1
|
Gao J, Bao M, Xing Y, Ding Y, Han T, Wen E, Liu J, Yue S, Wang R, Wang L, Liu J, Zhao S, Huang J, Liu E, Bai L. Mediator subunit MED1 deficiency prevents carbon tetrachloride-induced hepatic fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G418-G428. [PMID: 37668531 DOI: 10.1152/ajpgi.00076.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Mediator subunit mediator 1 (MED1) mediates ligand-dependent binding of the mediator coactivator complex to various nuclear receptors and plays a critical role in embryonic development, lipid and glucose metabolism, liver regeneration, and tumorigenesis. However, the precise role of MED1 in the development of liver fibrosis has been unclear. Here, we showed that MED1 expression was increased in livers from nonalcoholic steatohepatitis (NASH) patients and mice and positively correlated with transforming growth factor β (TGF-β) signaling and profibrotic factors. Upon treatment with carbon tetrachloride (CCl4), hepatic fibrosis was much less in liver-specific MED1 deletion (MED1ΔLiv) mice than in MED1fl/fl littermates. TGF-β/Smad2/3 signaling pathway was inhibited, and gene expression of fibrotic markers, including α-smooth muscle actin (α-SMA), collagen type 1 α 1 (Col1a1), matrix metalloproteinase-2 (Mmp2), and metallopeptidase inhibitor 1 (Timp1) were decreased in livers of MED1ΔLiv mice with CCl4 injection. Transcriptomic analysis revealed that the differentially expressed genes in livers of CCl4-administered MED1ΔLiv mice were enriched in the pathway of oxidoreductase activity, followed by robustly reduced oxidoreductase activity-related genes, such as Gm4756, Txnrd3, and Etfbkmt. More importantly, we found that the reduction of reactive oxygen species (ROS) in MED1 knockdown hepatocytes blocked the activation of TGF-β/Smad2/3 pathway and the expression of fibrotic genes in LX2 cells. These results indicate that MED1 is a positive regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for the regression of liver fibrosis.NEW & NOTEWORTHY In this study, we present the first evidence that liver mediator 1 (MED1) deficiency attenuated carbon tetrachloride-induced hepatic fibrosis in mouse. The underlying mechanism is that MED1 deficiency reduces reactive oxygen species (ROS) production in hepatocytes, thus restricts the activation of TGF-β/Smad2/3 signaling pathway and fibrogenic genes expression in hepatic stellate cells (HSCs). These data suggest that MED1 is an essential regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
- School of Biological Science Technology and Engineering, Shaanxi University of Technology, Hanzhong, People's Republic of China
| | - Miaoye Bao
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Yuanming Xing
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Yiming Ding
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Tuo Han
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Ergang Wen
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Jun Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Shaoyun Yue
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rong Wang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Ling Wang
- School of Biological Science Technology and Engineering, Shaanxi University of Technology, Hanzhong, People's Republic of China
| | - Junhui Liu
- Department of Clinical Laboratory, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sihai Zhao
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Enqi Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| | - Liang Bai
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
3
|
Yang Z, Liu Y, Cheng Q, Chen T. Targeting super enhancers for liver disease: a review. PeerJ 2023; 11:e14780. [PMID: 36726725 PMCID: PMC9885865 DOI: 10.7717/peerj.14780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Background Super enhancers (SEs) refer to the ultralong regions of a gene accompanied by multiple transcription factors and cofactors and strongly drive the expression of cell-type-related genes. Recent studies have demonstrated that SEs play crucial roles in regulating gene expression related to cell cycle progression and transcription. Aberrant activation of SEs is closely related to the occurrence and development of liver disease. Liver disease, especially liver failure and hepatocellular carcinoma (HCC), constitutes a major class of diseases that seriously endanger human health. Currently, therapeutic strategies targeting SEs can dramatically prevent disease progression and improve the prognosis of animal models. The associated new approaches to the treatment of related liver disease are relatively new and need systematic elaboration. Objectives In this review, we elaborate on the features of SEs and discuss their function in liver disease. Additionally, we review their application prospects in clinical practice in the future. The article would be of interest to hepatologists, molecular biologists, clinicians, and all those concerned with targeted therapy and prognosis of liver disease. Methodology We searched three bibliographic databases (Web of Science Core Collection, Embase, PubMed) from 01/1981 to 06/2022 for peer-reviewed scientific publications focused on (1) gene treatment of liver disease; (2) current status of SE research; and (3) targeting SEs for liver disease. We included English language original studies only. Results The number of published studies considering the role of enhancers in liver disease is considerable. Since SEs were just defined in 2013, the corresponding data on SEs are scarce: approximately 50 papers found in bibliographic databases on the correlation between enhancers (or SEs) and liver disease. Remarkably, half of these papers were published in the past three years, indicating the growing interest of the scientific community in this issue. Studies have shown that treatments targeting components of SEs can improve outcomes in liver disease in animal and clinical trials. Conclusions The treatment of liver disease is facing a bottleneck, and new treatments are needed. Therapeutic regimens targeting SEs have an important role in the treatment of liver disease. However, given the off-target effect of gene therapy and the lack of clinical trials, the available experimental data are still fragmented and controversial.
Collapse
|
4
|
Fatima M, Gao J, Han T, Ding Y, Zhang Y, Wen E, Jia L, Wang R, Wang W, Zhao S, Bai L, Liu E. MED1 Deficiency in Macrophages Aggravates Isoproterenol-Induced Cardiac Fibrosis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1016-1027. [PMID: 35461855 DOI: 10.1016/j.ajpath.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Mediator 1 (MED1), a key subunit of the mediator complex, interacts with various nuclear receptors and functions in lipid metabolism and energy homeostasis. Dilated cardiomyopathy-related ventricular dilatation and heart failure have been reported in mice with cardiomyocyte-specific Med1 deficiency. However, the contribution of macrophage-specific MED1 in cardiac remodeling remains unclear. In this study, macrophage-specific Med1 knockout (Med1ΔMac) mice were generated and exposed to isoproterenol (ISO) to induce cardiac fibrosis; these mice showed aggravated cardiac fibrosis compared with Med1fl/fl mice. The levels of expression of marker genes for myofibroblast transdifferentiation [α-smooth muscle actin (SMA)] and of profibrotic genes, including Col1a1, Col3a1, Postn, Mmp2, Timp1, and Fn1, were significantly increased in the cardiac tissues of Med1ΔMac mice with ISO-induced myocardial fibrosis. In particular, the transforming growth factor (TGF)-β-Smad2/3 signaling pathway was activated. In bone marrow-derived and peritoneal macrophages, Med1 deficiency was also associated with elevated levels of expression of proinflammatory genes, including Il6, Tnfa, and Il1b. These findings indicate that macrophage-specific MED1 deficiency may aggravate ISO-induced cardiac fibrosis via the regulation of the TGF-β-SMAD2/3 pathway, and the underlying mechanism may involve MED1 deficiency triggering the activation of inflammatory cytokines in macrophages, which in turn may stimulate phenotypic switch of cardiac fibroblasts and accelerate cardiac fibrosis. Thus, MED1 is a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Mehreen Fatima
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Tuo Han
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yiming Ding
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Ergang Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Linying Jia
