1
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, García-García F, Pascual M. Unraveling the Impact of TLR4 and Sex on Chronic Alcohol Consumption-Induced Lipidome Dysregulation in Extracellular Vesicles. J Proteome Res 2025; 24:1197-1208. [PMID: 39907520 DOI: 10.1021/acs.jproteome.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The lipids that form extracellular vesicles (EVs) play critical structural and regulatory roles, and cutting-edge bioinformatics strategies have shown the ability to decipher lipid metabolism and related molecular mechanisms. We previously demonstrated that alcohol abuse induces an inflammatory immune response through Toll-like receptor 4 (TLR4), leading to structural and cognitive dysfunction. This study evaluated how TLR4 and sex as variables (male/female) impact the lipidome of plasma-resident EVs after chronic alcohol exposure. Using a mouse model of chronic ethanol exposure in wild-type and TLR4-deficient mice, enrichment networks generated by LINEX2 highlighted significant ethanol-induced changes in the EV lipid substrate-product of enzyme reactions associated with glycerophospholipid metabolism. We also demonstrated ethanol-induced differences in Lipid Ontology enrichment analysis in EVs, focusing on terms related to lipid bilayer properties. A lipid abundance analysis revealed higher amounts of significant lipid subclasses in all experimental comparisons associated with inflammatory responses and EV biogenesis/secretion. These findings suggest that interrogating EV lipid abundance with a sensitive lipidomic-based strategy can provide deep insight into the molecular mechanisms underlying biological processes associated with sex, alcohol consumption, and TLR4 immune responses and open new avenues for biomarker identification and therapeutic development.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Cristina Galiana-Roselló
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Kim HY, Lee JD, Kim H, Kim Y, Park JJ, Oh SB, Goo H, Cho KJ, Kim KB. Mass spectrometry (MS)-based metabolomics of plasma and urine in dry eye disease (DED)-induced rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:122-135. [PMID: 39185961 DOI: 10.1080/15287394.2024.2393770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Dry eye disease (DED) is an ophthalmic disease associated with poor quality and quantity of tears, and the number of patients is steadily increasing. The aim of this study was to determine plasma and urine metabolites obtained from DED scopolamine animal model where dry eye conditions (DRY) are induced. It was also of interest to examine whether DED (scopolamine) rat model was exacerbated by treatment with benzalkonium chloride (BAC). Subsequently, plasma and urine metabolites were analyzed using liquid chromatography (LC) and gas chromatography (GC)-mass spectrometry (MS), respectively. Data demonstrated that DED indicators such as tear volume, tear breakup time (TBUT), and corneal damage in the DED groups (DRY and BAC group) differed from those of control (CON). Similar results were noted in inflammatory factors such as interleukin (IL-1β), IL-6, and tumor necrosis factor (TNF)-α. In the partial least squares-discriminant analysis (PLS-DA) score plots, the three groups were distinctly separated from each other. In addition, the related metabolites were also associated with these distinct separations as evidenced by 9 and 14 in plasma and urine, respectively. Almost all of the selected metabolites were decreased in the DRY group compared to CON, and the BAC group was lower than the DRY. In plasma and urine, lysophosphatidylcholine/lysophosphatidylethanolamine, organic acids, amino acids, and sugars varied between three groups, and these metabolites were related to inflammation and oxidative stress. Data suggest that treatment with scopolamine with/without BAC-induced DED and affected the level of systemic metabolites involved in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - HongYoon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - YuJin Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jin Ju Park
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Soo Bean Oh
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyeyoon Goo
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
3
|
Peng S, Meng M, Luo P, Liu J, Wang J, Chen Y. Tetrahydrocurcumin Alleviates Metabolic Dysfunction-Associated Steatohepatitis in Mice by Regulating Serum Lipids, Bile Acids, and Gut Microbiota. Int J Mol Sci 2025; 26:895. [PMID: 39940665 PMCID: PMC11816436 DOI: 10.3390/ijms26030895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to investigate the protective effects and potential mechanisms of Tetrahydrocurcumin (THC) on methionine-choline-deficient diet (MCD)-induced MASH in C57BL/6 mice by using multi-omics techniques. The C57BL/6 mice were fed with the MCD for 8 weeks to establish a MASH model, while THC (100 mg·kg-1·d-1) and obeticholic acid (6.5 mg·kg-1·d-1) were administered via gavage to the THC group and the positive control group, respectively. The biochemical indexes of the serum and liver were detected using kits. Liver tissue sections were taken to observe the pathomorphological changes. Serum lipid and bile acid contents were measured via LC-MS, and the changes in ileal intestinal flora were detected by 16S rDNA high-throughput sequencing technology. The results revealed that THC significantly attenuated oxidative stress and lipid accumulation in NCTC-1469 cells and relieved hepatic injury and oxidative stress, reduced hepatic TG content, and improved hepatic steatosis in mice. THC alleviated 34 lipid abnormalities caused by the MCD; increased the abundance and diversity of intestinal flora, the ratio of Firmicutes to Bacteroidota, and the abundance of the probiotic (Verrucomicrobiota, Christensenellaceae, Akkermansiaceae, Lachnospiraceae, Desulfovibrionaceae); and reduced the abundance of obesity-associated pathogenic flora such as Firmicutes. Bile acid analysis showed that THC administration reduced the levels of serum toxic bile acid 7-KDCA and CA. In addition, RT-qPCR studies showed that THC down-regulated the transcript levels of the hepatic lipogenesis-related genes Srebp1c, Acc1, Scd1, and Fas, and up-regulated the transcript levels of the hepatic bile acid secretion-related genes Mrp2 and Bsep. The above results suggest that THC may alleviate MCD-induced MASH by downregulating liver Srebp1c, Acc1, Scd1, and Fas levels to inhibit lipid synthesis, upregulating Mrp2 and Bsep levels to regulate serum toxic BA levels, up-regulating the abundance of intestinal probiotic flora, and down-regulating the abundance of intestinal harmful bacterial flora. The multi-omics findings from the above study identified potential new mechanisms by which THC alleviates MASH, providing new reference targets for the development of anti-MASH drugs. These results also offer a basis for screening clinical diagnostic biomarkers for MASH and provide new directions for personalized diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Junjun Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (S.P.); (M.M.); (P.L.); (J.L.)
