1
|
Tafaleng EN, Li J, Wang Y, Hidvegi T, Soto-Gutierrez A, Locke AE, Nicholas TJ, Wang YC, Pak S, Cho MH, Silverman EK, Silverman GA, Jin SC, Fox IJ, Perlmutter DH. Variants in autophagy genes MTMR12 and FAM134A are putative modifiers of the hepatic phenotype in α1-antitrypsin deficiency. Hepatology 2024; 80:859-871. [PMID: 38557779 PMCID: PMC11407773 DOI: 10.1097/hep.0000000000000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.
Collapse
Affiliation(s)
- Edgar N. Tafaleng
- Departments of Pediatrics, Surgery and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Li
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yan Wang
- Departments of Pediatrics, Surgery and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tunda Hidvegi
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Soto-Gutierrez
- Departments of Pediatrics, Surgery and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam E. Locke
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J. Nicholas
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yung-Chun Wang
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen Pak
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael H. Cho
- Channing Laboratories, Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K. Silverman
- Channing Laboratories, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary A. Silverman
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng Chih Jin
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ira J. Fox
- Departments of Pediatrics, Surgery and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David H. Perlmutter
- Departments of Pediatrics, Cell Biology and Physiology, Genetics and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Kent D, Ng SS, Syanda AM, Khoshkenar P, Ronzoni R, Li CZ, Zieger M, Greer C, Hatch S, Segal J, Blackford SJI, Im YR, Chowdary V, Ismaili T, Danovi D, Lewis PA, Irving JA, Sahdeo S, Lomas DA, Ebner D, Mueller C, Rashid ST. Reduction of Z alpha-1 antitrypsin polymers in human iPSC-hepatocytes and mice by LRRK2 inhibitors. Hepatology 2024:01515467-990000000-00945. [PMID: 38954820 DOI: 10.1097/hep.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (A1ATD) is a life-threatening condition caused by the inheritance of the serpin family A member 1 "Z" genetic variant driving alpha-1 antitrypsin (AAT) protein misfolding in hepatocytes. There are no approved medicines for this disease. METHODS We conducted a high-throughput image-based small molecule screen using patient-derived induced pluripotent stem cell-hepatocytes (iPSC-hepatocytes). Identified targets were validated in vitro using 3 independent patient iPSC lines. The effects of the identified target, leucine-rich repeat kinase 2 (LRRK2), were further evaluated in an animal model of A1ATD through histology and immunohistochemistry and in an autophagy-reporter line. Autophagy induction was assessed through immunoblot and immunofluorescence analyses. RESULTS Small-molecule screen performed in iPSC-hepatocytes identified LRRK2 as a potentially new therapeutic target. Of the commercially available LRRK2 inhibitors tested, we identified CZC-25146, a candidate with favorable pharmacokinetic properties, as capable of reducing polymer load, increasing normal AAT secretion, and reducing inflammatory cytokines in both cells and PiZ mice. Mechanistically, this effect was achieved through the induction of autophagy. CONCLUSIONS Our findings support the use of CZC-25146 and leucine-rich repeat kinase-2 inhibitors in hepatic proteinopathy research and their further investigation as novel therapeutic candidates for A1ATD.
Collapse
Affiliation(s)
- Deniz Kent
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Adam M Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Payam Khoshkenar
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Riccardo Ronzoni
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Chao Zheng Li
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Marina Zieger
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Cindy Greer
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Stephanie Hatch
- National Phenotypic Screening Centre, University of Oxford, Headington, Oxford, UK
| | - Joe Segal
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Samuel J I Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yu Ri Im
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vivek Chowdary
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Taylor Ismaili
- Discovery Sciences, Janssen Research and Development, San Diego, California, USA
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - James A Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sunil Sahdeo
- Discovery Sciences, Janssen Research and Development, San Diego, California, USA
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Daniel Ebner
- National Phenotypic Screening Centre, University of Oxford, Headington, Oxford, UK
| | - Christian Mueller
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - S Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Zhao P, Wang C, Sun S, Wang X, Balch WE. Tracing genetic diversity captures the molecular basis of misfolding disease. Nat Commun 2024; 15:3333. [PMID: 38637533 PMCID: PMC11026414 DOI: 10.1038/s41467-024-47520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
4
|
Sifers RN. Pharmacological management of disease by overcoming structural adversity. Cell Chem Biol 2023; 30:1-2. [PMID: 36669468 DOI: 10.1016/j.chembiol.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this issue of Cell Chemical Biology, Sun et al. utilize computational and protein expression analyses, plus pharmacological proteostasis network activation, to simultaneously correct two genetic diseases linked to a single protein rather than modify the responsible DNA.
Collapse
Affiliation(s)
- Richard N Sifers
- Departments of Pathology and Immunology, Molecular & Cellular Biology, and Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Kaserman JE, Werder RB, Wang F, Matte T, Higgins MI, Dodge M, Lindstrom-Vautrin J, Bawa P, Hinds A, Bullitt E, Caballero IS, Shi X, Gerszten RE, Brunetti-Pierri N, Liesa M, Villacorta-Martin C, Hollenberg AN, Kotton DN, Wilson AA. Human iPSC-hepatocyte modeling of alpha-1 antitrypsin heterozygosity reveals metabolic dysregulation and cellular heterogeneity. Cell Rep 2022; 41:111775. [PMID: 36476855 PMCID: PMC9780780 DOI: 10.1016/j.celrep.2022.111775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Individuals homozygous for the "Z" mutation in alpha-1 antitrypsin deficiency are known to be at increased risk for liver disease. It has also become clear that some degree of risk is similarly conferred by the heterozygous state. A lack of model systems that recapitulate heterozygosity in human hepatocytes has limited the ability to study the impact of a single Z alpha-1 antitrypsin (ZAAT) allele on hepatocyte biology. Here, we describe the derivation of syngeneic induced pluripotent stem cells (iPSCs) engineered to determine the effects of ZAAT heterozygosity in iPSC-hepatocytes (iHeps). We find that heterozygous MZ iHeps exhibit an intermediate disease phenotype and share with ZZ iHeps alterations in AAT protein processing and downstream perturbations including altered endoplasmic reticulum (ER) and mitochondrial morphology, reduced mitochondrial respiration, and branch-specific activation of the unfolded protein response in cell subpopulations. Our model of MZ heterozygosity thus provides evidence that a single Z allele is sufficient to disrupt hepatocyte homeostatic function.
Collapse
Affiliation(s)
- Joseph E. Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rhiannon B. Werder
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Michelle I. Higgins
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Mark Dodge
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University, Boston, MA 02118, USA
| | - Ignacio S. Caballero
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, MA 02118, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, MA 02118, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy,Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Marc Liesa
- Departments of Medicine, Endocrinology, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Institut de Biologia Molecular de Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anthony N. Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Lead contact,Correspondence:
| |
Collapse
|
6
|
A Particular SORL1 Micro-haplotype May Prevent Severe Liver Disease in a French Cohort of Alpha 1-Antitrypsin-deficient Children. J Pediatr Gastroenterol Nutr 2021; 73:e68-e72. [PMID: 33720088 DOI: 10.1097/mpg.0000000000003125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The presence of modifier genes is now well recognized in severe liver disease outcome associated with alpha-1-antitrypsin deficiency (A1ATD) but their identification remains to be fully elucidated. To address this goal, we performed a candidate gene study with the SORL1 gene, already identified as risk gene in early-onset Alzheimer Disease families. A particular SORL1 micro-haplotype constituted with 3 SNPs (wild-type form TTG) was genotyped on 86 ZZ A1ATD children issued from 66 families. Interestingly, the mutated forms of this micro-haplotype (CAT most of the time) were associated with lower occurrence of severe liver disease and in cellulo studies showed that SORL1 influences Z-A1ATD cellular toxicity and biogenesis. These data suggest that the mutated CAT form of SORL1 micro-haplotype may partly prevent from severe liver disease in A1ATD children. Overall, these findings support a replication study on an independent cohort and additional in cellulo studies to confirm these promising results.
