, and disruption of bacterial flora. Using inflammatory bowel disease (IBD) as a model of inflammation, we explore the principal complementary and alternative medicine treatments that show promise in this regard, namely, resveratrol, green tea, curcumin, boswellia, fish oil, vitamin D, and probiotics. With each agent, we detail the mechanisms that have been described with regard to immune modulation, discuss the medical conditions for which it has been evaluated, and explore the data to date for the prevention or treatment of IBD.
Collapse
Affiliation(s)
- John O Clarke
- Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
47
|
Mullin GE, Pickett-Blakely O, Clarke JO. Integrative medicine in gastrointestinal disease: evaluating the evidence. Expert Rev Gastroenterol Hepatol 2008; 2:261-80. [PMID: 19072361 DOI: 10.1586/17474124.2.2.261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current Western therapies for many gastrointestinal diseases are suboptimal and potentially toxic. The majority of patients with digestive diseases are turning to complementary and alternative medicine for symptom relief and improved quality of life, due to dissatisfaction with conventional medical therapies. There is emerging evidence that many of these complementary and alternative medicine modalities are highly effective in modulating the immune system, disrupting the proinflammatory cascade and restoring digestive health while improving patients' quality of life. We present evidence to support the potential utility of complementary and alternative medicine modalities for irritable bowel syndrome and inflammatory bowel disease. For each condition, we detail the proposed mechanisms of action and explore the current data for the prevention and/or treatment of disease.
Collapse
Affiliation(s)
- Gerard E Mullin
- The Johns Hopkins Hospital, Division of Gastroenterology, Carnegie Building-Room 464, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
48
|
Donohue TM, Curry-McCoy TV, Nanji AA, Kharbanda KK, Osna NA, Radio SJ, Todero SL, White RL, Casey CA. Lysosomal leakage and lack of adaptation of hepatoprotective enzyme contribute to enhanced susceptibility to ethanol-induced liver injury in female rats. Alcohol Clin Exp Res 2007; 31:1944-52. [PMID: 17850215 DOI: 10.1111/j.1530-0277.2007.00512.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Women exhibit greater liver damage than men after chronic alcohol consumption. Similar findings are reported in animal models. Here, we determined whether differential liver injury occurred in male and female rats after feeding these animals liquid diets containing either ethanol or isocaloric dextrose with fish oil as the sole source of lipid. METHODS Control and ethanol liquid diets containing fish oil were pair-fed to male and female rats for 8 weeks. Liver damage was evaluated by triglyceride accumulation, lipid peroxide formation, serum transaminases, histological evaluation, and the activities of selected lysosomal and hepatoprotective enzymes. RESULTS Fatty liver was detected after ethanol feeding in both genders, but in female rats, triglyceride levels were 60% higher, lipid peroxides were 2-fold higher, and inflammatory cells were more evident than in males. A 2-fold elevation of cathepsin B in hepatic cytosol fractions, indicating lysosomal leakage, was detected in ethanol-fed female rats but no such elevation was observed in males. The basal activity of the hepatoprotective enzyme, betaine-homocysteine methyltransferase was 4-fold higher in livers of control male rats than females, and the enzyme activity was further elevated in ethanol-fed male rats but not in females. CONCLUSIONS Thus, female rats given ethanol in a diet containing fish oil exhibited more severe liver damage than males. We propose that this difference results, in part, from a greater tendency by females to accumulate hepatic fat, thereby enhancing the potential for oxidative stress, which in turn leads to hepatic inflammation. In addition, our findings indicate that female rats have a higher susceptibility to liver damage because of a reduced capacity for hepatoprotection.
Collapse
Affiliation(s)
- Terrence M Donohue
- Liver Study Unit, VA Nebraska, Western Iowa Health Care Network, Omaha, Nebraska 68105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 2007; 29:9-16. [PMID: 18045675 DOI: 10.1016/j.mam.2007.09.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/28/2007] [Indexed: 12/12/2022]
Abstract
Although the capacity of ethanol to induce oxidative stress in the liver is well established, the mechanisms by which oxidative damage contributes to the pathogenesis of alcoholic liver disease (ALD) is still incompletely understood. Recent reports have implicated oxidative mechanisms in the onset of alcoholic steatosis and in the formation of Mallory's bodies. Moreover, by inducing mitochondrial alterations, oxidative stress promotes hepatocyte necrosis and contributes to alcohol-induced sensitization of hepatocyte to the pro-apoptotic action of TNF-alpha. Oxidative mechanisms play also a role in the progression of liver fibrosis by triggering the release of pro-fibrotic cytokines and activating collagen gene expression in hepatic stellate cells. Finally, immune responses towards antigens originating from the reactions of lipid peroxidation products with hepatic proteins might represent one of the mechanisms that contribute to perpetuate chronic hepatic inflammation in ALD. Altogether these observations give a rationale to the possible clinical application of antioxidants in the therapy of ALD.
Collapse
Affiliation(s)
- Emanuele Albano
- Department of Medical Sciences, University Amedeo Avogadro of East Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
50
|
PKC signaling in oxidative hepatic damage. Mol Aspects Med 2007; 29:36-42. [PMID: 18035409 DOI: 10.1016/j.mam.2007.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/28/2007] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) is a family of isoenzymes differently involved in cell response to injury and many studies describe their role as "stress sensors". Oxidative stress is strictly involved in the pathogenesis of chronic liver diseases including alcohol- or drug-induced hepatotoxicity, iron overload, hepatitis and hepatocarcinoma development, but molecular mechanisms are not really defined. A crucial role of PKC as a redox sensitive signaling molecule has been widely accepted.
Collapse
|