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (S.P.); (M.M.); (P.L.); (J.L.)
| |
Collapse
|
4
|
Guan W, Jiang X, Yu X, Li X, Li K, Liu H, Wang X, Liu X, Hou J, Wu Q, Liu C. Multi-Omics Analysis of the Molecular Mechanisms by Which Extract of Artemisia selengensis Turcz. Ameliorates DBP-Induced Liver Injury. Chem Biodivers 2024:e202401963. [PMID: 39641643 DOI: 10.1002/cbdv.202401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Artemisia selengensis Turcz. is a perennial herb belonging to the genus Artemisia in the family Asteraceae. Known for its nutrient richness, distinct flavor, and medicinal properties, Artemisia selengensis Turcz. has garnered attention. However, its efficacy, particularly in alleviating hepatic injury, remains underexplored. This study aims to assess the therapeutic potential of the 50% ethanol extract of Artemisia selengensis Turcz. (ASTE) in a mouse model of dibutyl phthalate (DBP)-induced liver injury. Through multi-omics analysis, including transcriptomics, metabolomics, and intestinal flora examination, we explored the pathways and key targets of ASTE in treating liver injury. Network pharmacology further identified the crucial components of ASTE for liver injury treatment. Our findings indicate that ASTE affects intestinal flora such as Adlercreutzia through flavonoids, particularly naringin and epicatechin. Additionally, key genes in the PPAR pathway, such as fatty acid-binding protein 3 (Fabp3), fatty acid-binding protein 5 (Fabp5), 3-hydroxyacyl-CoA dehydrogenase (Ehhadh), and phospholipid transfer protein (Pltp), influence glycerophospholipid metabolism, contributing to liver injury amelioration. This study sheds light on the molecular mechanisms underlying ASTE's hepatoprotective effects, laying the groundwork for its potential application as a functional food.
Collapse
Affiliation(s)
- Wenying Guan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xiaotan Jiang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xiaohua Yu
- Yangxin County Specialty Service Centre, Huangshi, Hubei Province, China
| | - Xinwei Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kangxing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xinyi Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Zhang Y, Zhao Q, Zhao R, Lu Y, Jiang S, Tang Y. Efficacy of DHA-enriched phosphatidylserine and its underlying mechanism in alleviating polystyrene nanoplastics-induced hepatotoxicity in mice. Int Immunopharmacol 2024; 142:113154. [PMID: 39278057 DOI: 10.1016/j.intimp.2024.113154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Plastic pollution has become a global pollution problem that cannot be ignored. As the main destination of human oral intake, the toxic effects of plastic on the digestive system represented by the intestine and liver are the focus of current research. Marine-derived DHA-PS has a variety of biological activities, mainly focusing on improving brain function and regulating lipid metabolism. However, whether it has an improvement effect on PS-NPs-induced hepato-intestinal injury and the underlying mechanism remain unclear. METHODS A murine liver injury model was established by gavage of PS-NPs for six weeks. By integrating approaches from lipidomics, transcriptomics, and gut microbiota analysis, the molecular mechanism by which DHA-PS alleviates PS-NPs-induced murine hepatotoxicity was explored through the "gut-liver axis". RESULTS Our findings reveal that prolonged exposure to PS-NPs results in significant murine liver damage and dysfunction, characterized by increased oxidative stress and inflammation, along with exacerbated hepatic lipid accumulation. Mechanistically, PS-NPs disrupt the hepatic SIRT1-AMPK pathway by suppressing the expression of SIRT1, AMPKα, and PPARα, while enhancing the expression of SREBP-1c, ultimately leading to disordered hepatic lipid metabolism. The sphingolipid and glycerophospholipid metabolic pathways were particularly affected. Additionally, in agreement with transcriptomic analyses, PS-NPs activate the hepatic TLR4/NF-κB pathway. At the same time, exposure to PS-NPs decreases the expression of ZO-1, occludin, and claudin-1, diminishes the relative abundance of beneficial gut bacteria (norank_f_Muribaculaceae, Akkermansia, and norank_f_norank_o_Clostridia_UCG-014), and increases the prevalence of pathogenic gut bacteria (Coriobacteriaceae_UCG-002 and Desulfovibrio), exacerbating liver injury through the gut-liver axis. However, administering DHA-PS (50 mg/kg) effectively alleviated these injuries. CONCLUSION This study was the first to employ multi-omics techniques to elucidate the potential mechanisms underlying hepatotoxicity induced by PS-NPs, thereby supporting the use of DHA-PS as a dietary supplement to mitigate the effects of nanoplastic pollutants.
Collapse
Affiliation(s)
- Yuanlei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316000, China
| | - Rui Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
6
|
Chen J, Lu RS, Diaz-Canestro C, Song E, Jia X, Liu Y, Wang C, Cheung CK, Panagiotou G, Xu A. Distinct changes in serum metabolites and lipid species in the onset and progression of NAFLD in Obese Chinese. Comput Struct Biotechnol J 2024; 23:791-800. [PMID: 38318437 PMCID: PMC10839226 DOI: 10.1016/j.csbj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Metabolic disturbances are major contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD), which includes a histological spectrum ranging from single steatosis (SS) to non-alcoholic steatohepatitis (NASH). This study aimed to identify serum metabolites and lipids enriched in different histological stages of NAFLD and to explore metabolites/lipids as non-invasive biomarkers in risk prediction of NAFLD and NASH in obese Chinese. Methods Serum samples and liver biopsies were obtained from 250 NAFLD subjects. Untargeted metabolomic and lipidomic profiling were performed using Liquid Chromatography-Mass Spectrometry. Significantly altered metabolites and lipids were identified by MaAsLin2. Pathway enrichment was conducted with MetaboAnalyst and LIPEA. WGCNA was implemented to construct the co-expression network. Logistic regression models were developed to classify different histological stages of NAFLD. Results A total of 263 metabolites and 550 lipid species were detected in serum samples. Differential analysis and pathway enrichment analysis revealed the progressive patterns in metabolic mechanisms during the transition from normal liver to SS and to NASH, including N-palmitoyltaurine, tridecylic acid, and branched-chain amino acid signaling pathways. The co-expression network showed a distinct correlation between different triglyceride and phosphatidylcholine species with disease severity. Multiple models classifying NAFLD versus normal liver and NASH versus SS identified important metabolic features associated with significant improvement in disease prediction compared to conventional clinical parameters. Conclusion Different histological stages of NAFLD are enriched with distinct sets of metabolites, lipids, and metabolic pathways. Integrated algorithms highlight the important metabolic and lipidomic features for diagnosis and staging of NAFLD in obese individuals.