Collapse
|
7
|
Karatas E, Raymond AA, Leon C, Dupuy JW, Di-Tommaso S, Senant N, Collardeau-Frachon S, Ruiz M, Lachaux A, Saltel F, Bouchecareilh M. Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Rep 2021; 3:100297. [PMID: 34151245 PMCID: PMC8192868 DOI: 10.1016/j.jhepr.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background & Aims A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. Methods Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. Results We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. Conclusions PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. Lay summary Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease. PDIA4 is upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. Knockdown of PDIA4 by siRNA or inhibition upon cysteamine treatment leads to improvements in features of AATD. RNA interference against PDIA4 or cysteamine represent approaches for treatment of AATD-mediated liver disease.
Collapse
Key Words
- AAT, alpha 1-antitrypsin
- AATD, alpha 1-antitrypsin deficiency
- Alpha 1-antitrypsin deficiency
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cysteamine
- ER, endoplasmic reticulum
- FFPE, formalin-fixed paraffin-embedded
- FKBP10, FK506-binding protein (FKBP) isoform 10
- HCC, hepatocellular carcinoma
- IHC, immunohistochemistry
- IP, immunoprecipitation
- Liver damage
- NHK, null Hong Kong variant of AAT
- P4HB, prolyl 4-hydroxylase subunit beta/PDIA1
- PDI, protein disulfide isomerase
- PDIA3, protein disulfide isomerase family A member 3/ERP57
- PDIA4
- PDIA4, protein disulfide isomerase family A member 4/ERP70/ERP72
- PDIi, PDI inhibitors
- Protein disulfide isomerase
- ROS, reactive oxygen species
- SURF4, proteins Surfeit 4
- Scr, scramble
- TRX, thioredoxin
- TXNDC5, thioredoxin domain containing 5/PDIA15
- Treatment
- WT, wild-type
- Z-AAT, alpha 1-antitrypsin Z variant
- ZZ, homozygosis for the Z mutant allele
- siRNA, small RNA interference
- ΔF508-CFTR, most common mutation of CFTR, which deletes phenylalanine508
Collapse
Affiliation(s)
- Esra Karatas
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Céline Leon
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | | | - Sylvaine Di-Tommaso
- Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Nathalie Senant
- Plateforme d'histopathologie, TBM-Core US 005, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Lachaux
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Saltel
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | | |
Collapse
|
8
|
Brooks A, Liang X, Zhang Y, Zhao CX, Roberts MS, Wang H, Zhang L, Crawford DHG. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res 2021; 169:105608. [PMID: 33852961 DOI: 10.1016/j.phrs.2021.105608] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
The past decade has seen many advancements in the development of three-dimensional (3D) in vitro models in pharmaceutical sciences and industry. Specifically, organoids present a self-organising, self-renewing and more physiologically relevant model than conventional two-dimensional (2D) cell cultures. Liver organoids have been developed from a variety of cell sources, including stem cells, cell lines and primary cells. They have potential for modelling patient-specific disease and establishing personalised therapeutic approaches. Additionally, liver organoids have been used to test drug efficacy and toxicity. Herein we summarise cell sources for generating liver organoids, the advantages and limitations of each cell type, as well as the application of the organoids in modelling liver diseases. We focus on the use of liver organoids as tools for drug validation and toxicity assessment.
Collapse
Affiliation(s)
- Anastasia Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Yonglong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries. Int J Mol Sci 2021; 22:ijms22041875. [PMID: 33668611 PMCID: PMC7917825 DOI: 10.3390/ijms22041875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.
Collapse
|
10
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
11
|
Teckman J, Rosenthal P, Hawthorne K, Spino C, Bass LM, Murray KF, Kerkar N, Magee JC, Karpen S, Heubi JE, Molleston JP, Squires RH, Kamath BM, Guthery SL, Loomes KM, Sherker AH, Sokol RJ. Longitudinal Outcomes in Young Patients with Alpha-1-Antitrypsin Deficiency with Native Liver Reveal that Neonatal Cholestasis is a Poor Predictor of Future Portal Hypertension. J Pediatr 2020; 227:81-86.e4. [PMID: 32663593 PMCID: PMC7686087 DOI: 10.1016/j.jpeds.2020.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To identify predictors of portal hypertension, liver transplantation, and death in North American youth with alpha-1-antitrypsin (AAT) deficiency, and compare with patients with AAT deficiency elsewhere. STUDY DESIGN The Childhood Liver Disease Research Network Longitudinal Observational Study of Genetic Causes of Intrahepatic Cholestasis is a prospective, cohort study of pediatric cholestatic liver diseases, including AAT deficiency, enrolling PIZZ and PISZ subjects 0-25 years of age seen since November 2007 at 17 tertiary care centers in the US and Canada. Data from standard-of-care baseline and annual follow-up visits were recorded from medical records, history, physical examination, and laboratory studies. Participants with portal hypertension were identified based on data collected. RESULTS We enrolled 350 participants (60% male) with a native liver; 278 (79%) entered the cohort without portal hypertension and 18 developed portal hypertension during follow-up. Thirty participants required liver transplantation; 2 patients died during 1077 person-years of follow-up. There was no difference in participants with or without preceding neonatal cholestasis progressing to transplantation or death during the study (12% vs 7%; P = .09), or in experiencing portal hypertension (28% vs 21%; P = .16); the hazard ratio for neonatal cholestasis leading to portal hypertension was P = .04. Development of portal hypertension was associated with a reduced height Z-score. CONCLUSIONS Portal hypertension in youth with AAT deficiency impacts growth measures. Progression to liver transplantation is slow and death is rare, but the risk of complications and severe liver disease progression persists throughout childhood. A history of neonatal cholestasis is a weak predictor of severe disease.
Collapse
Affiliation(s)
- Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, Cardinal Glennon Children’s Medical Center, Saint Louis, MO
| | - Philip Rosenthal
- Pediatrics and Surgery, University of California San Francisco, San Francisco, CA
| | | | - Cathie Spino
- Biostatistics, University of Michigan, Ann Arbor, MI
| | - Lee M. Bass
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen F. Murray
- Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA
| | - Nanda Kerkar
- Pediatric Gastroenterology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - John C. Magee
- Surgery, University of Michigan School of Medicine, Ann Arbor, MI
| | - Saul Karpen
- Pediatrics, Emory University, Children’s Healthcare Atlanta, Atlanta, GA
| | - James E. Heubi
- Pediatric Gastroenterology and Hepatology, Children’s Hospital Medical Center, Cincinnati, OH
| | - Jean P. Molleston
- Pediatric Gastroenterology, Hepatology and Nutrition, James Whitcomb Riley Hospital for Children, Indianapolis, IN
| | | | - Binita M. Kamath
- Pediatric Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen L. Guthery
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Utah, and Intermountain Primary Children’s Hospital, Salt Lake City, UT
| | - Kathleen M. Loomes
- Pediatric Gastroenterology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Averell H. Sherker
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Baltimore, MD
| | - Ronald J. Sokol
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | | |
Collapse
|
12
|
The cytoplasmic tail of human mannosidase Man1b1 contributes to catalysis-independent quality control of misfolded alpha1-antitrypsin. Proc Natl Acad Sci U S A 2020; 117:24825-24836. [PMID: 32958677 DOI: 10.1073/pnas.1919013117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner. To interrogate this functional dichotomy, the intracellular fates of two naturally occurring misfolded N-glycosylated variants of human alpha1-antitrypsin (AAT), Null Hong Kong (NHK), and Z (ATZ), in Man1b1 knockout HEK293T cells were monitored in response to mutated or truncated forms of transfected Man1b1. As expected, the conventional catalytic system requires an intact active site in the Man1b1 luminal domain. In contrast, the unconventional system is under the control of an evolutionarily extended N-terminal cytoplasmic tail. Also, N-glycans attached to misfolded AAT are not required for accelerated degradation mediated by the unconventional system, further demonstrating its catalysis-independent nature. We also established that both systems accelerate the proteasomal degradation of NHK in metabolic pulse-chase labeling studies. Taken together, these results have identified the previously unrecognized regulatory capacity of the Man1b1 cytoplasmic tail and provided insight into the functional dichotomy of Man1b1 as a component in the mammalian proteostasis network.