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Jin Z, Wu J, Lin J, Wang J, Shen Y. Identification of the Transcription Co-Factor–Related Gene Signature and Risk Score Model for Osteosarcoma. Front Genet 2022; 13:862803. [PMID: 35734428 PMCID: PMC9207420 DOI: 10.3389/fgene.2022.862803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma is a malignant tumor with a poor prognosis. Nowadays, there is a lack of good methods to assess the prognosis of osteosarcoma patients. Transcription co-factors (TcoFs) play crucial roles in transcriptional regulation through the interaction with transcription factors (TFs). Many studies have revealed that TcoFs are related to many diseases, especially cancer. However, few studies have been reported about prognostic prediction models of osteosarcoma by using TcoF-related genes. In order to construct a prognostic risk model with TcoF-related genes, the mRNA expression data and matched clinical information of osteosarcoma were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and the Gene Expression Omnibus (GEO) database. TARGET was used as a training set and GSE21257 from GEO was used as a validation set. Univariate Cox regression was performed to select 13 TcoF-related candidate genes, of which five genes (LMO2, MAML3, MTF2, RBPMS, and SIRT1) were finally used to construct the prognostic risk model by LASSO Cox regression analysis. The Kaplan–Meier (K-M) survival curves showed an obvious difference between high- and low-risk groups. The receiver operating characteristic (ROC) curves based on TARGET demonstrated that this risk model was credible (1-year AUC: 0.607; 3-years AUC: 0.713; 5-years AUC: 0.736). Meanwhile, the risk model was associated with immune cells and immune-related functions. By combining the risk score and clinical factors, the nomogram of osteosarcoma was assessed with a C-index of 0.738 to further support the reliability of this 5-gene prognostic risk model. Finally, the expression of TcoF-related genes was validated in different cell lines by quantitative real-time PCR (qRT-PCR) and also in different tissue samples by immunohistochemistry (IHC). In conclusion, the model can predict the prognosis of osteosarcoma patients and may provide novel targets for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Zhijian Jin
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuhui Shen,
| |
Collapse
|
6
|
Venigalla S, Straub J, Idigo O, Rinderle C, Stephens JM, Newman JJ. MED12 Regulates Human Adipose-Derived Stem Cell Adipogenesis and Mediator Kinase Subunit Expression in Murine Adipose Depots. Stem Cells Dev 2022; 31:119-131. [PMID: 35018809 PMCID: PMC9206493 DOI: 10.1089/scd.2021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mediator kinase module plays a critical role in the regulation of transcription during metabolic processes. Here we demonstrate that in human adipose-derived stem cells (hASCs), kinase module subunits have distinct mRNA and protein expression profiles during different stages of adipogenesis. In addition, siRNA-mediated loss of MED12 results in decreased adipogenesis as evident through decreased lipid accumulation and decreased expression of PPARγ, a master regulator of adipogenesis. Moreover, the decrease in adipogenesis and reduced PPARγ expression are observed only during the early stages of MED12 knockdown. At later stages, knockdown of MED12 did not have any significant effects on adipogenesis or PPARγ expression. We also observed that MED12 was present in a protein complex with PPARγ and C/EBPα during all stages of adipogenesis in hASCs. In 3T3-L1 preadipocytes and adipocytes, MED12 is present in protein complexes with PPARγ1, C/EBPα, and STAT5A. CDK8, another member of the kinase module, was only found to interact with C/EBPα. We found that the expression of all kinase module subunits decreased in inguinal, gonadal, and retroperitoneal white adipose tissue (WAT) depots in the fed state after an overnight fast, whereas the expression of kinase module subunits remained consistent in mesenteric WAT (mWAT) and brown adipose tissue. These data demonstrate that the kinase module undergoes physiologic regulation during fasting and feeding in specific mouse adipose tissue depots, and that MED12 likely plays a specific role in initiating and maintaining adipogenesis.
Collapse
Affiliation(s)
- Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Onyekachi Idigo
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Caroline Rinderle
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | | | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA.,Address correspondence to: Dr. Jamie J. Newman, School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
7
|
Zhang Y, Song C, Zhang Y, Wang Y, Feng C, Chen J, Wei L, Pan Q, Shang D, Zhu Y, Zhu J, Fang S, Zhao J, Yang Y, Zhao X, Xu X, Wang Q, Guo J, Li C. TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse. Nucleic Acids Res 2022; 50:D391-D401. [PMID: 34718747 PMCID: PMC8728270 DOI: 10.1093/nar/gkab950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Transcription co-factors (TcoFs) play crucial roles in gene expression regulation by communicating regulatory cues from enhancers to promoters. With the rapid accumulation of TcoF associated chromatin immunoprecipitation sequencing (ChIP-seq) data, the comprehensive collection and integrative analyses of these data are urgently required. Here, we developed the TcoFBase database (http://tcof.liclab.net/TcoFbase), which aimed to document a large number of available resources for mammalian TcoFs and provided annotations and enrichment analyses of TcoFs. TcoFBase curated 2322 TcoFs and 6759 TcoFs associated ChIP-seq data from over 500 tissues/cell types in human and mouse. Importantly, TcoFBase provided detailed and abundant (epi) genetic annotations of ChIP-seq based TcoF binding regions. Furthermore, TcoFBase supported regulatory annotation information and various functional annotations for TcoFs. Meanwhile, TcoFBase embedded five types of TcoF regulatory analyses for users, including TcoF gene set enrichment, TcoF binding genomic region annotation, TcoF regulatory network analysis, TcoF-TF co-occupancy analysis and TcoF regulatory axis analysis. TcoFBase was designed to be a useful resource that will help reveal the potential biological effects of TcoFs and elucidate TcoF-related regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jiaxin Chen
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Ling Wei
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Desi Shang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Shuangsang Fang
- Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yongsan Yang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xilong Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xiaozheng Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiuyu Wang
- Correspondence may also be addressed to Qiuyu Wang. Tel: +86 13351294769; Fax: +86 0734 8279018;
| | - Jincheng Guo
- Correspondence may also be addressed to Jincheng Guo. Tel: +86 1062600822; Fax: +86 1062601356;
| | - Chunquan Li
- To whom correspondence should be addressed. Tel: +86 15004591078; Fax: +86 0734 8279018;
| |
Collapse
|
8
|
Dong Z, He F, Yan X, Xing Y, Lei Y, Gao J, He M, Li D, Bai L, Yuan Z, Y-J. Shyy J. Hepatic Reduction in Cholesterol 25-Hydroxylase Aggravates Diet-induced Steatosis. Cell Mol Gastroenterol Hepatol 2022; 13:1161-1179. [PMID: 34990887 PMCID: PMC8873960 DOI: 10.1016/j.jcmgh.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Cholesterol 25-hydroxylase (Ch25h), converting cholesterol to 25-hydroxycholesterol (25-HC), is critical in modulating cellular lipid metabolism and anti-inflammatory and antiviral activities. However, its role in nonalcoholic fatty liver disease remains unclear. METHODS Ch25h expression was detected in livers of ob/ob mice and E3 rats fed a high-fat diet (HFD). Gain- or loss-of-function of Ch25h was performed using Ch25h+/+ (wild type [WT]) mice receiving AAV8-Ch25h or Ch25h knockout (Ch25h-/-) mice. WT mice fed an HFD were administered with 25-HC. The Ch25h-LXRα-CYP axis was measured in primary hepatocytes isolated from WT and Ch25h-/- mice. RESULTS We found that Ch25h level was decreased in livers of ob/ob mice and E3 rats fed an HFD. Ch25h-/- mice fed an HFD showed aggravated fatty liver and decreased level of cytochrome P450 7A1 (CYP7A1), in comparison with their WT littermates. RNA-seq analysis revealed that the differentially expressed genes in livers of HFD-fed Ch25h-/- mice were involved in pathways of positive regulation of lipid metabolic process, steroid metabolic process, cholesterol metabolic process, and bile acid biosynthetic process. As gain-of-function experiments, WT mice receiving AAV8-Ch25h or 25-HC showed alleviated NAFLD, when compared with the control group receiving AAV8-control or vehicle control. Consistently, Ch25h overexpression significantly elevated the levels of primary and secondary bile acids and CYP7A1 but decreased those of small heterodimer partner and FGFR4. CONCLUSIONS Elevated levels of Ch25h and its enzymatic product 25-HC alleviate HFD-induced hepatic steatosis via regulating enterohepatic circulation of bile acids. The underlying mechanism involves 25-HC activation of CYP7A1 via liver X receptor. These data suggest that targeting Ch25h or 25-HC may have therapeutic advantages against nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zeyu Dong
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Fangzhou He
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaosong Yan
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanming Xing
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuyang Lei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Gao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Ming He
- Department of Medicine/Division of Cardiology, University of California, San Diego, La Jolla, California
| | - Dongmin Li
- Department of Genetics and Molecular Biology, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi’an, Shaanxi, China,Correspondence Address correspondence to: Liang Bai, PhD, Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China. tel: 86 298 265 5363; fax: 86 298 265 5362.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - John Y-J. Shyy
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Medicine/Division of Cardiology, University of California, San Diego, La Jolla, California,John Y-J. Shyy, PhD, Department of Medicine/Division of Cardiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093. tel: (858) 534-3737.