Collapse
Affiliation(s)
- Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
| | - Ronald Siyi Lu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cynthia K.Y. Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gianni Panagiotou
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
7
|
Meda C, Benedusi V, Cherubini A, Valenti L, Maggi A, Della Torre S. Hepatic estrogen receptor alpha drives masculinization in post-menopausal women with metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:101143. [PMID: 39308985 PMCID: PMC11414671 DOI: 10.1016/j.jhepr.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The loss of ovarian functions defining menopause leads to profound metabolic changes and heightens the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Although estrogens primarily act on the female liver through estrogen receptor alpha (ERα), the specific contribution of impaired ERα signaling in triggering MASLD after menopause remains unclear. Methods To address this gap in knowledge, we compared the liver transcriptomes of sham-operated (SHAM) and ovariectomized (OVX) control and liver ERα knockout (LERKO) female mice by performing RNA-Seq analysis. Results OVX led to 1426 differentially expressed genes (DEGs) in the liver of control mice compared to 245 DEGs in LERKO mice. Gene ontology analysis revealed a distinct ovariectomy-induced modulation of the liver transcriptome in LERKO compared with controls, indicating that hepatic ERα is functional and necessary for the complete reprogramming of liver metabolism in response to estrogen depletion. Additionally, we observed an ovariectomy-dependent induction of male-biased genes, especially in the liver of control females, pointing to hepatic ERα involvement in the masculinization of the liver after estrogen loss. To investigate the translational relevance of such findings, we assessed liver samples from a cohort of 60 severely obese individuals (51 women; 9 men). Notably, a shift of the liver transcriptome toward a male-like profile was also observed only in obese women with MASLD (n = 43), especially in women ≥51 years old (15/15), suggesting that masculinization of the female liver contributes to MASLD development in obese women. Conclusions These results highlight the role of hepatic ERα in driving masculinization of the liver transcriptome following menopause, pointing to this receptor as a potential pharmacological target for preventing MASLD in post-menopausal women. Impact and implications Despite the increased risk of developing MASLD after menopause, the specific contribution of impaired hepatic estrogen signaling in driving MASLD in females has not been a major research focus, and, thus, has limited the development of tailored strategies that address the specific mechanisms underlying MASLD in post-menopausal women. This study reveals the functional role of hepatic ERα in mediating liver metabolic changes in response to estrogens loss, leading to a shift in the liver transcriptome towards a male-like profile. In women with obesity, this shift is associated with the development of MASLD. These findings underscore the potential of targeting hepatic ERα as a promising approach for developing effective, sex-specific treatments to preserve liver health and prevent or limit the development and progression of MASLD in post-menopausal women.
Collapse
Affiliation(s)
- Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Benedusi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Cherubini
- Precision Medicine–Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine–Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
9
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Cao N, Zhang F, Yin J, Zhang J, Bian X, Zheng G, Li N, Lin Y, Luo L. LPCAT2 inhibits colorectal cancer progression via the PRMT1/SLC7A11 axis. Oncogene 2024; 43:1714-1725. [PMID: 38605214 PMCID: PMC11136653 DOI: 10.1038/s41388-024-02996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) has a high degree of heterogeneity and identifying the genetic information of individual tumor cells could help enhance our understanding of tumor biology and uncover potential therapeutic targets for CRC. In this study, we identified LPCAT2+ tumor cell populations with less malignancy than LPCAT2- tumor cells in human and mouse CRC tissues using scRNA-seq. Combining in vitro and in vivo experiments, we found that LPCAT2 could inhibit the proliferation of CRC cells by inducing ferroptosis. Mechanistically, LPCAT2 arrested PRMT1 in cytoplasm of CRC cells via regulating acetylation of PRMT1 at the K145 site. In turn, PRMT1 enhanced SLC7A11 promoter activity. Thus, LPCAT2 attenuated the positive regulatory effect of PRMT1 on SLC7A11 promoter. Notably, SLC7A11 acts as a ferroptosis regulator. Furthermore, in LPCAT2 knockout mice (LPCAT2-/-) colon cancer model, we found that LPCAT2-/- mice exhibited more severe lesions, while PRMT1 or SLC7A11 inhibitors delayed the progression. Altogether, we elucidated that LPCAT2 suppresses SLC7A11 expression by inhibiting PRMT1 nuclear translocation, thereby inducing ferroptosis in CRC cells. Moreover, inhibitors of the PRMT1/SLC7A11 axis could delay tumor progression in CRC with low LPCAT2 expression, making it a potentially effective treatment for CRC.
Collapse
Affiliation(s)
- Nan Cao
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
- Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan, 442000, PR China
| | - Fangmei Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China
| | - Jiang Yin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China
| | - Jianlei Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China
| | - Xiqing Bian
- School of Pharmacy, Macau University of Science and Technology, Macao, 999078, China
| | - Guopei Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China
| | - Nan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China.
| | - Ying Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China.
| | - Liyun Luo
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, 510095, PR China.