Collapse
|
13
|
Bouchecareilh M. Alpha-1 Antitrypsin Deficiency-Mediated Liver Toxicity: Why Do Some Patients Do Poorly? What Do We Know So Far? CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2020; 7:172-181. [PMID: 32558486 PMCID: PMC7857713 DOI: 10.15326/jcopdf.7.3.2019.0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease caused by mutations in the SERPINA1 gene and is associated with a decreased level of circulating alpha-1 antitrypsin (AAT). Among all the known mutations in the SERPINA1 gene, homozygous for the Z allele is well-known to result in both lung and liver disease. Unlike the lung injury that occurs in adulthood with the environment (notably, tobacco) as a co-factor, the hepatic damage is more complicated. Despite a common underlying gene mutation, the liver disease associated with AATD presents a considerable variability in the age-of-onset and severity, ranging from transient neonatal cholestasis (in early childhood) to cirrhosis and liver cancer (in childhood and adulthood). Given that all the cofactors- genetics and/or environmental- have not been fully identified, it is still impossible to predict which individuals with AATD may develop severe liver disease. The discovery of these modifiers represents the major challenge for the detection, diagnosis, and development of new therapies to provide alternative options to liver transplantation. The aim of this current review is to provide an updated overview of our knowledge on why some AATD patients associated with liver damage progress poorly.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), University Bordeaux, Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
14
|
Yip E, Giousoh A, Fung C, Wilding B, Prakash MD, Williams C, Verkade H, Bryson-Richardson RJ, Bird PI. A transgenic zebrafish model of hepatocyte function in human Z α1-antitrypsin deficiency. Biol Chem 2020; 400:1603-1616. [PMID: 31091192 DOI: 10.1515/hsz-2018-0391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
In human α1-antitrypsin deficiency, homozygous carriers of the Z (E324K) mutation in the gene SERPINA1 have insufficient circulating α1-antitrypsin and are predisposed to emphysema. Misfolding and accumulation of the mutant protein in hepatocytes also causes endoplasmic reticulum stress and underpins long-term liver damage. Here, we describe transgenic zebrafish (Danio rerio) expressing the wildtype or the Z mutant form of human α1-antitrypsin in hepatocytes. As observed in afflicted humans, and in rodent models, about 80% less α1-antitrypsin is evident in the circulation of zebrafish expressing the Z mutant. Although these zebrafish also show signs of liver stress, they do not accumulate α1-antitrypsin in hepatocytes. This new zebrafish model will provide useful insights into understanding and treatment of α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Evelyn Yip
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Aminah Giousoh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Monica D Prakash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Caitlin Williams
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia
| | - Heather Verkade
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | | | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - Noel G McElvaney
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - David A Lomas
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| |
Collapse
|
16
|
Alpha 1-Antitrypsin Deficiency: A Disorder of Proteostasis-Mediated Protein Folding and Trafficking Pathways. Int J Mol Sci 2020; 21:ijms21041493. [PMID: 32098273 PMCID: PMC7073043 DOI: 10.3390/ijms21041493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Human cells express large amounts of different proteins continuously that must fold into well-defined structures that need to remain correctly folded and assemble in order to ensure their cellular and biological functions. The integrity of this protein balance/homeostasis, also named proteostasis, is maintained by the proteostasis network (PN). This integrated biological system, which comprises about 2000 proteins (chaperones, folding enzymes, degradation components), control and coordinate protein synthesis folding and localization, conformational maintenance, and degradation. This network is particularly challenged by mutations such as those found in genetic diseases, because of the inability of an altered peptide sequence to properly engage PN components that trigger misfolding and loss of function. Thus, deletions found in the ΔF508 variant of the Cystic Fibrosis (CF) transmembrane regulator (CFTR) triggering CF or missense mutations found in the Z variant of Alpha 1-Antitrypsin deficiency (AATD), leading to lung and liver diseases, can accelerate misfolding and/or generate aggregates. Conversely to CF variants, for which three correctors are already approved (ivacaftor, lumacaftor/ivacaftor, and most recently tezacaftor/ivacaftor), there are limited therapeutic options for AATD. Therefore, a more detailed understanding of the PN components governing AAT variant biogenesis and their manipulation by pharmacological intervention could delay, or even better, avoid the onset of AATD-related pathologies.
Collapse
|
17
|
Wang C, Zhao P, Sun S, Teckman J, Balch WE. Leveraging Population Genomics for Individualized Correction of the Hallmarks of Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:224-246. [PMID: 32726074 DOI: 10.15326/jcopdf.7.3.2019.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep medicine is rapidly moving towards a high-definition approach for therapeutic management of the patient as an individual given the rapid progress of genome sequencing technologies and machine learning algorithms. While considered a monogenic disease, alpha-1 antitrypsin (AAT) deficiency (AATD) patients present with complex and variable phenotypes we refer to as the "hallmarks of AATD" that involve distinct molecular mechanisms in the liver, plasma and lung tissues, likely due to both coding and non-coding variation as well as genetic and environmental modifiers in different individuals. Herein, we briefly review the current therapeutic strategies for the management of AATD. To embrace genetic diversity in the management of AATD, we provide an overview of the disease phenotypes of AATD patients harboring different AAT variants. Linking genotypic diversity to phenotypic diversity illustrates the potential for sequence-specific regions of AAT protein fold design to play very different roles during nascent synthesis in the liver and/or function in post-liver plasma and lung environments. We illustrate how to manage diversity with recently developed machine learning (ML) approaches that bridge sequence-to-function-to-structure knowledge gaps based on the principle of spatial covariance (SCV). SCV relationships provide a deep understanding of the genotype to phenotype transformation initiated by AAT variation in the population to address the role of genetic and environmental modifiers in the individual. Embracing the complexity of AATD in the population is critical for risk management and therapeutic intervention to generate a high definition medicine approach for the patient.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| |
Collapse
|
18
|
Abstract
Alpha-1 antitrypsin deficiency is predominantly caused by point mutations that alter the protein's folding. These mutations fall into two broad categories: those that destabilize the protein dramatically and lead to its post-translational degradation and those that affect protein structure more subtly to promote protein polymerization within the endoplasmic reticulum (ER). This distinction is important because it determines the cell's response to each mutant. The severely misfolded mutants trigger an unfolded protein response (UPR) that promotes improved protein folding but can kill the cell in the chronic setting. In contrast, mutations that permit polymer formation fail to activate the UPR but instead promote a nuclear factor-κB-mediated ER overload response. The ability of polymers to increase a cell's sensitivity to ER stress likely explains apparent inconsistencies in the alpha-1 antitrypsin-signaling literature that have linked polymers with the UPR. In this review we discuss the use of mutant serpins to dissect each signaling pathway.
Collapse
|
19
|
Joly P, Lachaux A, Ruiz M, Restier L, Belmalih A, Chapuis-Cellier C, Francina A, Renoux C, Bouchecareilh M. SERPINA1 and MAN1B1 polymorphisms are not linked to severe liver disease in a French cohort of alpha-1 antitrypsin deficiency children. Liver Int 2017; 37:1608-1611. [PMID: 28887821 DOI: 10.1111/liv.13586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/30/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Fifteen to twenty percent of alpha-1 antitrypsin deficiency patients (A1ATD) have a severe liver outcome (portal hypertension - PHT) during childhood. Since they all share the same ZZSERPINA1 genotype and that environmental factors such as alcohol cannot be advanced, the presence of modifier genes is now well recognized. SNPs located on the SERPINA1 and MAN1B1 genes have already been tested in very few studies with contradictory or not replicated results. METHODS Our genotype-phenotype correlation study, performed on 92 ZZ children, aimed at determining once and for all if SERPINA1 and MAN1B1 polymorphisms may be implied in the onset of PHT. To do so, we also performed for the first time a complete haplotype reconstruction for data analysis. RESULTS The two genetic associations with severe liver disease that had been suspected previously (one SNP for SERPINA1 and another for MAN1B1) were not confirmed in our cohort. Moreover, the haplotype analysis identified only one major genetic background for the SERPINA1 Z-allele, allowing us to exclude the presence of a frequent modifier SNP within. For MAN1B1, four major haplotypes were identified but the prevalence of PHT did not significantly differ between them. CONCLUSION We conclude that genetic polymorphisms in these two genes probably do not influence the onset of severe liver disease in A1ATD.