| |
Collapse
|
9
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int J Mol Sci 2021; 22:ijms222212463. [PMID: 34830341 PMCID: PMC8619600 DOI: 10.3390/ijms222212463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are the nuclear receptors that could mediate the nutrient-dependent transcriptional activation and regulate metabolic networks through energy homeostasis. However, these receptors cannot work properly under metabolic stress. PPARs and their subtypes can be modulated by nutrigenomic interventions, particularly under stress conditions to restore cellular homeostasis. Many nutrients such as polyunsaturated fatty acids, vitamins, dietary amino acids and phytochemicals have shown their ability for potential activation or inhibition of PPARs. Thus, through different mechanisms, all these nutrients can modulate PPARs and are ultimately helpful to prevent various metabolic disorders, particularly in transition dairy cows. This review aims to provide insights into the crucial role of PPARs in energy metabolism and their potential modulation through nutrigenomic interventions to improve energy homeostasis in dairy animals.
Collapse
|
10
|
Wu K, Tao G, Xu T, An Y, Yu X, Wang Y, Wang S, Guo W, Ma L. Downregulation of miR-497-5p prevents liver ischemia-reperfusion injury in association with MED1/TIMP-2 axis and the NF-κB pathway. FASEB J 2021; 35:e21180. [PMID: 33715222 DOI: 10.1096/fj.202001029r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Liver ischemia-reperfusion (I/R) injury is a common clinical pathological phenomenon, which is accompanied by the occurrence in liver transplantation. However, the underlying mechanism is not yet fully understood. MicroRNAs (miRNAs) play an important role in liver I/R injury. Therefore, the study of miRNAs function will contribute a new biological marker diagnosis of liver I/R injury. This study aims to evaluate effects of miR-497-5p in liver I/R injury in mice. The related regulatory factors of miR-497-5p in liver I/R injury were predicted by bioinformatics analysis. Vascular occlusion was performed to establish the liver I/R injury animal models. Hypoxia/reoxygenation (H/R) was performed to establish the in vitro models. Hematoxylin-eosin (HE) staining was conducted to assess liver injury. The inflammatory factors were evaluated by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was adopted to assess the cell apoptosis. The expression of miR-497b-5p was increased in liver I/R injury. Knockdown of miR-497b-5p inhibited the production of inflammatory factors and cell apoptosis. Overexpression of mediator complex subunit 1 (MED1) and tissue inhibitor of metalloproteinase 2 (TIMP2) inhibited cell apoptosis to alleviate liver I/R injury. miR-497b-5p could activate the nuclear factor kappa-B (NF-κB) pathway by inhibiting the MED1/TIMP-2 axis to promote liver I/R injury. This study may provide a new strategy for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Kun Wu
- Department of General Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Guoquan Tao
- Department of General Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Ting Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Yuanyuan An
- Department of V.I.P Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Xiangyou Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Yi Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Wen Guo
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Long Ma
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|
11
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L, Liu G. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 2019; 45:543-555. [PMID: 31894315 PMCID: PMC6984781 DOI: 10.3892/ijmm.2019.4443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Increasing evidence has shown that microRNAs (miRNAs) play a vital role in the progression of NAFLD. The aim of the present study was to examine the expression level and roles of miR-146a in fatty liver of high-fat diet (HFD) and ob/ob mice and fatty acid-treated hepatic cells using RT-qPCR and western blot analysis. The results showed that the expression of miR-146a was significantly decreased in the livers of high-fat diet (HFD) and ob/ob mice and free fatty acid-stimulated cells by RT-qPCR. Overexpression of hepatic miR-146a improved glucose and insulin tolerance as well as lipid accumulation in the liver by promoting the oxidative metabolism of fatty acids. In addition, the overexpression of miR-146a increased the amount of mitochondria and promoted mitochondrial respiration in hepatocytes. Similarly, inhibition of miR-146a expression levels significantly reduced mitochondrial numbers in AML12 cells as well as the expression of mitochondrial respiration related genes. Additionally, MED1 was a direct target of miR-146a and restoring MED1 abolished the metabolic effects of miR-146a on lipid metabolism and mitochondrial function. Therefore, results of the present study identified a novel function of miR-146a in glucose and lipid metabolism in targeting MED1, suggesting that miR-146a serves as a potential therapeutic target for metabolic syndrome disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Bao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Diandian Wei
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Wenrui Wang
- Department of Biotechnology, School of Life Science and Technology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yixuan Cui
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lisheng Qian
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| | - Guodong Liu
- Department of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui 233100, P.R. China
| |
Collapse
|
13
|
Sedgeman LR, Beysen C, Allen RM, Ramirez Solano MA, Turner SM, Vickers KC. Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G810-G823. [PMID: 30160993 PMCID: PMC6415711 DOI: 10.1152/ajpgi.00238.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose-lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNAs (miRNAs) as regulators of metabolic disease and to investigate the link between the cholesterol and glucose-lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker diabetic fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared with vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly decreased with colesevelam treatments in db/db mice, and MED1 was experimentally validated to be a direct target of miR-96/182/183 in humans and mice. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-182-5p, a mechanism that directly links cholesterol and glucose metabolism. NEW & NOTEWORTHY Colesevelam lowers systemic glucose levels in Zucker diabetic fatty rats and db/db mice and increases hepatic levels of the sterol response element binding protein 2-responsive microRNA cluster miR-96/182/183. Inhibition of miR-182 in vivo reverses the glucose-lowering effects of colesevelam in db/db mice. Mediator complex subunit 1 (MED1) is a novel, direct target of the miR-96/182/183 cluster in mice and humans.
Collapse
Affiliation(s)
- Leslie R. Sedgeman
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | - Ryan M. Allen
- 3Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Kasey C. Vickers
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee,3Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Affiliation(s)
| | - Alan Daugherty
- Graduate Center for Nutritional Sciences
- Saha Cardiovascular Research Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Lu
- Graduate Center for Nutritional Sciences
- Saha Cardiovascular Research Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Hong Lu, MD, PhD, Saha Cardiovascular Research Center , University of Kentucky, 741 South Limestone, BBSRB, Room 249, Lexington, KY 40536-0509, USA, Phone: +1 859 323 4639, Fax: +1 859 257 3235,
| |
Collapse
|
15
|
SREBP1c mediates the effect of acetaldehyde on Cidea expression in Alcoholic fatty liver Mice. Sci Rep 2018; 8:1200. [PMID: 29352167 PMCID: PMC5775393 DOI: 10.1038/s41598-018-19466-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022] Open
Abstract
Cell death inducing DNA fragmentation factor-alpha-like A (Cidea) is a member of cell death-inducing DFF45-like effector (CIDE) protein. The initial function of CIDE is the promotion of cell death and DNA fragmentation in mammalian cells. Cidea was recently reported to play critical roles in the development of hepatic steatosis. The purpose of present study is to determine the effect of chronic alcohol intake on Cidea expression in the livers of mice with alcoholic fatty liver disease. Cidea expression was significantly increased in the liver of alcohol-induced fatty liver mice. While, knockdown of Cidea caused lipid droplets numbers reduction. Next, we detected the activity of ALDH2 reduction and the concentration of serum acetaldehyde accumulation in our alcohol-induced fatty liver mice. Cidea expression was elevated in AML12 cells exposed to 100uM acetaldehyde. Interestingly, Dual-luciferase reporter gene assay showed that 100 uM acetaldehyde led to the activation of Cidea reporter gene plasmid which containing SRE element. What’s more, the knockdown of SREBP1c suppressed acetaldehyde-induced Cidea expression. Overall, our findings suggest that Cidea is highly associated with alcoholic fatty liver disease and Cidea expression is specifically induced by acetaldehyde, and this up-regulation is most likely mediated by SREBP1c.