| |
Collapse
|
11
|
Jin H, Xia P, Deng Z, Hou T, Li J, Li B. Effects of Konjac Glucomannan on Weight Management and Liver Health: Insights from Liver Lipidomics in Obese and Nonobese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7906-7918. [PMID: 38530902 DOI: 10.1021/acs.jafc.3c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Konjac glucomannan (KGM) is a water-soluble dietary fiber and is used for weight management. However, there is a lack of research on KGM for weight management in nonobese groups and the effects of high-dose KGM supplementation on liver function. This study investigated the metabolic responses to KGM intervention in obese and nonobese mice and explored the underlying mechanisms based on lipidomics. The findings demonstrated that KGM supplementation decreased body weight and mitigated lipid metabolism disorders at the mRNA and protein levels in obese mice. In contrast, no significant impact on these parameters was observed in nonobese mice. Interestingly, KGM had a more significant impact on remodeling hepatic lipid composition in obese mice compared to nonobese mice, leading to reducing harmful lipids and increasing beneficial lipids. However, high-dose KGM increased the risk of hepatocyte bile acid toxicity in obese mice and did not promote liver antioxidant status in nonobese mice. In summary, this study identified distinct metabolic responses to KGM intervention between obese and nonobese mice, providing insights for weight management using KGM.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichang Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Lodge S, Litton E, Gray N, Ryan M, Millet O, Fear M, Raby E, Currie A, Wood F, Holmes E, Wist J, Nicholson JK. Stratification of Sepsis Patients on Admission into the Intensive Care Unit According to Differential Plasma Metabolic Phenotypes. J Proteome Res 2024; 23:1328-1340. [PMID: 38513133 PMCID: PMC11002934 DOI: 10.1021/acs.jproteome.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Delayed diagnosis of patients with sepsis or septic shock is associated with increased mortality and morbidity. UPLC-MS and NMR spectroscopy were used to measure panels of lipoproteins, lipids, biogenic amines, amino acids, and tryptophan pathway metabolites in blood plasma samples collected from 152 patients within 48 h of admission into the Intensive Care Unit (ICU) where 62 patients had no sepsis, 71 patients had sepsis, and 19 patients had septic shock. Patients with sepsis or septic shock had higher concentrations of neopterin and lower levels of HDL cholesterol and phospholipid particles in comparison to nonsepsis patients. Septic shock could be differentiated from sepsis patients based on different concentrations of 10 lipids, including significantly lower concentrations of five phosphatidylcholine species, three cholesterol esters, one dihydroceramide, and one phosphatidylethanolamine. The Supramolecular Phospholipid Composite (SPC) was reduced in all ICU patients, while the composite markers of acute phase glycoproteins were increased in the sepsis and septic shock patients within 48 h admission into ICU. We show that the plasma metabolic phenotype obtained within 48 h of ICU admission is diagnostic for the presence of sepsis and that septic shock can be differentiated from sepsis based on the lipid profile.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian
National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Edward Litton
- Intensive
Care Unit, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Intensive
Care Unit, St John of God Hospital, Subiaco, WA 6009, Australia
- School
of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Nicola Gray
- Australian
National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Monique Ryan
- Australian
National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Oscar Millet
- Precision
Medicine and Metabolism Laboratory, CIC
bioGUNE, Parque Tecnológico
de Bizkaia, Bld. 800, Derio 48160, Spain
| | - Mark Fear
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Fiona
Wood Foundation, Perth, WA 6150, Australia
| | - Edward Raby
- Department
of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Andrew Currie
- School
of Medical, Molecular & Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- Centre
for Molecular Medicine & Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Wesfarmers
Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Fiona Wood
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Fiona
Wood Foundation, Perth, WA 6150, Australia
- Burns
service of Western Australia, WA Department
of Health, Murdoch, WA 6150, Australia
| | - Elaine Holmes
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Institute
of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K.
| | - Julien Wist
- Australian
National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Center
for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
- Department of Metabolism, Digestion and
Reproduction, Faculty of Medicine, Imperial
College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Jeremy K. Nicholson
- Australian
National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA6150, Australia
- Department of Metabolism, Digestion and
Reproduction, Faculty of Medicine, Imperial
College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
13
|
Li ZC, Wang J, Liu HB, Zheng YM, Huang JH, Cai JB, Zhang L, Liu X, Du L, Yang XT, Chai XQ, Jiang YH, Ren ZG, Zhou J, Fan J, Yu DC, Sun HC, Huang C, Liu F. Proteomic and metabolomic features in patients with HCC responding to lenvatinib and anti-PD1 therapy. Cell Rep 2024; 43:113877. [PMID: 38421869 DOI: 10.1016/j.celrep.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.
Collapse
Affiliation(s)
- Zhong-Chen Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - He-Bin Liu
- Shanghai Omicsolution Co., Ltd., 28 Yuanwen Road, Shanghai 201199, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian-Hang Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, China
| | - Ling Du
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xue-Ting Yang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Zheng-Gang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - De-Cai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China.
| |
Collapse
|
14
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
15
|
Baba H, Hosoya T, Ishida R, Tai K, Hatsuzawa S, Kondo Y, Kusuhara H, Kagechika H, Yasuda S. Anti-Inflammatory Effects of a Novel Nuclear Factor- κB Inhibitory Derivative Derived from Pyrazolo[3,4- d]Pyrimidine in Three Inflammation Models. J Pharmacol Exp Ther 2024; 388:788-797. [PMID: 38253385 DOI: 10.1124/jpet.123.001904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Nuclear factor-κB (NF-κB) plays a central role in inflammatory responses, and its physiologic functions are essential for cell survival and proliferation. Currently, drugs targeting NF-κB inhibition have not yet been applied in clinical practice. We investigated the physiologic effect of a novel NF-κB inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), on three inflammatory animal models. The pharmacokinetics were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Acute hepatitis was induced by administrating lipopolysaccharide (LPS) and D-(+)-galactosamine hydrochloride followed by the analysis of survival time and inflammatory mediators. Collagen-induced arthritis (CIA) was induced by immunization with type II collagen (CII), and serum-transfer arthritis (STA) was caused by injecting K/BxN mice serum. Clinical and histologic scores were evaluated in both arthritis models. Immune cell subset analysis, CII-induced interferon-gamma (IFN-γ) production and proliferation, and measurement of anti-CII IgG antibodies were performed in the CIA model. In the acute hepatitis model, INH #1 suppressed tumor necrosis factor-α (TNF-α) production and prevented early death in a dose-dependent manner. INH #1 significantly attenuated arthritis scores and joint inflammation in both arthritis models. Additionally, in the CIA model, dendritic cells (DCs) in the regional lymph nodes were decreased in the treated mice and antigen-induced IFN-γ production and cell proliferation in splenocytes were inhibited, whereas the titers of anti-CII IgG antibodies were comparable regardless of the treatment. Here we revealed that INH #1 exerted anti-inflammatory effects in vivo via inhibition of inflammatory mediators and suppression of cellular immune responses. This compound could be a novel candidate for inhibition of NF-κB in certain inflammatory diseases. SIGNIFICANCE STATEMENT: A novel nuclear factor-κB (NF-κB) inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), which retains physiologically essential NF-κB bioactivity, suppressed inflammation in three different mouse models: the acute hepatitis model, the collagen-induced arthritis model, and the K/BxN serum-transfer arthritis model. These results suggest that this compound could be a novel and potent anti-inflammatory agent.