Collapse
Affiliation(s)
- Philippe Joly
- Laboratoire de Biochimie et Biologie Moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Inter-University Laboratory of Human Movement Science, Univ Lyon - University Claude Bernard Lyon 1 - EA 7424, Villeurbanne, France
| | - Alain Lachaux
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Mathias Ruiz
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Lioara Restier
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Abdelhouaed Belmalih
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Colette Chapuis-Cellier
- Laboratoire d'immunologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon & Université Claude Bernard-Lyon 1, Lyon, France
| | - Alain Francina
- Laboratoire de Biochimie et Biologie Moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Céline Renoux
- Laboratoire de Biochimie et Biologie Moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Inter-University Laboratory of Human Movement Science, Univ Lyon - University Claude Bernard Lyon 1 - EA 7424, Villeurbanne, France
| | - Marion Bouchecareilh
- Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, Bordeaux, France.,France CNRS-UMR5095 Bordeaux, Bordeaux Cedex, France.,INSERM, UMR1053 Bordeaux Research In Translational Oncology, Univ. Bordeaux, BaRITOn, Bordeaux, France
| |
Collapse
|
20
|
Mitchell EL, Khan Z. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. CURRENT PATHOBIOLOGY REPORTS 2017; 5:243-252. [PMID: 29399420 PMCID: PMC5780543 DOI: 10.1007/s40139-017-0147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review The aim of the study is to review the liver disease caused by alpha-1 antitrypsin deficiency (A1ATD), including pathogenesis, epidemiology, diagnostic testing, and recent therapeutic developments. Recent Findings Therapeutic approaches target several intracellular pathways to reduce the cytotoxic effects of the misfolded mutant globular protein (ATZ) on the hepatocyte. These include promoting ATZ transport out of the endoplasmic reticulum (ER), enhancing ATZ degradation, and preventing ATZ globule-aggregation. Summary A1ATD is the leading genetic cause of liver disease among children. It is a protein-folding disorder in which toxic insoluble ATZ proteins aggregate in the ER of hepatocytes leading to inflammation, fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. The absence of the normal A1AT serum protein also predisposes patients to pan lobar emphysema as adults. At this time, the only approved therapy for A1ATD-associated liver disease is orthotopic liver transplantation, which is curative. However, there has been significant recent progress in the development of small molecule therapies with potential both to preserve the native liver and prevent hepatotoxicity.
Collapse
Affiliation(s)
- Ellen L Mitchell
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Zahida Khan
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,3Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,4McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,5Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
21
|
Joly P, Vignaud H, Di Martino J, Ruiz M, Garin R, Restier L, Belmalih A, Marchal C, Cullin C, Arveiler B, Fergelot P, Gitler AD, Lachaux A, Couthouis J, Bouchecareilh M. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency. PLoS One 2017; 12:e0179369. [PMID: 28617828 PMCID: PMC5472284 DOI: 10.1371/journal.pone.0179369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. METHODS We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. RESULTS Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. CONCLUSION This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis.
Collapse
Affiliation(s)
- Philippe Joly
- University Lyon - University Claude Bernard Lyon 1 - EA 7424 – Inter-university Laboratory of Human Movement Science, Villeurbanne, France
- Laboratoire de Biochimie et biologie moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Hélène Vignaud
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Julie Di Martino
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Mathias Ruiz
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Roman Garin
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Lioara Restier
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Abdelouahed Belmalih
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Christelle Marchal
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Christophe Cullin
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Benoit Arveiler
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Patricia Fergelot
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alain Lachaux
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marion Bouchecareilh
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
- * E-mail:
| |
Collapse
|
22
|
Hüls A, Krämer U, Herder C, Fehsel K, Luckhaus C, Stolz S, Vierkötter A, Schikowski T. Genetic susceptibility for air pollution-induced airway inflammation in the SALIA study. ENVIRONMENTAL RESEARCH 2017; 152:43-50. [PMID: 27741447 DOI: 10.1016/j.envres.2016.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Long-term air pollution exposure has been associated with chronic inflammation providing a link to the development of chronic health effects. Furthermore, there is evidence that pathways activated by endoplasmatic reticulum (ER) stress induce airway inflammation and thereby play an important role in the pathogenesis of inflammatory diseases. OBJECTIVE We investigated the role of genetic variation of the ER stress pathway on air pollution-induced inflammation. METHODS We used the follow-up examination of the German SALIA study (N=402, age 68-79 years). Biomarkers of inflammation were determined in induced sputum. We calculated biomarker-specific weighted genetic risk scores (GRS) out of eight ER stress related single nucleotide polymorphisms and tested their interaction with PM2.5, PM2.5 absorbance, PM10 and NO2 exposure on inflammation by adjusted linear regression. RESULTS Genetic variation of the ER stress pathway was associated with higher concentration of inflammation-related biomarkers (levels of leukotriene (LT)B4, tumor necrosis factor-α (TNF-α), the total number of cells and nitric oxide (NO) derivatives). Furthermore, we observed a significant interaction between air pollution exposure and the ER stress risk score on the concentration of inflammation-related biomarkers. The strongest gene-environment interaction was found for LTB4 (PM2.5: p-value=0.002, PM2.5 absorbance: p-value=0.002, PM10: p-value=0.001 and NO2: p-value=0.004). Women with a high GRS had a 38% (95%-CI: 16-64%) higher LTB4 level for an increase of 2.06μg/m³(IQR) in PM2.5 (no associations in women with a low GRS). CONCLUSION These results indicate that genetic variation in the ER stress pathway might play a role in air pollution induced inflammation in the lung.
Collapse
Affiliation(s)
- Anke Hüls
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ursula Krämer
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Luckhaus
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Stolz
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Vierkötter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
23
|
Perlmutter DH. α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2016; 3:63-72. [PMID: 28217691 PMCID: PMC5310618 DOI: 10.1515/ersc-2016-0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the classical form of α1-antitrypsin deficiency (ATD) a point mutation leads to accumulation of a misfolded secretory glycoprotein in the endoplasmic reticulum (ER) of liver cells and so ATD has come to be considered a prototypical ER storage disease. It is associated with two major types of clinical disorders, chronic obstructive pulmonary disease (COPD) by loss-of-function mechanisms and hepatic cirrhosis and carcinogenesis by gain-of-function mechanisms. The lung disease predominantly results from proteolytic damage to the pulmonary connective tissue matrix because of reduced levels of protease inhibitor activity of α1-anitrypsin (AT) in the circulating blood and body fluids. Cigarette smoking is a powerful disease-promoting modifier but other modifiers are known to exist because variation in the lung disease phenotype is still found in smoking and non-smoking homozygotes. The liver disease is highly likely to be caused by the proteotoxic effects of intracellular misfolded protein accumulation and a high degree of variation in the hepatic phenotype among affected homozygotes has been hypothetically attributed to genetic and environmental modifiers that alter proteostasis responses. Liver biopsies of homozygotes show intrahepatocytic inclusions with dilation and expansion of the ER and recent studies of iPS-derived hepatocyte-like cells from individuals with ATD indicate that the changes in the ER directly vary with the hepatic phenotype i.e there is much lesser alteration in the ER in cells derived from homozygotes that do not have clinically significant liver disease. From a signaling perspective, studies in mammalian cell line and animal models expressing the classical α1-antitrypsin Z variant (ATZ) have found that ER signaling is perturbed in a relatively unique way with powerful activation of autophagy and the NFκB pathway but relatively limited, if any, UPR signaling. It is still not known how much these unique structural and functional changes and the variation among affected homozygotes relate to the tendency of this variant to polymerize and aggregate and/or to the repertoire of proteostasis mechanisms that are activated.
Collapse
Affiliation(s)
- David H Perlmutter
- Corresponding author: David H Perlmutter, School of Medicine, Washington University in St Louis, 660 South Euclid Boulevard, St Louis, Missouri 63130, 314-362-6827,
| |
Collapse
|
24
|
Abstract
Hepatic neoplasia is a rare but serious complication of metabolic diseases in children. The risk of developing neoplasia, the age at onset, and the measures to prevent it differ in the various diseases. We review the most common metabolic disorders that are associated with a heightened risk of developing hepatocellular neoplasms, with a special emphasis on reviewing recent advances in the molecular pathogenesis of the disorders and pre-clinical therapeutic options. The cellular and genetic pathways driving carcinogenesis are poorly understood, but best understood in tyrosinemia.