Collapse
|
16
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Abstract
A growing epidemic of nonalcoholic fatty liver disease (NAFLD) is paralleling the increase in the incidence of obesity and diabetes mellitus in countries that consume a Western diet. As NAFLD can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma, an understanding of the factors that trigger its development and pathological progression is needed. Although by definition this disease is not associated with alcohol consumption, exposure to environmental agents that have been linked to other diseases might have a role in the development of NAFLD. Here, we focus on one class of these agents, endocrine-disrupting chemicals (EDCs), and their potential to influence the initiation and progression of a cascade of pathological conditions associated with hepatic steatosis (fatty liver). Experimental studies have revealed several potential mechanisms by which EDC exposure might contribute to disease pathogenesis, including the modulation of nuclear hormone receptor function and the alteration of the epigenome. However, many questions remain to be addressed about the causal link between acute and chronic EDC exposure and the development of NAFLD in humans. Future studies that address these questions hold promise not only for understanding the linkage between EDC exposure and liver disease but also for elucidating the molecular mechanisms that underpin NAFLD, which in turn could facilitate the development of new prevention and treatment opportunities.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Lindsey S Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Cheryl L Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Bai L, Li Z, Li Q, Guan H, Zhao S, Liu R, Wang R, Zhang J, Jia Y, Fan J, Wang N, Reddy JK, Shyy JYJ, Liu E. Mediator 1 Is Atherosclerosis Protective by Regulating Macrophage Polarization. Arterioscler Thromb Vasc Biol 2017. [PMID: 28642237 DOI: 10.1161/atvbaha.117.309672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE MED1 (mediator 1) interacts with transcription factors to regulate transcriptional machinery. The role of MED1 in macrophage biology and the relevant disease state remains to be investigated. APPROACH AND RESULTS To study the molecular mechanism by which MED1 regulates the M1/M2 phenotype switch of macrophage and the effect on atherosclerosis, we generated MED1/apolipoprotein E (ApoE) double-deficient (MED1ΔMac/ApoE-/-) mice and found that atherosclerosis was greater in MED1ΔMac/ApoE-/- mice than in MED1fl/fl/ApoE-/- littermates. The gene expression of M1 markers was increased and that of M2 markers decreased in both aortic wall and peritoneal macrophages from MED1ΔMac/ApoE-/- mice, whereas MED1 overexpression rectified the changes in M1/M2 expression. Moreover, LDLR (low-density lipoprotein receptor)-deficient mice received bone marrow from MED1ΔMac mice showed greater atherosclerosis. Mechanistically, MED1 ablation decreased the binding of PPARγ (peroxisome proliferator-activated receptor γ) and enrichment of H3K4me1 and H3K27ac to upstream region of M2 marker genes. Furthermore, interleukin 4 induction of PPARγ and MED1 increased the binding of PPARγ or MED1 to the PPAR response elements of M2 marker genes. CONCLUSIONS Our data suggest that MED1 is required for the PPARγ-mediated M2 phenotype switch, with M2 marker genes induced but M1 marker genes suppressed. MED1 in macrophages has an antiatherosclerotic role via PPARγ-regulated transactivation.
Collapse
Affiliation(s)
- Liang Bai
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Zhao Li
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Qianwei Li
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Hua Guan
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Sihai Zhao
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Ruihan Liu
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Rong Wang
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Jin Zhang
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Yuzhi Jia
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Jianglin Fan
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Nanping Wang
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - Janardan K Reddy
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.)
| | - John Y-J Shyy
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.).
| | - Enqi Liu
- From the Research Institute of Atherosclerotic Disease, Health Science Center and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Laboratory Animal Center, Health Science Center (L.B., Q.L., H.G., S.Z., R.L., R.W., E.L.), Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., Z.L., J.Z., N.W., J.Y.-J.S.), Xi'an Jiaotong University, Shaanxi, China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL (Y.J., J.K.R.); Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan (J.F.); and Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (J.Y.-J.S.).
| |
Collapse
|
19
|
Xie X, Chen W, Zhang N, Yuan M, Xu C, Zheng Z, Li H, Wang L. Selective Tissue Distribution Mediates Tissue-Dependent PPARγ Activation and Insulin Sensitization by INT131, a Selective PPARγ Modulator. Front Pharmacol 2017; 8:317. [PMID: 28611668 PMCID: PMC5447729 DOI: 10.3389/fphar.2017.00317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022] Open
Abstract
The mechanisms underlying the enhancement of insulin sensitivity by selective peroxisome proliferator-activated receptor γ modulators (sPPARγMs) are still not completely known. Here, the representative sPPARγM, INT131, was used as a probe to investigate the insulin-sensitizing mechanisms of sPPARγM in the context of tissue selective compound distribution and PPARγ regulation. First, 30 mg kg−1 INT131 was observed to produce an insulin-sensitizing effect comparable to that of 10 mg kg−1 rosiglitazone (RSG) in both db/db and DIO mice using the oral glucose and insulin tolerance tests. Similar to RSG, INT131 significantly increased brown adipose tissue (BAT) mass and adipocyte size and up-regulated the expression of BAT-specific genes. Compared with RSG, INT131 exhibited greater potency in inducing white adipose tissue (WAT) browning, decreasing adipocyte size, and increasing BAT-specific and function-related gene expression in subcutaneous WAT (sWAT). However, it did not induce hepatomegaly or hepatic steatosis, which is associated with lower levels of lipogenic genes expression. Pharmacokinetic analysis reveals that in contrast with RSG, INT131 shows higher Cmax, and much longer residency time (AUC0−12h), as well relatively lower elimination rate in adipose tissues and skeletal muscle, this demonstrated INT131 distributed predominantly in adipose tissue. Whereas, INT131 was less abundant in the liver. These results thus suggest that the tissue-selective distribution underlies INT131's selective PPARγ modulation. Compounds favoring adipose tissue may aid in development of better, safer sPPARγM to address the insulin resistance of diabetes.