Collapse
Affiliation(s)
- Hiroyuki Baba
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Ryosuke Ishida
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Kenpei Tai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Saki Hatsuzawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Yuma Kondo
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Hiroyuki Kusuhara
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Hiroyuki Kagechika
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| |
Collapse
|
16
|
An Y, Wang H, Gao A, Li S, Yang J, Li B, Lu H. Effects of Sophora alopecuroides in a High-Concentrate Diet on the Liver Immunity and Antioxidant Function of Lambs According to Transcriptome Analysis. Animals (Basel) 2024; 14:182. [PMID: 38254353 PMCID: PMC10812488 DOI: 10.3390/ani14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to determine the effects of Sophora alopecuroides (SA) on liver function, liver inflammatory factor levels, antioxidant indexes and transcriptome in sheep. Twenty-four 3-month-old healthy Dumont hybrid lambs weighing 25.73 ± 2.17 kg were randomly divided into three groups: C1 (the control group), fed a concentrate-to-forage ratio of 50:50; H2 (the high-concentration group), fed a concentrate-to-forage ratio of 70:30; and S3 (the SA group), fed a concentrate-to-forage ratio of 70:30 + 0.1% SA. The results showed that the rumen pH values of the C1 and S3 groups were significant or significantly higher than that of the H2 group (p < 0.05 or p < 0.01). The serum ALT, AST and LDH activities and the LPS and LBP concentrations in the sheep serum and liver in the H2 group were significantly or extremely significantly higher than those in the C1 and S3 groups (p < 0.01), and the IL-10 content and SOD, GPX-PX and T-AOC activities showed the opposite trend (p < 0.05 or p < 0.01). KEGG enrichment analysis showed that the differentially expressed genes were significantly enriched in the ECM-receptor interaction and focal adhesion pathways, which are closely related to immune and antioxidant functions (p-adjust < 0.1). In summary, SA could improve the immune and antioxidant functions of lamb livers under high-concentrate conditions and regulate the mechanism of damage on sheep livers, which is caused by high-concentrate diets and through the expression of related genes in the ECM/FAs pathway.
Collapse
Affiliation(s)
- Yawen An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Hairong Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
- Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Science, Hohhot 010018, China
| | - Aiwu Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shufang Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Jinli Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
- Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Science, Hohhot 010018, China
| | - Boyang Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| | - Henan Lu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.A.); (S.L.); (J.Y.); (B.L.); (H.L.)
| |
Collapse
|
17
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
18
|
Gilbert MC, Setayesh T, Wan YJY. The contributions of bacteria metabolites to the development of hepatic encephalopathy. LIVER RESEARCH 2023; 7:296-303. [PMID: 38221945 PMCID: PMC10786625 DOI: 10.1016/j.livres.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 20% of mortality during acute liver failure is associated with the development of hepatic encephalopathy (HE). Thus, HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma. HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels. Thus, the brain is exposed to intestinal-derived toxic substances. Moreover, the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation. This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE. Together, the significance of the gut-liver-brain axis in human health warrants attention. This review paper focuses on the roles of bacteria metabolites, mainly ammonia and bile acids (BAs) as well as BA receptors in HE. The literature search conducted for this review included searches for phrases such as BA receptors, BAs, ammonia, farnesoid X receptor (FXR), G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy. PubMed, as well as Google Scholar, was the search engines used to find relevant publications.
Collapse
Affiliation(s)
- Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Xu Y, Li L, Tang P, Zhang J, Zhong R, Luo J, Lin J, Zhang L. Identifying key genes for diabetic kidney disease by bioinformatics analysis. BMC Nephrol 2023; 24:305. [PMID: 37853335 PMCID: PMC10585855 DOI: 10.1186/s12882-023-03362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND There are no reliable molecular targets for early diagnosis and effective treatment in the clinical management of diabetic kidney disease (DKD). To identify novel gene factors underlying the progression of DKD. METHODS The public transcriptomic datasets of the alloxan-induced DKD model and the streptozotocin-induced DKD model were retrieved to perform an integrative bioinformatic analysis of differentially expressed genes (DEGs) shared by two experimental animal models. The dominant biological processes and pathways associated with DEGs were identified through enrichment analysis. The expression changes of the key DEGs were validated in the classic db/db DKD mouse model. RESULTS The downregulated and upregulated genes in DKD models were uncovered from GSE139317 and GSE131221 microarray datasets. Enrichment analysis revealed that metabolic process, extracellular exosomes, and hydrolase activity are shared biological processes and molecular activity is altered in the DEGs. Importantly, Hmgcs2, angptl4, and Slco1a1 displayed a consistent expression pattern across the two DKD models. In the classic db/db DKD mice, Hmgcs2 and angptl4 were also found to be upregulated while Slco1a1 was downregulated in comparison to the control animals. CONCLUSIONS In summary, we identified the common biological processes and molecular activity being altered in two DKD experimental models, as well as the novel gene factors (Hmgcs2, Angptl4, and Slco1a1) which may be implicated in DKD. Future works are warranted to decipher the biological role of these genes in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Lan Li
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Ping Tang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Jingrong Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Ruxian Zhong
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Jingmei Luo
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Jie Lin
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
20
|
Zhang F, Ding Y, Zhang B, He M, Wang Z, Lu C, Kang Y. Analysis of Methylome, Transcriptome, and Lipid Metabolites to Understand the Molecular Abnormalities in Polycystic Ovary Syndrome. Diabetes Metab Syndr Obes 2023; 16:2745-2763. [PMID: 37720421 PMCID: PMC10503565 DOI: 10.2147/dmso.s421947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose This study aimed to identify differentially methylated genes (DMGs) and differentially expressed genes (DEGs) to investigate new biomarkers for the diagnosis and treatment of polycystic ovary syndrome (PCOS). Methods To explore the potential biomarkers of PCOS diagnosis and treatment, we performed methyl-binding domain sequencing (MBD-seq) and RNA sequencing (RNA-seq) on ovarian granulosa cells (GCs) from PCOS patients and healthy controls. MBD-seq was also performed on the ovarian tissue of constructed prenatally androgenized (PNA) mice. Differential methylation and expression analysis were implemented to identify DMGs and DEGs, respectively. The identified gene was further verified by real-time quantitative PCR (RT-qPCR) and methylation-specific PCR (MSP) in clinical samples. Furthermore, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was carried out on PCOS patients and healthy controls to identify differential lipid metabolites. Results Compared to the control group, 13,526 DMGs related to the promoter region and 2429 DEGs were found. The function analysis of DMGs and DEGs showed that they were mainly enriched in glycerophospholipid, ovarian steroidogenesis, and other lipid metabolic pathways. Moreover, 5753 genes in DMGs related to the promoter region were screened in the constructed PNA mice. Integrating the DMGs data from PCOS patients and PNA mice, we identified the following 8 genes: CDC42EP4, ERMN, EZR, PIK3R1, ARHGEF18, NECTIN2, TSC2, and TACSTD2. RT-qPCR and MSP verification results showed that the methylation and expression of TACSTD2 were consistent with sequencing data. Additionally, 15 differential lipid metabolites were shown in the serum of PCOS patients. The differential lipids were involved in glycerophospholipid and glycerolipid metabolism. Conclusion Using integration of methylome and lipid metabolites profiling we identified 8 potential epigenetic markers and 15 potential lipid metabolite markers for PCOS. Our results suggest that aberrant DNA methylation and lipid metabolite disorders may provide novel insights into the diagnosis and etiology of PCOS.