Collapse
Affiliation(s)
- Deborah A Schady
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angshumoy Roy
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Milton J Finegold
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
25
|
Vignaud H, Cullin C, Bouchecareilh M. [Alpha-1 antitrypsin deficiency: A model of alteration of protein homeostasis or proteostasis]. Rev Mal Respir 2015; 32:1059-71. [PMID: 26386628 DOI: 10.1016/j.rmr.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the ninth leading cause of death in France and is predicted to become the third leading cause of worldwide morbidity and mortality by 2020. Risk factors for COPD include exposure to tobacco, dusts and chemicals, asthma and alpha-1 antitrypsin deficiency. This genetic disease, significantly under-diagnosed and under-recognized, affects 1 in 2500 live births and is an important cause of lung and, occasionally, liver disease. Alpha-1 antitrypsin deficiency is a pathology of proteostasis-mediated protein folding and trafficking pathways. To date, there are only palliative therapeutic approaches for the symptoms associated with this hereditary disorder. Therefore, a more detailed understanding is required of the folding and trafficking biology governing alpha-1 antitrypsin biogenesis and its response to drugs. Here, we review the cell biological, biochemical and biophysical properties of alpha-1 antitrypsin and its variants, and we suggest that alpha-1 antitrypsin deficiency is an example of cell autonomous and non-autonomous challenges to proteostasis. Finally, we review emerging strategies that may be used to enhance the proteostasis system and protect the lung from alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- H Vignaud
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - C Cullin
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - M Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France.
| |
Collapse
|
26
|
Joly P, Restier L, Bouchecareilh M, Lacan P, Cabet F, Chapuis-Cellier C, Francina A, Lachaux A. Cohorte DEFI-ALPHA et projet hospitalier de recherche clinique POLYGEN DEFI-ALPHA. Étude des facteurs cliniques, biologiques et génétiques associés à l’apparition et à l’évolution de complications hépatiques chez les enfants présentant un déficit en alpha-1 antitrypsine. Rev Mal Respir 2015; 32:759-67. [DOI: 10.1016/j.rmr.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/02/2014] [Indexed: 10/23/2022]
|
27
|
Schaefer B, Haschka D, Finkenstedt A, Petersen BS, Theurl I, Henninger B, Janecke AR, Wang CY, Lin HY, Veits L, Vogel W, Weiss G, Franke A, Zoller H. Impaired hepcidin expression in alpha-1-antitrypsin deficiency associated with iron overload and progressive liver disease. Hum Mol Genet 2015; 24:6254-63. [PMID: 26310624 DOI: 10.1093/hmg/ddv348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/19/2015] [Indexed: 01/25/2023] Open
Abstract
Liver disease due to alpha-1-antitrypsin deficiency (A1ATD) is associated with hepatic iron overload in a subgroup of patients. The underlying cause for this association is unknown. The aim of the present study was to define the genetics of this correlation and the effect of alpha-1-antitrypsin (A1AT) on the expression of the iron hormone hepcidin. Full exome and candidate gene sequencing were carried out in a family with A1ATD and hepatic iron overload. Regulation of hepcidin expression by A1AT was studied in primary murine hepatocytes. Cells co-transfected with hemojuvelin (HJV) and matriptase-2 (MT-2) were used as a model to investigate the molecular mechanism of this regulation. Observed familial clustering of hepatic iron overload with A1ATD suggests a genetic cause, but genotypes known to be associated with hemochromatosis were absent. Individuals homozygous for the A1AT Z-allele with environmental or genetic risk factors such as steatosis or heterozygosity for the HAMP non-sense mutation p.Arg59* presented with severe hepatic siderosis. In hepatocytes, A1AT induced hepcidin mRNA expression in a dose-dependent manner. Experiments in overexpressing cells show that A1AT reduces cleavage of the hepcidin inducing bone morphogenetic protein co-receptor HJV via inhibition of the membrane-bound serine protease MT-2. The acute-phase protein A1AT is an inducer of hepcidin expression. Through this mechanism, A1ATD could be a trigger of hepatic iron overload in genetically predisposed individuals or patients with environmental risk factors for hepatic siderosis.
Collapse
Affiliation(s)
| | - David Haschka
- Department of Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology
| | | | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | - Igor Theurl
- Department of Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria, Division of Human Genetics, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Chia-Yu Wang
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and
| | - Herbert Y Lin
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and
| | - Lothar Veits
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzerstraße 101, 95445 Bayreuth, Germany
| | - Wolfgang Vogel
- Department of Medicine II, Gastroenterology and Hepatology
| | - Günter Weiss
- Department of Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | - Heinz Zoller
- Department of Medicine II, Gastroenterology and Hepatology,
| |
Collapse
|
28
|
Teckman JH, Rosenthal P, Abel R, Bass LM, Michail S, Murray KF, Rudnick DA, Thomas DW, Spino C, Arnon R, Hertel PM, Heubi J, Kamath BM, Karnsakul W, Loomes KM, Magee JC, Molleston JP, Romero R, Shneider BL, Sherker AH, Sokol RJ. Baseline Analysis of a Young α-1-Antitrypsin Deficiency Liver Disease Cohort Reveals Frequent Portal Hypertension. J Pediatr Gastroenterol Nutr 2015; 61:94-101. [PMID: 25651489 PMCID: PMC4692167 DOI: 10.1097/mpg.0000000000000753] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES α-1-Antitrypsin (A1AT) deficiency is a common genetic disease with an unpredictable and highly variable course. The Childhood Liver Disease Research and Education Network is a National Institutes of Health, multicenter, longitudinal consortium studying pediatric liver diseases, with the objective of prospectively defining natural history and identifying disease modifiers. METHODS Longitudinal, cohort study of A1AT patients' birth through 25 years diagnosed as having liver disease, type PIZZ or PISZ. Medical history, physical examination, laboratory, imaging, and standardized survey tool data were collected during the provision of standard of care. RESULTS In the present report of the cohort at baseline, 269 subjects were enrolled between November 2008 and October 2012 (208 with their native livers and 61 postliver transplant). Subjects with mild disease (native livers and no portal hypertension [PHT]) compared to severe disease (with PHT or postliver transplant) were not different in age at presentation. A total of 57% of subjects with mild disease and 76% with severe disease were jaundiced at presentation (P = 0.0024). A total of 29% of subjects with native livers had PHT, but age at diagnosis and growth were not different between the no-PHT and PHT groups (P > 0.05). Subjects with native livers and PHT were more likely to have elevated bilirubin, ALT, AST, INR, and GGTP than the no-PHT group (P << 0.001), but overlap was large. Chemistries alone could not identify PHT. CONCLUSIONS Many subjects with A1AT presenting with elevated liver tests and jaundice improve spontaneously. Subjects with PHT have few symptoms and normal growth. Longitudinal cohort follow-up will identify genetic and environmental disease modifiers.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- Pediatrics and Biochemistry, Saint Louis University, Cardinal Glennon Children's Medical Center, Saint Louis, MO, United States
| | - Philip Rosenthal
- Pediatrics and Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Robert Abel
- Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Lee M. Bass
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sonia Michail
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Karen F. Murray
- Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, United States
| | - David A. Rudnick
- Pediatrics, Washington University, Saint Louis, MO, United States
| | - Daniel W. Thomas
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Cathie Spino
- Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Ronen Arnon
- Pediatrics, Mount Sinai School of Medicine, New York, NY, United States
| | - Paula M. Hertel
- Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - James Heubi
- Pediatric Gastroenterology and Hepatology, Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Binita M. Kamath
- Pediatric Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Wikrom Karnsakul
- Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kathleen M. Loomes
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - John C. Magee
- Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Jean P. Molleston
- Pediatric Gastroenterology, Hepatology and Nutrition, James Whitcomb Riley Hospital for Children, Indianapolis, IN, United States
| | - Rene Romero
- Pediatrics, Emory University, Children's Healthcare Atlanta, Atlanta, GA, United States
| | | | - Averell H Sherker
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Baltimore, MD, United States
| | - Ronald J Sokol
- Pediatric Gastroenterology, University of Colorado, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
29
|
Wilson AA, Ying L, Liesa M, Segeritz CP, Mills JA, Shen SS, Jean J, Lonza GC, Liberti DC, Lang AH, Nazaire J, Gower AC, Müeller FJ, Mehta P, Ordóñez A, Lomas DA, Vallier L, Murphy GJ, Mostoslavsky G, Spira A, Shirihai OS, Ramirez MI, Gadue P, Kotton DN. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports 2015; 4:873-85. [PMID: 25843048 PMCID: PMC4437473 DOI: 10.1016/j.stemcr.2015.02.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide an inexhaustible source of cells for modeling disease and testing drugs. Here we develop a bioinformatic approach to detect differences between the genomic programs of iPSCs derived from diseased versus normal human cohorts as they emerge during in vitro directed differentiation. Using iPSCs generated from a cohort carrying mutations (PiZZ) in the gene responsible for alpha-1 antitrypsin (AAT) deficiency, we find that the global transcriptomes of PiZZ iPSCs diverge from normal controls upon differentiation to hepatic cells. Expression of 135 genes distinguishes PiZZ iPSC-hepatic cells, providing potential clues to liver disease pathogenesis. The disease-specific cells display intracellular accumulation of mutant AAT protein, resulting in increased autophagic flux. Furthermore, we detect beneficial responses to the drug carbamazepine, which further augments autophagic flux, but adverse responses to known hepatotoxic drugs. Our findings support the utility of iPSCs as tools for drug development or prediction of toxicity.