Collapse
Affiliation(s)
- Xinni Xie
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Wei Chen
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| | - Ning Zhang
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| | - Mei Yuan
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| | - Cheng Xu
- School of Pharmaceutical Engineering, Life Science and Biology Pharmacy College, Shenyang Pharmaceutical UniversityShenyang, China
| | - Zhibing Zheng
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| | - Hua Li
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| | - Lili Wang
- Beijing Institute of Pharmacology and ToxicologyBeijing, China.,State Key Laboratory of Toxicology and Medical CountermeasuresBeijing, China
| |
Collapse
|
20
|
Spitler KM, Ponce JM, Oudit GY, Hall DD, Grueter CE. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming. Am J Physiol Heart Circ Physiol 2017; 312:H768-H780. [PMID: 28159809 PMCID: PMC5407164 DOI: 10.1152/ajpheart.00728.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function.NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Gavin Y Oudit
- Mazankowski Alberta Heart Institute Canada Research Chair in Heart Failure, Division of Cardiology, Walter Mackenzie Health Sciences Centre, Edmonton, Alberta, Canada
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| |
Collapse
|
21
|
Wolf Greenstein A, Majumdar N, Yang P, Subbaiah PV, Kineman RD, Cordoba-Chacon J. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol 2017; 232:107-121. [PMID: 27799461 PMCID: PMC5120553 DOI: 10.1530/joe-16-0447] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the target for thiazolidinones (TZDs), drugs that improve insulin sensitivity and fatty liver in humans and rodent models, related to a reduction in hepatic de novo lipogenesis (DNL). The systemic effects of TZDs are in contrast to reports suggesting hepatocyte-specific activation of PPARγ promotes DNL, triacylglycerol (TAG) uptake and fatty acid (FA) esterification. As these hepatocyte-specific effects of PPARγ could counterbalance the positive therapeutic actions of systemic delivery of TZDs, the current study used a mouse model of adult-onset, liver (hepatocyte)-specific PPARγ knockdown (aLivPPARγkd). This model has advantages over existing congenital knockout models, by avoiding compensatory changes related to embryonic knockdown, thus better modeling the impact of altering PPARγ on adult physiology, where metabolic diseases most frequently develop. The impact of aLivPPARγkd on hepatic gene expression and endpoints in lipid metabolism was examined after 1 or 18 weeks (Chow-fed) or after 14 weeks of low- or high-fat (HF) diet. aLivPPARγkd reduced hepatic TAG content but did not impact endpoints in DNL or TAG uptake. However, aLivPPARγkd reduced the expression of the FA translocase (Cd36), in 18-week Chow- and HF-fed mice, associated with increased NEFA after HF feeding. Also, aLivPPARγkd dramatically reduced Mogat1 expression, that was reflected by an increase in hepatic monoacylglycerol (MAG) levels, indicative of reduced MOGAT activity. These results, coupled with previous reports, suggest that Cd36-mediated FA uptake and MAG pathway-mediated FA esterification are major targets of hepatocyte PPARγ, where loss of this control explains in part the protection against steatosis observed after aLivPPARγkd.
Collapse
Affiliation(s)
- Abigail Wolf Greenstein
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Biologic Resources LaboratoryUniversity of Illinois at Chicago, Chicago, Illinois, USA
| | - Neena Majumdar
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peng Yang
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Papasani V Subbaiah
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rhonda D Kineman
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jose Cordoba-Chacon
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Liu Y, Jiang B, Fu C, Hao R. Cloning and characterization of adipogenin and its overexpression enhances fat accumulation of bovine myosatellite cells. Gene 2016; 601:27-35. [PMID: 27914980 DOI: 10.1016/j.gene.2016.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
Adipogenin (ADIG) is an adipocyte-specific membrane protein highly expressed in adipose tissues and is increased during the adipocyte differentiation. However, the roles and mechanisms of ADIG on fat accumulation and adipocyte differentiation in ex vivo still largely unknown. In this study, we isolated bovine myosatellite cells based on adhesion characteristics to investigate whether ADIG overexpression could promote trans-differentiation and increase fat accumulation in myosatellite cells. Immunofluorescence labeling was then used for the phenotypic characteristics of myosatellite. Our results showed that, after induction of differentiation, adenovirus mediated ADIG overexpression could upregulate expression level of PPARγ, and Oil Red O staining showed larger lipid drops compared to control groups. In consistent, key components of Hh signaling pathway were down regulated when infected with ADIG adenovirus, even though treated with inhibitor of Hh signaling pathway together could not induce further decrease. In addition, bioinformatics analysis of ADIG was also performed for its structure and function.
Collapse
Affiliation(s)
- Yang Liu
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Bijie Jiang
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| | - Changzhen Fu
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000, China
| |
Collapse
|
23
|
Regulation of metabolism by the Mediator complex. BIOPHYSICS REPORTS 2016; 2:69-77. [PMID: 28018965 PMCID: PMC5138257 DOI: 10.1007/s41048-016-0031-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023] Open
Abstract
The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.
Collapse
|
24
|
Caveolin-1 Function in Liver Physiology and Disease. Trends Mol Med 2016; 22:889-904. [DOI: 10.1016/j.molmed.2016.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
25
|
Jia Y, Chang HC, Schipma MJ, Liu J, Shete V, Liu N, Sato T, Thorp EB, Barger PM, Zhu YJ, Viswakarma N, Kanwar YS, Ardehali H, Thimmapaya B, Reddy JK. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice. PLoS One 2016; 11:e0160755. [PMID: 27548259 PMCID: PMC4993490 DOI: 10.1371/journal.pone.0160755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism
- Embryo, Mammalian
- Energy Metabolism
- Female
- Gene Deletion
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, Lethal
- Gestational Age
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Mediator Complex Subunit 1/deficiency
- Mediator Complex Subunit 1/genetics
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Pregnancy
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hsiang-Chun Chang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Matthew J. Schipma
- Next Generation Sequencing Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jing Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatsuya Sato
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Philip M. Barger
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Navin Viswakarma
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yashpal S. Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hossein Ardehali
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| |
Collapse
|
26
|
Gao M, Ma Y, Alsaggar M, Liu D. Dual Outcomes of Rosiglitazone Treatment on Fatty Liver. AAPS JOURNAL 2016; 18:1023-31. [PMID: 27125895 DOI: 10.1208/s12248-016-9919-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Abstract
In previous studies, it has been reported that rosiglitazone has opposing effects on nonalcoholic fatty liver disease. The purpose of the current study is to test the hypothesis that such opposing effects are related to different levels of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the liver. Using a gene transfer approach and mice fed a high-fat diet (HFD) as an animal model, we demonstrate that mice with low levels of PPAR-γ expression in the liver are resistant to HFD-induced development of fatty liver when treated with rosiglitazone. Conversely, rosiglitazone treatment actually exacerbates liver steatosis in obese mice that have a higher level of PPAR-γ. Mechanistic studies show that an elevated hepatic PPAR-γ level is associated with an increased expression of genes responsible for lipid metabolism in the liver, particularly Cd36, Fabp4, and Mgat1. The concurrent transfer of these three genes into the mouse liver fully recapitulates the phenotypic change induced by the overexpression of PPAR-γ. These results provide evidence in support of the importance of PPAR-γ in the liver when rosiglitazone is considered for the treatment of fatty liver disease. Clinically, our results suggest the necessity of verifying PPAR-γ levels in the liver when rosiglitazone is considered as a treatment option, and indicate that the direct use of rosiglitazone for treatment of nonalcoholic fatty liver may not be desirable when the patient's PPAR-γ level in the liver is significantly elevated.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Mohammad Alsaggar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
27
|
An integrative data mining approach to identifying adverse outcome pathway signatures. Toxicology 2016; 350-352:49-61. [DOI: 10.1016/j.tox.2016.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 01/27/2023]
|
28
|
Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes. Arch Biochem Biophys 2015; 590:27-36. [PMID: 26427354 DOI: 10.1016/j.abb.2015.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
The gene for Small Adipocyte Factor 1, Smaf1 (also known as adipogenin, ADIG), encodes a ∼600 base transcript that is highly upregulated during 3T3-L1 in vitro adipogenesis and markedly enriched in adipose tissues. Based on the lack of an obvious open reading frame in the Smaf1 transcript, it is not known if the Smaf1 gene is protein coding or non-coding RNA. Using a peptide from a putative open reading frame of Smaf1 as antigen, we generated antibodies for western analysis. Our studies prove that Smaf1 encodes an adipose-enriched protein which in western blot analysis migrates at ∼10 kDa. Rapid induction of Smaf1 protein occurs during in vitro adipogenesis and its expression in 3T3-L1 adipocytes is positively regulated by insulin and glucose. Moreover, siRNA studies reveal that expression of Smaf1 in adipocytes is wholly dependent on PPARγ. On the other hand, use of siRNA for Smaf1 to nearly abolish its protein expression in adipocytes revealed that Smaf1 does not have a major role in adipocyte triglyceride accumulation, lipolysis or insulin-stimulated pAkt induction. However, immunolocalization studies using HA-tagged Smaf1 reveal enrichment at adipocyte lipid droplets. Together our findings show that Smaf1 is a novel small protein endogenous to adipocytes and that Smaf1 expression is closely tied to PPARγ-mediated signals and the adipocyte phenotype.