Collapse
Affiliation(s)
- Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Bohan Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhijiang Wang
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, People’s Republic of China
| | - Chunbo Lu
- Department of Obstetrics and Gynecology, Qiuai Central Health Center, Ningbo, People’s Republic of China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
22
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
23
|
Wang Z, Zang L, Ren W, Guo H, Sheng N, Zhou X, Guo Y, Dai J. Bile acid metabolism disorder mediates hepatotoxicity of Nafion by-product 2 and perfluorooctane sulfonate in male PPARα-KO mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162579. [PMID: 36870486 DOI: 10.1016/j.scitotenv.2023.162579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and Nafion by-product 2 (H-PFMO2OSA) induce hepatotoxicity in male mice via activation of the peroxisome proliferator-activated receptor α (PPARα) pathway; however, accumulating evidence suggests that PPARα-independent pathways also play a vital role in hepatotoxicity after exposure to per- and polyfluoroalkyl substances (PFASs). Thus, to assess the hepatotoxicity of PFOS and H-PFMO2OSA more comprehensively, adult male wild-type (WT) and PPARα knockout (PPARα-KO) mice were exposed to PFOS and H-PFMO2OSA (1 or 5 mg/kg/d) for 28 d via oral gavage. Results showed that although elevations in alanine transaminase (ALT) and aspartate aminotransferase (AST) were alleviated in PPARα-KO mice, liver injury, including liver enlargement and necrosis, was still observed after PFOS and H-PFMO2OSA exposure. Liver transcriptome analysis identified fewer differentially expressed genes (DEGs) in the PPARα-KO mice than in the WT mice, but more DEGs associated with the bile acid secretion pathway after PFOS and H-PFMO2OSA treatment. Total bile acid content in the liver was increased in the 1 and 5 mg/kg/d PFOS-exposed and 5 mg/kg/d H-PFMO2OSA-exposed PPARα-KO mice. Furthermore, in PPARα-KO mice, proteins showing changes in transcription and translation levels after PFOS and H-PFMO2OSA exposure were involved in the synthesis, transportation, reabsorption, and excretion of bile acids. Thus, exposure to PFOS and H-PFMO2OSA in male PPARα-KO mice may disturb bile acid metabolism, which is not under the control of PPARα.
Collapse
Affiliation(s)
- Zhiru Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Wanlan Ren
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Hua Guo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
24
|
Li M, Zhang Z, Yu B, Jia S, Cui B. Lycium barbarum Oligosaccharides Alleviate Hepatic Steatosis by Modulating Gut Microbiota in C57BL/6J Mice Fed a High-Fat Diet. Foods 2023; 12:foods12081617. [PMID: 37107413 PMCID: PMC10138177 DOI: 10.3390/foods12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
High-fat diets (HFD) can promote the development of hepatic steatosis by altering the structure and composition of gut flora. In this study, the potential therapeutic mechanism of Lycium barbarum oligosaccharide (LBO) against hepatic steatosis was investigated by analyzing the changes in the intestinal flora and metabolites in mice. Mice on an HFD were administered LBO by gavage once daily for a continuous period of eight weeks. Compared with the HFD group, the levels of triglyceride (TG), alanine aminotransferase (ALT) in the serum, and hepatic TG were significantly reduced in the LBO group, and liver lipid accumulation was obviously improved. In addition, LBO could regulate the HFD-induced alteration of intestinal flora. The HFD increased the proportion of Barnesiellaceae, Barnesiella, and CHKCI001. LBO increased the proportion of Dubosiella, Eubacterium, and Lactobacillus. LBO also altered the fecal metabolic profile. Significantly different metabolites between LBO and the HFD, such as taurochenodeoxycholate, taurocholate, fluvastatin, and kynurenic acid, were related to the cholesterol metabolism, bile acid metabolism, and tryptophan metabolic pathways. In light of the above, LBO can alleviate HFD-induced NAFLD by modulating the components of the intestinal flora and fecal metabolites.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Siqiang Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China
| |
Collapse
|
25
|
Li J, Wang L, Li S, Liang X, Zhang Y, Wang Y, Liu Y. Sustained oral intake of nano-iron oxide perturbs the gut-liver axis. NANOIMPACT 2023; 30:100464. [PMID: 37068656 DOI: 10.1016/j.impact.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
Nanomaterial have shown excellent properties in the food industry. Although iron oxides are often considered safe and widely used as food additives, the toxicity of nano‑iron oxide remains unclear. Here we established a subchronic exposure mouse model by gavage, tested the biodistribution of nano‑iron oxide, and explored the mechanism of liver injury caused by it through disturbance of the gut-liver axis. Oral intake of nano‑iron oxide will likely disrupt the small intestinal epithelial barrier, induce hepatic lipid metabolism disorders through the gut-liver axis, and cause hepatic damage accompanied with hepatic iron deposition. Nano‑iron oxide mainly caused hepatic lipid metabolism disorder by perturbing glycerophospholipid metabolism and the sphingolipid metabolism pathways, with the total abundance of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) tending to decrease while that of triglyceride tended to increase, in a time- and dose-dependent manner. The imbalanced lipid homeostasis could cause damage via membrane disruption, lipid accumulation, and lipotoxicity. This data provides information about the subchronic toxicity of nano‑iron oxide, highlights the importance of gut-liver axis in the hepatotoxicity.