Collapse
Affiliation(s)
- Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Lei Ying
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marc Liesa
- Evans Center for Interdisciplinary Research, Department of Medicine, Mitochondria ARC, Boston University School of Medicine, Boston, MA 02118, USA
| | - Charis-Patricia Segeritz
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Jason A Mills
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven S Shen
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jyhchang Jean
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Geordie C Lonza
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Derek C Liberti
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Alex H Lang
- Physics Department, Boston University, Boston, MA 02215, USA
| | - Jean Nazaire
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam C Gower
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Franz-Josef Müeller
- Zentrum für Integrative Psychiatrie, Universitätsklinikums Schleswig-Holstein, Kiel 24105, Germany
| | - Pankaj Mehta
- Physics Department, Boston University, Boston, MA 02215, USA
| | - Adriana Ordóñez
- Cambridge Institute for Medical Research, Cambridge CB0 2XY, UK
| | - David A Lomas
- Cambridge Institute for Medical Research, Cambridge CB0 2XY, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - George J Murphy
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Avrum Spira
- Division of Computational Biomedicine and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Orian S Shirihai
- Evans Center for Interdisciplinary Research, Department of Medicine, Mitochondria ARC, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria I Ramirez
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Teckman JH, Mangalat N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev Gastroenterol Hepatol 2015; 9:261-8. [PMID: 25066184 DOI: 10.1586/17474124.2014.943187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α-1-Antitrypsin (α1AT) is a serum glycoprotein synthesized in the liver. The majority of patients with α1AT deficiency liver disease are homozygous for the Z mutant of α1AT (called ZZ or 'PIZZ'). This mutant gene directs the synthesis of an abnormal protein which folds improperly during biogenesis. Most of these mutant Z protein molecules undergo proteolysis; however, some of the mutant protein accumulates in hepatocytes. Hepatocytes with the largest mutant protein burdens undergo apoptosis, causing compensatory hepatic proliferation. Cycles of hepatocyte injury, cell death and compensatory proliferation results in liver disease ranging from mild asymptomatic enzyme elevations to hepatic fibrosis, cirrhosis and hepatocellular carcinoma. There is a high variability in clinical disease presentation suggesting that environmental and genetic modifiers are important. Management of α1AT liver disease is based on standard supportive care and liver transplant. However, increased understanding of the cellular mechanisms of liver injury has led to new clinical trials.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd, St. Louis, MO 63104, USA
| | | |
Collapse
|
31
|
Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol 2014; 307:C657-70. [PMID: 24944205 DOI: 10.1152/ajpcell.00183.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a major site of protein synthesis, most strikingly in the specialized secretory cells of metazoans, which can produce their own weight in proteins daily. Cells possess a diverse machinery to ensure correct folding, assembly, and secretion of proteins from the ER. When this machinery is overwhelmed, the cell is said to experience ER stress, a result of the accumulation of unfolded or misfolded proteins in the lumen of the organelle. Here we discuss the causes of ER stress and the mechanisms by which cells elicit a response, with an emphasis on recent discoveries.
Collapse
Affiliation(s)
- Joseph E Chambers
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
32
|
Abstract
Alpha-1-antitrypsin (α1AT) deficiency is a genetic disorder that manifests as pulmonary emphysema and liver cirrhosis. α1AT deficiency is the most common genetic cause of liver disease in children and also an underappreciated cause of liver disease in adults. The prevalence in the general population in Western Europe is approximately 1 in 2,000. The most common and severe deficiency allele is the Z variant (two alleles mutated). This variant is characterized by the accumulation of Z-α1AT polymers in the endoplasmic reticulum of hepatocytes leading to cell death and to a severe reduction of α1AT in the serum. The latter results in a loss of its antiprotease activity and its ability to protect lung tissue. Thus far, there are only very limited therapeutic options in α1AT deficiency. A more detailed understanding of the biology governing α1AT biogenesis is required in order to identify new pharmacological agents and biomarkers. This review will present current knowledge on α1AT deficiency and focus on recent discoveries and new strategies in the treatment of this disease.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
33
|
Haddock CJ, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, Teckman J, Skowyra D. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS One 2014; 9:e106371. [PMID: 25210780 PMCID: PMC4161314 DOI: 10.1371/journal.pone.0106371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome, possibly by inducing oxidative stress-mediated modifications that compromise substrate delivery to proteolytic core.
Collapse
Affiliation(s)
- Christopher J. Haddock
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Keith Blomenkamp
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Madhav Gautam
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jared James
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joanna Mielcarska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Edward Gogol
- School of Biological Sciences, University of Missouri – Kansas City, Kansas City, Missouri, United States of America
| | - Jeffrey Teckman
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
34
|
Abstract
Alpha-1-antitrypsin (a1AT) deficiency is a common, but under-diagnosed, genetic disease. In the classical form, patients are homozygous for the Z mutant of the a1AT gene (called ZZ or PIZZ), which occurs in 1 in 2,000-3,500 births. The mutant Z gene directs the synthesis of large quantities of the mutant Z protein in the liver, which folds abnormally during biogenesis and accumulates intracellularly, rather than being efficiently secreted. The accumulation mutant Z protein within hepatocytes causes liver injury, cirrhosis, and hepatocellular carcinoma via a cascade of chronic hepatocellular apoptosis, regeneration, and end organ injury. There is no specific treatment for a1AT-associated liver disease, other than standard supportive care and transplantation. There is high variability in the clinical manifestations among ZZ homozygous patients, suggesting a strong influence of genetic and environmental modifiers. New insights into the biological mechanisms of intracellular injury have led to new, rational therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd., St. Louis, MO, 63104, USA,
| | | |
Collapse
|
35
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
36
|
Alam S, Li Z, Atkinson C, Jonigk D, Janciauskiene S, Mahadeva R. Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:909-31. [PMID: 24592811 PMCID: PMC4098095 DOI: 10.1164/rccm.201308-1458oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Severe α1-antitrypsin deficiency caused by the Z variant (Glu342Lys; ZZ-AT) is a well-known genetic cause for emphysema. Although severe lack of antiproteinase protection is the critical etiologic factor for ZZ-AT-associated chronic obstructive pulmonary disease (COPD), some reports have suggested enhanced lung inflammation as a factor in ZZ-AT homozygotes. OBJECTIVES To provide molecular characterization of inflammation in ZZ-AT. METHODS Inflammatory cell and cytokine profile (nuclear factor-κB, IL-6, tumor necrosis factor-α), intracellular polymerization of Z-AT, and endoplasmic reticulum (ER) stress markers (protein kinase RNA-like ER kinase, activator transcription factor 4) were assessed in transgenic mice and transfected cells in response to cigarette smoke, and in explanted lungs from ZZ and MM individuals with severe COPD. MEASUREMENTS AND MAIN RESULTS Compared with M-AT, transgenic Z-AT mice lungs exposed to cigarette smoke had higher levels of pulmonary cytokines, neutrophils, and macrophages and an exaggerated ER stress. Similarly, the ER overload response was greater in lungs from ZZ-AT homozygotes with COPD, and was particularly found in pulmonary epithelial cells. Cigarette smoke increased intracellular Z-AT polymers, ER overload response, and proinflammatory cytokine release in Z-AT-expressing pulmonary epithelial cells, which could be prevented with an inhibitor of polymerization, an antioxidant, and an inhibitor of protein kinase RNA-like ER kinase. CONCLUSIONS We show here that aggregation of intracellular mutant Z-AT invokes a specific deleterious cellular inflammatory phenotype in COPD. Oxidant-induced intracellular polymerization of Z-AT in epithelial cells causes ER stress, and promotes excess cytokine and cellular inflammation. This pathway is likely to contribute to the development of COPD in ZZ-AT homozygotes, and therefore merits further investigation.