Collapse
|
29
|
Batrakou DG, de las Heras JI, Czapiewski R, Mouras R, Schirmer EC. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation. PLoS One 2015; 10:e0127712. [PMID: 26024229 PMCID: PMC4449205 DOI: 10.1371/journal.pone.0127712] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022] Open
Abstract
Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity.
Collapse
Affiliation(s)
- Dzmitry G. Batrakou
- Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jose I. de las Heras
- Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rafal Czapiewski
- Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rabah Mouras
- Institute for Materials and Processes, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Eric C. Schirmer
- Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Gao Q, Jia Y, Yang G, Zhang X, Boddu PC, Petersen B, Narsingam S, Zhu YJ, Thimmapaya B, Kanwar YS, Reddy JK. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1396-408. [PMID: 25773177 DOI: 10.1016/j.ajpath.2015.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Obesity poses an increased risk of developing metabolic syndrome and closely associated nonalcoholic fatty liver disease, including liver cancer. Satiety hormone leptin-deficient (ob/ob) mice, considered paradigmatic of nutritional obesity, develop hepatic steatosis but are less prone to developing liver tumors. Sustained activation of peroxisome proliferator-activated receptor α (PPARα) in ob/ob mouse liver increases fatty acid oxidation (FAO), which contributes to attenuation of obesity but enhances liver cancer risk. To further evaluate the role of PPARα-regulated hepatic FAO and energy burning in the progression of fatty liver disease, we generated PPARα-deficient ob/ob (PPARα(Δ)ob/ob) mice. These mice become strikingly more obese compared to ob/ob littermates, with increased white and brown adipose tissue content and severe hepatic steatosis. Hepatic steatosis becomes more severe in fasted PPARα(Δ)ob/ob mice as they fail to up-regulate FAO systems. PPARα(Δ)ob/ob mice also do not respond to peroxisome proliferative and mitogenic effects of PPARα agonist Wy-14,643. Although PPARα(Δ)ob/ob mice are severely obese, there was no significant increase in liver tumor incidence, even when maintained on a diet containing Wy-14,643. We conclude that sustained PPARα activation-related increase in FAO in fatty livers of obese ob/ob mice increases liver cancer risk, whereas deletion of PPARα in ob/ob mice aggravates obesity and hepatic steatosis. However, it does not lead to liver tumor development because of reduction in FAO and energy burning.
Collapse
Affiliation(s)
- Qian Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaohong Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Prajwal C Boddu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryon Petersen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Saiprasad Narsingam
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
31
|
Abstract
Glucocorticoids (GCs) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical checkpoints in the hormonal control of energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, aberrant GC action has been linked to a variety of severe metabolic diseases, including type 2 diabetes and obesity. As a member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are in many cases associated with lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic lipid homeostasis. Thus, this chapter focuses on the current knowledge of GC/GR function in lipid handling and its implications for systemic metabolic dysfunction.
Collapse
|
32
|
Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res 2014; 24:1250-65. [PMID: 25223702 PMCID: PMC4185346 DOI: 10.1038/cr.2014.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 12/23/2022] Open
Abstract
Mediator complex is a molecular hub integrating signaling, transcription factors, and RNA polymerase II (RNAPII) machinery. Mediator MED23 is involved in adipogenesis and smooth muscle cell differentiation, suggesting its role in energy homeostasis. Here, through the generation and analysis of a liver-specific Med23-knockout mouse, we found that liver Med23 deletion improved glucose and lipid metabolism, as well as insulin responsiveness, and prevented diet-induced obesity. Remarkably, acute hepatic Med23 knockdown in db/db mice significantly improved the lipid profile and glucose tolerance. Mechanistically, MED23 participates in gluconeogenesis and cholesterol synthesis through modulating the transcriptional activity of FOXO1, a key metabolic transcription factor. Indeed, hepatic Med23 deletion impaired the Mediator and RNAPII recruitment and attenuated the expression of FOXO1 target genes. Moreover, this functional interaction between FOXO1 and MED23 is evolutionarily conserved, as the in vivo activities of dFOXO in larval fat body and in adult wing can be partially blocked by Med23 knockdown in Drosophila. Collectively, our data revealed Mediator MED23 as a novel regulator for energy homeostasis, suggesting potential therapeutic strategies against metabolic diseases.
Collapse
|
33
|
Yoshino S, Satoh T, Yamada M, Hashimoto K, Tomaru T, Katano-Toki A, Kakizaki S, Okada S, Shimizu H, Ozawa A, Tuchiya T, Ikota H, Nakazato Y, Mori M, Matozaki T, Sasaki T, Kitamura T, Mori M. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor. Endocrinology 2014; 155:3459-72. [PMID: 25004093 DOI: 10.1210/en.2013-2160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.
Collapse
Affiliation(s)
- Satoshi Yoshino
- Departments of Medicine and Molecular Science (S.Y., T.Sat., M.Y., K.H., T.To., A.K.-T., S.K., S.O., H.S., A.O., T.Tu., Ma.Mori) and Human Pathology (H.I., Y.N.), Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan; Laboratory of Biosignal Sciences (Mu.Mori, T.Ma.) and Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation (T.Sas., T.K.), Gunma University, Maebashi, 371-8512 Japan; and Kitakanto Molecular Novel Research Institute for Obesity and Metabolism (Ma.Mori), Midori, 379-2311 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptional coregulators: fine-tuning metabolism. Cell Metab 2014; 20:26-40. [PMID: 24794975 PMCID: PMC4079747 DOI: 10.1016/j.cmet.2014.03.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Metabolic homeostasis requires that cellular energy levels are adapted to environmental cues. This adaptation is largely regulated at the transcriptional level, through the interaction between transcription factors, coregulators, and the basal transcriptional machinery. Coregulators, which function as both metabolic sensors and transcriptional effectors, are ideally positioned to synchronize metabolic pathways to environmental stimuli. The balance between inhibitory actions of corepressors and stimulatory effects of coactivators enables the fine-tuning of metabolic processes. This tight regulation opens therapeutic opportunities to manage metabolic dysfunction by directing the activity of cofactors toward specific transcription factors, pathways, or cells/tissues, thereby restoring whole-body metabolic homeostasis.