Collapse
Affiliation(s)
- Jiangxue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoyu Liang
- Zhengzhou University, Zhengzhou 450001, PR China; People's Hospital of Dengfeng, Zhengzhou 452470, PR China
| | - Yiming Zhang
- Zhengzhou University, Zhengzhou 450001, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China.
| |
Collapse
|
26
|
Iannone V, Lok J, Babu AF, Gómez-Gallego C, Willman RM, Koistinen VM, Klåvus A, Kettunen MI, Kårlund A, Schwab U, Hanhineva K, Kolehmainen M, El-Nezami H. Associations of altered hepatic gene expression in American lifestyle-induced obesity syndrome diet-fed mice with metabolic changes during NAFLD development and progression. J Nutr Biochem 2023; 115:109307. [PMID: 36868506 DOI: 10.1016/j.jnutbio.2023.109307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Roosa Maria Willman
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Mikael Koistinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland
| | | | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna Kårlund
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Afekta Technologies Ltd., Kuopio, Finland; Department of Life technologies, Food Sciences Unit, University of Turku, Turku, Finland.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Hong Kong China
| |
Collapse
|
27
|
Wang S, Yang M, Li P, Sit J, Wong A, Rodrigues K, Lank D, Zhang D, Zhang K, Yin L, Tong X. High-Fat Diet-Induced DeSUMOylation of E4BP4 Promotes Lipid Droplet Biogenesis and Liver Steatosis in Mice. Diabetes 2023; 72:348-361. [PMID: 36508222 PMCID: PMC9935497 DOI: 10.2337/db22-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Dysregulated lipid droplet accumulation has been identified as one of the main contributors to liver steatosis during nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms for excessive lipid droplet formation in the liver remain largely unknown. In the current study, hepatic E4 promoter-binding protein 4 (E4BP4) plays a critical role in promoting lipid droplet formation and liver steatosis in a high-fat diet (HFD)-induced NAFLD mouse model. Hepatic E4bp4 deficiency (E4bp4-LKO) protects mice from HFD-induced liver steatosis independently of obesity and insulin resistance. Our microarray study showed a markedly reduced expression of lipid droplet binding genes, such as Fsp27, in the liver of E4bp4-LKO mice. E4BP4 is both necessary and sufficient to activate Fsp27 expression and lipid droplet formation in primary mouse hepatocytes. Overexpression of Fsp27 increased lipid droplets and triglycerides in E4bp4-LKO primary mouse hepatocytes and restored hepatic steatosis in HFD-fed E4bp4-LKO mice. Mechanistically, E4BP4 enhances the transactivation of Fsp27 by CREBH in hepatocytes. Furthermore, E4BP4 is modified by SUMOylation, and HFD feeding induces deSUMOylation of hepatic E4BP4. SUMOylation of five lysine residues of E4BP4 is critical for the downregulation of Fsp27 and lipid droplets by cAMP signaling in hepatocytes. Taken together, this study revealed that E4BP4 drives liver steatosis in HFD-fed mice through its regulation of lipid droplet binding proteins. Our study also highlights the critical role of deSUMOylation of hepatic E4BP4 in promoting NAFLD.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Meichan Yang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ
| | - Julian Sit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Audrey Wong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kyle Rodrigues
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Lank
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
28
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
29
|
Development of the Rabbit NASH Model Resembling Human NASH and Atherosclerosis. Biomedicines 2023; 11:biomedicines11020384. [PMID: 36830921 PMCID: PMC9953079 DOI: 10.3390/biomedicines11020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease which may progress into liver fibrosis and cancer. Since NASH patients have a high prevalence of atherosclerosis and ensuing cardiovascular diseases, simultaneous management of NASH and atherosclerosis is required. Currently, rodents are the most common animal models for NASH and accompanying liver fibrosis, but there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of NASH patients with atherosclerosis. Rabbits can be a promising candidate for assessing NASH and atherosclerosis because lipoprotein metabolism is more similar to humans compared with rodents. To develop the NASH model using rabbits, we treated the Japanese White rabbit with a newly developed high-fat high-cholesterol diet (HFHCD) containing palm oil 7.5%, cholesterol 0.5%, and ferrous citrate 0.5% for 16 weeks. HFHCD-fed rabbits exhibited NASH at 8 weeks after commencing the treatment and developed advanced fibrosis by the 14th week of treatment. In addition to hypercholesterolemia, atherosclerotic lesion developed in the aorta after 8 weeks. Therefore, this rabbit NASH model might contribute to exploring the concurrent treatment options for human NASH and atherosclerosis.
Collapse
|
30
|
Łuczykowski K, Warmuzińska N, Kollmann D, Selzner M, Bojko B. Biliary Metabolome Profiling for Evaluation of Liver Metabolism and Biliary Tract Function Related to Organ Preservation Method and Degree of Ischemia in a Porcine Model. Int J Mol Sci 2023; 24:2127. [PMID: 36768452 PMCID: PMC9916698 DOI: 10.3390/ijms24032127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The development of surgical techniques, immunosuppressive strategies and new organ preservation methods have meant that transplant centers have to face the problem of an insufficient number of organs for transplantation concerning the constantly growing demand. Therefore, using organs from expanded criteria donors and developing new analytical solutions to find parameters or compounds that would allow a more efficient assessment of organ quality before transplantation are options for meeting this challenge. This study proposed bile metabolomic analysis to evaluate liver metabolism and biliary tract function depending on the organ preservation method and degree of warm ischemia time. The analyses were performed on solid-phase microextraction-prepared bile samples from porcine model donors with mild (heart beating donor [HBD]) and moderate warm ischemia (donation after circulatory death [DCD]) grafts subjected to static cold storage (SCS) or normothermic ex vivo liver perfusion (NEVLP) before transplantation. Bile produced in the SCS-preserved livers was characterized by increased levels of metabolites such as chenodeoxycholic acid, arachidonic acid and 5S-hydroxyeicosatetraeonic acid, as well as saturated and monounsaturated lysophosphatidylcholines (LPC). Such changes may be associated with differences in the bile acid synthesis pathways and organ inflammation. Moreover, it has been shown that NEVLP reduced the negative effect of ischemia on organ function. A linear relationship was observed between levels of lipids from the LPC group and the time of organ ischemia. This study identified metabolites worth considering as potential markers of changes occurring in preserved grafts.
Collapse
Affiliation(s)
- Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Dagmar Kollmann
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| |
Collapse
|
31
|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients 2023; 15:nu15020372. [PMID: 36678243 PMCID: PMC9866220 DOI: 10.3390/nu15020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins.