Collapse
Affiliation(s)
- Samuel Alam
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Zhenjun Li
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carl Atkinson
- Department of Microbiology and Immunology,
Medical University of South Carolina, Charleston, South Carolina; and
| | | | | | - Ravi Mahadeva
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
37
|
Ghouse R, Chu A, Wang Y, Perlmutter DH. Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech 2014; 7:411-9. [PMID: 24719116 PMCID: PMC3974452 DOI: 10.1242/dmm.014092] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder.
Collapse
Affiliation(s)
- Raafe Ghouse
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Andrew Chu
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Yan Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Wang C, Yan Y, Hu L, Zhao L, Yang P, Moorhead JF, Varghese Z, Chen Y, Ruan XZ. Rapamycin-mediated CD36 translational suppression contributes to alleviation of hepatic steatosis. Biochem Biophys Res Commun 2014; 447:57-63. [DOI: 10.1016/j.bbrc.2014.03.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
|
39
|
Iannotti MJ, Figard L, Sokac AM, Sifers RN. A Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J Biol Chem 2014; 289:11844-11858. [PMID: 24627495 DOI: 10.1074/jbc.m114.552091] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes.
Collapse
Affiliation(s)
- Michael J Iannotti
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Lauren Figard
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Anna M Sokac
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Richard N Sifers
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
40
|
Manichaikul A, Hoffman EA, Smolonska J, Gao W, Cho MH, Baumhauer H, Budoff M, Austin JHM, Washko GR, Carr JJ, Kaufman JD, Pottinger T, Powell CA, Wijmenga C, Zanen P, Groen HJM, Postma DS, Wanner A, Rouhani FN, Brantly ML, Powell R, Smith BM, Rabinowitz D, Raffel LJ, Hinckley Stukovsky KD, Crapo JD, Beaty TH, Hokanson JE, Silverman EK, Dupuis J, O’Connor GT, Boezen HM, Rich SS, Barr RG. Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. Am J Respir Crit Care Med 2014; 189:408-18. [PMID: 24383474 PMCID: PMC3977717 DOI: 10.1164/rccm.201306-1061oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary emphysema overlaps partially with spirometrically defined chronic obstructive pulmonary disease and is heritable, with moderately high familial clustering. OBJECTIVES To complete a genome-wide association study (GWAS) for the percentage of emphysema-like lung on computed tomography in the Multi-Ethnic Study of Atherosclerosis (MESA) Lung/SNP Health Association Resource (SHARe) Study, a large, population-based cohort in the United States. METHODS We determined percent emphysema and upper-lower lobe ratio in emphysema defined by lung regions less than -950 HU on cardiac scans. Genetic analyses were reported combined across four race/ethnic groups: non-Hispanic white (n = 2,587), African American (n = 2,510), Hispanic (n = 2,113), and Chinese (n = 704) and stratified by race and ethnicity. MEASUREMENTS AND MAIN RESULTS Among 7,914 participants, we identified regions at genome-wide significance for percent emphysema in or near SNRPF (rs7957346; P = 2.2 × 10(-8)) and PPT2 (rs10947233; P = 3.2 × 10(-8)), both of which replicated in an additional 6,023 individuals of European ancestry. Both single-nucleotide polymorphisms were previously implicated as genes influencing lung function, and analyses including lung function revealed independent associations for percent emphysema. Among Hispanics, we identified a genetic locus for upper-lower lobe ratio near the α-mannosidase-related gene MAN2B1 (rs10411619; P = 1.1 × 10(-9); minor allele frequency [MAF], 4.4%). Among Chinese, we identified single-nucleotide polymorphisms associated with upper-lower lobe ratio near DHX15 (rs7698250; P = 1.8 × 10(-10); MAF, 2.7%) and MGAT5B (rs7221059; P = 2.7 × 10(-8); MAF, 2.6%), which acts on α-linked mannose. Among African Americans, a locus near a third α-mannosidase-related gene, MAN1C1 (rs12130495; P = 9.9 × 10(-6); MAF, 13.3%) was associated with percent emphysema. CONCLUSIONS Our results suggest that some genes previously identified as influencing lung function are independently associated with emphysema rather than lung function, and that genes related to α-mannosidase may influence risk of emphysema.
Collapse
Affiliation(s)
- Ani Manichaikul
- Center for Public Health Genomics, and
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, Virginia
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | - Wei Gao
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, and
| | - Heather Baumhauer
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Matthew Budoff
- Division of Cardiology, Los Angeles Biomedical Research Institute, Torrance, California
| | - John H. M. Austin
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - J. Jeffrey Carr
- Department of Radiology, Wake Forest University, Winston-Salem, North Carolina
| | - Joel D. Kaufman
- Department of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, and
| | - Tess Pottinger
- Department of Medicine, College of Physicians and Surgeons
| | | | | | - Pieter Zanen
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dirkje S. Postma
- Department of Pulmonology, and
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adam Wanner
- Division of Pulmonary and Critical Care Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Farshid N. Rouhani
- Division of Pulmonary Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark L. Brantly
- Division of Pulmonary Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Rhea Powell
- Department of Medicine, College of Physicians and Surgeons
| | | | | | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - James D. Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, Colorado
| | - Edwin K. Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, and
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; and
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts; and
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - H. Marike Boezen
- Department of Epidemiology
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
41
|
Gooptu B, Dickens JA, Lomas DA. The molecular and cellular pathology of α₁-antitrypsin deficiency. Trends Mol Med 2013; 20:116-27. [PMID: 24374162 DOI: 10.1016/j.molmed.2013.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
Abstract
Since its discovery 50 years ago, α₁-antitrypsin deficiency has represented a case study in molecular medicine, with careful clinical characterisation guiding genetic, biochemical, biophysical, structural, cellular, and in vivo studies. Here we highlight the milestones in understanding the disease mechanisms and show how they have spurred the development of novel therapeutic strategies. α₁-Antitrypsin deficiency is an archetypal conformational disease. Its pathogenesis demonstrates the interplay between protein folding and quality control mechanisms, with aberrant conformational changes causing liver and lung disease through combined loss- and toxic gain-of-function effects. Moreover, α₁-antitrypsin exemplifies the ability of diverse proteins to self-associate into a range of morphologically distinct polymers, suggesting a mechanism for protein and cell evolution.