Collapse
|
35
|
Kim SC, Kim C, Axe D, Cook A, Lee M, Li T, Smallwood N, Chiang JY, Hardwick JP, Moore DD, Lee YK. All-trans-retinoic acid ameliorates hepatic steatosis in mice by a novel transcriptional cascade. Hepatology 2014; 59:1750-60. [PMID: 24038081 PMCID: PMC4008145 DOI: 10.1002/hep.26699] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/16/2013] [Indexed: 01/06/2023]
Abstract
UNLABELLED Mice deficient in small heterodimer partner (SHP) are protected from diet-induced hepatic steatosis resulting from increased fatty acid oxidation and decreased lipogenesis. The decreased lipogenesis appears to be a direct consequence of very low expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2), a potent lipogenic transcription factor, in the SHP(-/-) liver. The current study focused on the identification of a SHP-dependent regulatory cascade that controls PPAR-γ2 gene expression, thereby regulating hepatic fat accumulation. Illumina BeadChip array (Illumina, Inc., San Diego, CA) and real-time polymerase chain reaction were used to identify genes responsible for the linkage between SHP and PPAR-γ2 using hepatic RNAs isolated from SHP(-/-) and SHP-overexpressing mice. The initial efforts identify that hairy and enhancer of split 6 (Hes6), a novel transcriptional repressor, is an important mediator of the regulation of PPAR-γ2 transcription by SHP. The Hes6 promoter is specifically activated by the retinoic acid receptor (RAR) in response to its natural agonist ligand, all-trans retinoic acid (atRA), and is repressed by SHP. Hes6 subsequently represses hepatocyte nuclear factor 4 alpha (HNF-4α)-activated PPAR-γ2 gene expression by direct inhibition of HNF-4α transcriptional activity. Furthermore, we provide evidences that atRA treatment or adenovirus-mediated RAR-α overexpression significantly reduced hepatic fat accumulation in obese mouse models, as observed in earlier studies, and the beneficial effect is achieved by the proposed transcriptional cascade. CONCLUSIONS Our study describes a novel transcriptional regulatory cascade controlling hepatic lipid metabolism that identifies retinoic acid signaling as a new therapeutic approach to nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Seong Chul Kim
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Chunki Kim
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - David Axe
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Aaron Cook
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Nicole Smallwood
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - James P. Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77038, USA
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
36
|
Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease. PPAR Res 2014; 2014:432647. [PMID: 24772164 PMCID: PMC3977565 DOI: 10.1155/2014/432647] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 01/24/2014] [Indexed: 12/17/2022] Open
Abstract
Comprehensive understanding of the precise mode of action/adverse outcome pathway (MoA/AOP) of chemicals becomes a key step towards superseding the current repeated dose toxicity testing methodology with new generation predictive toxicology tools. The description and characterization of the toxicological MoA leading to non-alcoholic fatty liver disease (NAFLD) are of specific interest, due to its increasing incidence in the modern society. Growing evidence stresses on the PPAR γ ligand-dependent dysregulation as a key molecular initiating event (MIE) for this adverse effect. The aim of this work was to analyze and systematize the numerous scientific data about the steatogenic role of PPAR γ . Over 300 papers were ranked according to preliminary defined criteria and used as reliable and significant sources of data about the PPAR γ -dependent prosteatotic MoA. A detailed analysis was performed regarding proteins which PPAR γ -mediated expression changes had been confirmed to be prosteatotic by most experimental evidence. Two probable toxicological MoAs from PPAR γ ligand binding to NAFLD were described according to the Organisation for Economic Cooperation and Development (OECD) concepts: (i) PPAR γ activation in hepatocytes and (ii) PPAR γ inhibition in adipocytes. The possible events at different levels of biological organization starting from the MIE to the organ response and the connections between them were described in details.
Collapse
|
37
|
Coffee intake down-regulates the hepatic gene expression of peroxisome proliferator-activated receptor gamma in C57BL/6J mice fed a high-fat diet. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
38
|
Viswakarma N, Jia Y, Bai L, Gao Q, Lin B, Zhang X, Misra P, Rana A, Jain S, Gonzalez FJ, Zhu YJ, Thimmapaya B, Reddy JK. The Med1 subunit of the mediator complex induces liver cell proliferation and is phosphorylated by AMP kinase. J Biol Chem 2013; 288:27898-911. [PMID: 23943624 DOI: 10.1074/jbc.m113.486696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK.
Collapse
Affiliation(s)
- Navin Viswakarma
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Akbar H, Schmitt E, Ballou MA, Corrêa MN, Depeters EJ, Loor JJ. Dietary Lipid During Late-Pregnancy and Early-Lactation to Manipulate Metabolic and Inflammatory Gene Network Expression in Dairy Cattle Liver with a Focus on PPARs. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:103-23. [PMID: 23825924 PMCID: PMC3699062 DOI: 10.4137/grsb.s12005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyunsaturated (PUFA) long-chain fatty acids (LCFAs) are more potent in eliciting molecular and tissue functional changes in monogastrics than saturated LCFA. From −21 through 10 days relative to parturition dairy cows were fed no supplemental LCFA (control), saturated LCFA (SFAT; mainly 16:0 and 18:0), or fish oil (FISH; high-PUFA). Twenty-seven genes were measured via quantitative RT-PCR in liver tissue on day −14 and day 10. Expression of nuclear receptor co-activators (CARM1, MED1), LCFA metabolism (ACSL1, SCD, ACOX1), and inflammation (IL6, TBK1, IKBKE) genes was lower with SFAT than control on day −14. Expression of SCD, however, was markedly lower with FISH than control or SFAT on both −14 and 10 days. FISH led to further decreases in expression on day 10 of LCFA metabolism (CD36, PLIN2, ACSL1, ACOX1), intracellular energy (UCP2, STK11, PRKAA1), de novo cholesterol synthesis (SREBF2), inflammation (IL6, TBK1, IKBKE), and nuclear receptor signaling genes (PPARD, MED1, NRIP1). No change in expression was observed for PPARA and RXRA. The increase of DGAT2, PLIN2, ACSL1, and ACOX1 on day 10 versus −14 in cows fed SFAT suggested upregulation of both beta-oxidation and lipid droplet (LD) formation. However, liver triacylglycerol concentration was similar among treatments. The hepatokine FGF21 and the gluconeogenic genes PC and PCK1 increased markedly on day 10 versus −14 only in controls. At the levels supplemented, the change in the profile of metabolic genes after parturition in cows fed saturated fat suggested a greater capacity for uptake of fatty acids and intracellular handling without excessive storage of LD.
Collapse
Affiliation(s)
- Haji Akbar
- Mammalian NutriPhysioGenomics Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
40
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Yao Z, Zhou H, Figeys D, Wang Y, Sundaram M. Microsome-associated lumenal lipid droplets in the regulation of lipoprotein secretion. Curr Opin Lipidol 2013; 24:160-70. [PMID: 23123764 DOI: 10.1097/mol.0b013e32835aebe7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Liver is the major organ in mammals that possesses the capacity to release triglyceride within VLDL. VLDL assembly requires apolipoprotein (apo) B-100 with the assistance of microsomal triglyceride transfer protein (MTP), which facilitates the mobilization of triglyceride into the microsomal lumen. Recent experimental evidence has suggested that the lumenal triglyceride associated with endoplasmic reticulum (ER)/Golgi may represent an entity serving as precursors for large VLDL1. RECENT FINDINGS Under lipid-rich conditions, discrete triglyceride-rich lipidic bodies, termed lumenal lipid droplets, are accumulated in association with ER/Golgi microsomes. Formation of the microsome-associated lumenal lipid droplets (MALD) is dependent on the activity of MTP, and the resulting apoB-free lipidic body is associated with a variety of proteins including apolipoproteins that are components of VLDL. Formation and utilization of MALD during the assembly and secretion of VLDL1 have a profound influence on hepatic cell physiology, such as ER stress responses. SUMMARY This review summarizes current understanding of hepatic triglyceride homeostasis in general, and highlights the functional significance of triglyceride compartmentalization between cytosol and microsomes in particular. Understanding of MALD metabolism may shed new light on the prevention and treatment of liver diseases associated with abnormally elevated intracellular triglycerides.
Collapse
Affiliation(s)
- Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
42
|
Misra P, Viswakarma N, Reddy JK. Peroxisome proliferator-activated receptor-α signaling in hepatocarcinogenesis. Subcell Biochem 2013; 69:77-99. [PMID: 23821144 DOI: 10.1007/978-94-007-6889-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peroxisomes are subcellular organelles that are found in the cytoplasm of most animal cells. They perform diverse metabolic functions, including H2O2-derived respiration, β-oxidation of fatty acids, and cholesterol metabolism. Peroxisome proliferators are a large class of structurally dissimilar industrial and pharmaceutical chemicals that were originally identified as inducers of both the size and the number of peroxisomes in rat and mouse livers or hepatocytes in vitro. Exposure to peroxisome proliferators leads to a stereotypical orchestration of adaptations consisting of hepatocellular hypertrophy and hyperplasia, and transcriptional induction of fatty acid metabolizing enzymes regulated in parallel with peroxisome proliferation. Chronic exposure to peroxisome proliferators causes liver tumors in both male and female mice and rats. Evidence indicates a pivotal role for a subset of nuclear receptor superfamily members, called peroxisome proliferator-activated receptors (PPARs), in mediating energy metabolism. Upon activation, PPARs regulate the expression of genes involved in lipid metabolism and peroxisome proliferation, as well as genes involved in cell growth. In this review, we describe the molecular mode of action of PPAR transcription factors, including ligand binding, interaction with specific DNA response elements, transcriptional activation, and cross talk with other signaling pathways. We discuss the evidence that suggests that PPARα and transcriptional coactivator Med1/PBP, a key subunit of the Mediator complex play a central role in mediating hepatic steatosis to hepatocarcinogenesis. Disproportionate increases in H2O2-generating enzymes generates excess reactive oxygen species resulting in sustained oxidative stress and progressive endoplasmic reticulum (ER) stress with activation of unfolded protein response signaling. Thus, these major contributors coupled with hepatocellular proliferation are the key players of peroxisome proliferators-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Parimal Misra
- Department of Biology, Dr. Reddy's Institute of Life Sciences, An Associate Institute of University of Hyderabad, Gachibowli, Hyderabad, 500046, India,
| | | | | |
Collapse
|
43
|
Zhou L, Xu L, Ye J, Li D, Wang W, Li X, Wu L, Wang H, Guan F, Li P. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 2012; 56:95-107. [PMID: 22278400 DOI: 10.1002/hep.25611] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
Abstract
UNLABELLED High levels of dietary saturated fat have been closely associated with the development of hepatic steatosis, but the factors that mediate this process remain elusive. Here, we observed that the level of cell death-inducing DNA fragmentation factor-alpha-like effector a (Cidea) expression was highly correlated with the severity of hepatic steatosis in humans. Overexpression of Cidea in mouse liver resulted in increased hepatic lipid accumulation and the formation of large lipid droplets (LDs). In contrast, mice with a Cidea deficiency had decreased lipid accumulation and alleviated hepatic steatosis when they received a high-fat-diet feeding or in ob/ob mice. Furthermore, the knockdown of Cidea in livers of ob/ob mice resulted in significantly reduced hepatic lipid accumulation and smaller LDs. Importantly, we observed that Cidea expression in hepatocytes was specifically induced by saturated fatty acids (FAs), and such induction was reduced when sterol response element-binding protein (SREBP)1c was knocked down. In contrast, the overexpression of SREBP1c restored the saturated FA-induced expression of Cidea. In addition, we observed that the stability of Cidea protein in hepatocytes increased significantly in response to treatment with FAs. CONCLUSION Cidea plays critical roles in promoting hepatic lipid accumulation and in the development of hepatic steatosis by acting as a sensor that responds to diets that contain FAs.
Collapse
Affiliation(s)
- Linkang Zhou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
45
|
Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK. Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 2011; 26:628-38. [PMID: 22009939 DOI: 10.1096/fj.11-194019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity, a major health concern, results from an imbalance between energy intake and expenditure. Leptin-deficient ob/ob mice are paradigmatic of obesity, resulting from excess energy intake and storage. Mice lacking acyl-CoA oxidase 1 (Acox1), the first enzyme of the peroxisomal fatty acid β-oxidation system, are characterized by increased energy expenditure and a lean body phenotype caused by sustained activation of peroxisome proliferator-activated receptor α (PPARα) by endogenous ligands in liver that remain unmetabolized in the absence of Acox1. We generated ob/ob mice deficient in Acox1 (Acox1(-/-)) to determine how the activation of PPARα by endogenous ligands might affect the obesity of ob/ob mice. In contrast to Acox1(-/-) (14.3±1.2 g at 6 mo) and the Acox1-deficient (ob/ob) double-mutant mice (23.8±4.6 g at 6 mo), the ob/ob mice are severely obese (54.3±3.2 g at 6 mo) and had significantly more (P<0.01) epididymal fat content. The resistance of Acox1(-/-)/ob/ob mice to obesity is due to increased PPARα-mediated up-regulation of genes involved in fatty acid oxidation in liver. Activation of PPARα in Acox1-deficient ob/ob mice also reduces serum glucose and insulin (P<0.05) and improves glucose tolerance and insulin sensitivity. Further, PPARα activation reduces hepatic steatosis and increases hepatocellular regenerative response in Acox1(-/-)/ob/ob mice at a more accelerated pace than in mice lacking only Acox1. However, Acox1(-/-)/ob/ob mice manifest hepatic endoplasmic reticulum (ER) stress and also develop hepatocellular carcinomas (8 of 8 mice) similar to those observed in Acox1(-/-) mice (10 of 10 mice), but unlike in ob/ob (0 of 14 mice) and OB/OB (0 of 6 mice) mice, suggesting that superimposed ER stress and PPARα activation contribute to carcinogenesis in a fatty liver. Finally, absence of Acox1 in ob/ob mice can impart resistance to high-fat diet (60% fat)-induced obesity, and their liver had significantly (P<0.01) more cell proliferation. These studies with Acox1(-/-)/ob/ob mice indicate that sustained activation of lipid-sensing nuclear receptor PPARα attenuates obesity and restores glucose homeostasis by ameliorating insulin resistance but increases the risk for liver cancer development, in part related to excess energy combustion.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
47
|
Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, Cherkaoui-Malki M, Khan M, Singh I, Yang G, Rao MS, Borensztajn J, Reddy JK. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:703-13. [PMID: 21801867 DOI: 10.1016/j.ajpath.2011.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 02/08/2023]
Abstract
Fatty acyl-coenzyme A oxidase 1 (ACOX1) knockout (ACOX1(-/-)) mice manifest hepatic metabolic derangements that lead to the development of steatohepatitis, hepatocellular regeneration, spontaneous peroxisome proliferation, and hepatocellular carcinomas. Deficiency of ACOX1 results in unmetabolized substrates of this enzyme that function as biological ligands for peroxisome proliferator-activated receptor-α (PPARα) in liver. Here we demonstrate that sustained activation of PPARα in ACOX1(-/-) mouse liver by these ACOX1 substrates results in endoplasmic reticulum (ER) stress. Overexpression of transcriptional regulator p8 and its ER stress-related effectors such as the pseudokinase tribbles homolog 3, activating transcription factor 4, and transcription factor CCAAT/-enhancer-binding protein homologous protein as well as phosphorylation of eukaryotic translation initiation factor 2α, indicate the induction of unfolded protein response signaling in the ACOX1(-/-) mouse liver. We also show here that, in the liver, p8 is a target for all three PPAR isoforms (-α, -β, and -γ), which interact with peroxisome proliferator response elements in p8 promoter. Sustained activation of p8 and unfolded protein response-associated ER stress in ACOX1(-/-) mouse liver contributes to hepatocyte apoptosis and liver cell proliferation culminating in the development of hepatocarcinogenesis. We also demonstrate that human ACOX1 transgene is functional in ACOX1(-/-) mice and effectively prevents metabolic dysfunctions that lead to ER stress and carcinogenic effects. Taken together, our data indicate that progressive PPARα- and p8-mediated ER stress contribute to the hepatocarcinogenesis in ACOX1(-/-) mice.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|