Collapse
Affiliation(s)
- Bibek Gooptu
- Division of Asthma, Allergy, and Lung Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK; Institute of Structural and Molecular Biology/Crystallography, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Jennifer A Dickens
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
| | - David A Lomas
- Institute of Structural and Molecular Biology/Crystallography, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK; Division of Medicine, University College London, 1st Floor, Maple House, 149, Tottenham Court Road, London, W1T 7NF, UK.
| |
Collapse
|
42
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Pan S, Cheng X, Chen H, Castro PD, Ittmann MM, Hutson AW, Zapata SK, Sifers RN. ERManI is a target of miR-125b and promotes transformation phenotypes in hepatocellular carcinoma (HCC). PLoS One 2013; 8:e72829. [PMID: 23940818 PMCID: PMC3733964 DOI: 10.1371/journal.pone.0072829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/14/2013] [Indexed: 02/07/2023] Open
Abstract
The MAN1B1 gene product, designated ER alpha-1, 2-mannosidase (ERManI), is an enzyme localized in the Golgi complex of mammalian cells. By functioning as a "gate keeper" to prevent the inappropriate secretion of misfolded glycoproteins, it plays a critical role in maintaining protein homeostasis in the mammalian secretory pathway. In the present study, we identified that a conserved motif within the 3'UTR of ERManI is a target of miR-125b, a microRNA frequently down-regulated in numerous types of cancers, including hepatocellular carcinoma (HCC). As predicted, the expression of ERManI is significantly elevated in HCC, as measured by immunohistochemistry in a liver spectrum tissue microarray. Additional analyses using several hepatoma cell lines demonstrated that the elevated ERManI inversely correlates with a diminished intracellular concentration of miR-125b. Moreover, functional studies indicated that RNAi-mediated knock-down of endogenous ERManI was sufficient to inhibit proliferation, migration, and invasion of hepatoma cells. These phenotypical changes occurred in the absence of alterations in global glycoprotein secretion or ER-stress status. Together, these results revealed a novel post-transcriptional regulatory mechanism for ERManI and implied that this molecule contributes to the regulation of carcinogenesis in HCC independent of its function in glycoprotein quality control.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyun Cheng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Lymphoma & Myeloma, University of Texas-M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Hongan Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Participant in the Baylor College of Medicine Summer Medical and Research Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Patricia D. Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne W. Hutson
- Department of Pediatrics-Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan K. Zapata
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard N. Sifers
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Silverman GA, Pak SC, Perlmutter DH. Disorders of protein misfolding: alpha-1-antitrypsin deficiency as prototype. J Pediatr 2013; 163:320-6. [PMID: 23664631 PMCID: PMC3725216 DOI: 10.1016/j.jpeds.2013.03.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023]
|
45
|
Ordóñez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology 2013; 57:10.1002/hep.26173. [PMID: 23197448 PMCID: PMC3871212 DOI: 10.1002/hep.26173] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Point mutants of alpha1 -antitrypsin (α1AT) form ordered polymers that are retained as inclusions within the endoplasmic reticulum (ER) of hepatocytes in association with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. These inclusions cause cell damage and predispose to ER stress in the absence of the classical unfolded protein response (UPR). The pathophysiology underlying this ER stress was explored by generating cell models that conditionally express wild-type (WT) α1AT, two mutants that cause polymer-mediated inclusions and liver disease (E342K [the Z allele] and H334D) and a truncated mutant (Null Hong Kong; NHK) that induces classical ER stress and is removed by ER-associated degradation. Expression of the polymeric mutants resulted in gross changes in the ER luminal environment that recapitulated the changes observed in liver sections from individuals with PI*ZZ α1AT deficiency. In contrast, expression of NHK α1AT caused electron lucent dilatation and expansion of the ER throughout the cell. Photobleaching microscopy in live cells demonstrated a decrease in the mobility of soluble luminal proteins in cells that express E342K and H334D α1AT, when compared to those that express WT and NHK α1AT (0.34 ± 0.05, 0.22 ± 0.03, 2.83 ± 0.30, and 2.84 ± 0.55 μm(2) /s, respectively). There was no effect on protein mobility within ER membranes, indicating that cisternal connectivity was not disrupted. Polymer expression alone was insufficient to induce the UPR, but the resulting protein overload rendered cells hypersensitive to ER stress induced by either tunicamycin or glucose depletion. CONCLUSION Changes in protein diffusion provide an explanation for the cellular consequences of ER protein overload in mutants that cause inclusion body formation and α1AT deficiency.
Collapse
Affiliation(s)
- Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Erik L Snapp
- Department Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Lu Tan
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Elena Miranda
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK,Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’ e Istituto Pasteur – Fondazione Cenci Bolognetti, Università di Roma “La Sapienza”, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - David A Lomas
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
46
|
Teckman JH. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Understanding and Future Therapy. COPD 2013; 10 Suppl 1:35-43. [DOI: 10.3109/15412555.2013.765839] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Dawwas MF, Davies SE, Griffiths WJH, Lomas DA, Alexander GJ. Prevalence and Risk Factors for Liver Involvement in Individuals with PiZZ-related Lung Disease. Am J Respir Crit Care Med 2013; 187:502-8. [DOI: 10.1164/rccm.201204-0739oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
48
|
Rodeck B, Zimmer KP. Stoffwechselerkrankungen. PÄDIATRISCHE GASTROENTEROLOGIE, HEPATOLOGIE UND ERNÄHRUNG 2013. [PMCID: PMC7498805 DOI: 10.1007/978-3-642-24710-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entsprechend ihrer Wanderung bei isoelektrischer Fokussierung werden die allelen Varianten des α1-AT als Proteinaseinhibitorphänotypen (Pi) klassifiziert. Die dominierende Isoform ist der normale Phänotyp M, daneben gibt es die Mangelvarianten S und Z sowie eine 0-Variante.
Collapse
Affiliation(s)
- Burkhard Rodeck
- Zentrum für Kinder- und Jugendmedizin, Christliches Kinderhospital Osnabrück, Johannisfreiheit 1, 49074 Osnabrück, Deutschland
| | - Klaus-Peter Zimmer
- grid.411067.50000000085849230Abteilung Allgemeine Pädiatrie und Neonatalogie, Universitätsklinikum Gießen und Marburg GmbH, Zentrum für Kinderheilkunde und Jugendmedizin, Feulgenstr. 12, 35392 Gießen, Deutschland
| |
Collapse
|
49
|
Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J Biol Chem 2012; 287:38265-78. [PMID: 22995909 PMCID: PMC3488095 DOI: 10.1074/jbc.m112.404707] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/12/2012] [Indexed: 02/06/2023] Open
Abstract
α1-Antitrypsin (α1AT) deficiency (α1ATD) is a consequence of defective folding, trafficking, and secretion of α1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of α1ATD is caused by the Z-variant and is characterized by the accumulation of α1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of α1AT in the serum and its anti-protease activity in the lung. In this organ α1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in α1ATD, a more detailed understanding of the folding and trafficking biology governing α1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-α1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-α1AT secretion and serpin activity to a level 50% that observed for wild-type α1AT. These data suggest that HDAC activity can influence Z-α1AT protein traffic and that SAHA may represent a potential therapeutic approach for α1ATD and other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | - Terence R. Flotte
- the Department of Pediatrics and Gene Therapy Center UMass Medical School, Worcester, Massachusetts 01655
| | - William E. Balch
- From the Department of Cell Biology
- The Skaggs Institute for Chemical Biology
- Department of Chemical Physiology, and
- the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
50
|
The endosomal protein-sorting receptor sortilin has a role in trafficking α-1 antitrypsin. Genetics 2012; 192:889-903. [PMID: 22923381 DOI: 10.1534/genetics.112.143487] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Up to 1 in 3000 individuals in the United States have α-1 antitrypsin deficiency, and the most common cause of this disease is homozygosity for the antitrypsin-Z variant (ATZ). ATZ is inefficiently secreted, resulting in protein deficiency in the lungs and toxic polymer accumulation in the liver. However, only a subset of patients suffer from liver disease, suggesting that genetic factors predispose individuals to liver disease. To identify candidate factors, we developed a yeast ATZ expression system that recapitulates key features of the disease-causing protein. We then adapted this system to screen the yeast deletion mutant collection to identify conserved genes that affect ATZ secretion and thus may modify the risk for developing liver disease. The results of the screen and associated assays indicate that ATZ is degraded in the vacuole after being routed from the Golgi. In fact, one of the strongest hits from our screen was Vps10, which can serve as a receptor for the delivery of aberrant proteins to the vacuole. Because genome-wide association studies implicate the human Vps10 homolog, sortilin, in cardiovascular disease, and because hepatic cell lines that stably express wild-type or mutant sortilin were recently established, we examined whether ATZ levels and secretion are affected by sortilin. As hypothesized, sortilin function impacts the levels of secreted ATZ in mammalian cells. This study represents the first genome-wide screen for factors that modulate ATZ secretion and has led to the identification of a gene that may modify disease severity or presentation in individuals with ATZ-associated liver disease.
Collapse
|