Collapse
|
32
|
Wu S, Wang X, Xing W, Li F, Liang M, Li K, He Y, Wang J. An update on animal models of liver fibrosis. Front Med (Lausanne) 2023; 10:1160053. [PMID: 37035335 PMCID: PMC10076546 DOI: 10.3389/fmed.2023.1160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The development of liver fibrosis primarily determines quality of life as well as prognosis. Animal models are often used to model and understand the underlying mechanisms of human disease. Although organoids can be used to simulate organ development and disease, the technology still faces significant challenges. Therefore animal models are still irreplaceable at this stage. Currently, in vivo models of liver fibrosis can be classified into five categories based on etiology: chemical, dietary, surgical, transgenic, and immune. There is a wide variety of animal models of liver fibrosis with varying efficacy, which have different implications for proper understanding of the disease and effective screening of therapeutic agents. There is no high-quality literature recommending the most appropriate animal models. In this paper, we will describe the progress of commonly used animal models of liver fibrosis in terms of their development mechanisms, applications, advantages and disadvantages, and recommend appropriate animal models for different research purposes.
Collapse
Affiliation(s)
- ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Liang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - KeShen Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Yan He,
| | - JianMing Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- JianMing Wang,
| |
Collapse
|
33
|
Chen Z, Sai S, Nagumo K, Wu Y, Chiba H, Hui SP. Distinctive serum lipidomic profile of IVIG-resistant Kawasaki disease children before and after treatment. PLoS One 2023; 18:e0283710. [PMID: 36989310 PMCID: PMC10057782 DOI: 10.1371/journal.pone.0283710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory disorder associated with systemic vasculitis. Intravenous immunoglobulin (IVIG) is an effective therapy for KD, yet, about 20% of cases show IVIG resistance with persistent inflammation. The lipid profile in IVIG-resistant KD patients and the relationship between lipid characteristics and IVIG resistance remain unknown. In this study, serum samples from twenty KD patients with different IVIG responses (sensitive, intermediate, or resistant) were collected both before and after treatment, and lipidomic analysis was performed using high-performance liquid chromatography-mass spectrometry. As a result, before treatment, six lipid species were found as the most variant features, in which all the top decreased lipids in the IVIG-resistant group were lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), suggesting the potential to be IVIG-resistant markers in pretreatment diagnosis. During treatment, lipidomic changes showed a weaker response in the IVIG-resistant group. After treatment, LPC and LPE species exhibited lower in the IVIG-resistant group and negative correlation with the inflammatory markers, indicating that the unique metabolism may occur among IVIG-responsiveness. These results might contribute to diagnosing IVIG-resistant patients more accurately for alternative therapy and to a better understanding of how lipid metabolism is associated with IVIG sensitiveness/resistance in KD.
Collapse
Affiliation(s)
- Zhen Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shuji Sai
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Hokkaido, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyoshi Nagumo
- Department of Pediatrics, Teine-Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Hokkaido, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
34
|
Bing H, Li YL. The role of bile acid metabolism in the occurrence and development of NAFLD. Front Mol Biosci 2022; 9:1089359. [PMID: 36589245 PMCID: PMC9798289 DOI: 10.3389/fmolb.2022.1089359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the important causes of cirrhosis and liver cancer, resulting in a huge medical burden worldwide. Currently, effective non-invasive diagnostic indicators and drugs for NAFLD are still lacking. With the development of metabolomics technology, the changes in metabolites during the development of NAFLD have been gradually revealed. Bile acid (BA) is the main endpoint of cholesterol metabolism in the body. In addition, it also acts as a signaling factor to regulate metabolism and inflammation in the body through the farnesyl X receptor and G protein-coupled BA receptor. Studies have shown that BA metabolism is associated with the development of NAFLD, but a large number of animal and clinical studies are still needed. BA homeostasis is maintained through multiple negative feedback loops and the enterohepatic circulation of BA. Recently, treatment of NAFLD by interfering with BA synthesis and metabolism has become a new research direction. Here, we review the changes in BA metabolism and its regulatory mechanisms during the development of NAFLD and describe the potential of studies exploring novel non-invasive diagnostic indicators and therapeutic targets for NAFLD based on BA metabolism.
Collapse
Affiliation(s)
- Hao Bing
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Department of Gastroenterology, Shengjing Hospital Affiliated with China Medical University, Shenyang, Liaoning, China
| | - Yi-Ling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yi-Ling Li,
| |
Collapse
|
35
|
Liang R, Ge W, Li B, Cui W, Ma X, Pan Y, Li G. Evodiamine decreased the systemic exposure of pravastatin in non-alcoholic steatohepatitis rats due to the up-regulation of hepatic OATPs. PHARMACEUTICAL BIOLOGY 2022; 60:359-373. [PMID: 35171063 PMCID: PMC8856114 DOI: 10.1080/13880209.2022.2036767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Patients with non-alcoholic steatohepatitis (NASH) may have a simultaneous intake of pravastatin and evodiamine-containing herbs. OBJECTIVE The effect of evodiamine on the pharmacokinetics of pravastatin and its potential mechanisms were investigated in NASH rats. MATERIALS AND METHODS The NASH model was conducted with feeding a methionine choline-deficient (MCD) diet for 8 weeks. Sprague-Dawley rats were randomised equally (n = 6) into NASH group, evodiamine group (10 mg/kg), pravastatin group (10 mg/kg), and evodiamine (10 mg/kg) + pravastatin (10 mg/kg) group. Normal control rats were fed a standard diet. Effects of evodiamine on the pharmacokinetics, distribution, and uptake of pravastatin were investigated. RESULTS Evodiamine decreased Cmax (159.43 ± 26.63 vs. 125.61 ± 22.17 μg/L), AUC0-t (18.17 ± 2.52 vs. 14.91 ± 2.03 mg/min/L) and AUC0-∞ (22.99 ± 2.62 vs. 19.50 ± 2.31 mg/min/L) of orally administered pravastatin in NASH rats, but had no significant effect in normal rats. Evodiamine enhanced the uptake (from 154.85 ± 23.17 to 198.48 ± 26.31 pmol/mg protein) and distribution (from 736.61 ± 108.07 to 911.89 ± 124.64 ng/g tissue) of pravastatin in NASH rat liver. The expression of Oatp1a1, Oatp1a4, and Oatp1b2 was up-regulated 1.48-, 1.38-, and 1.51-fold by evodiamine. Evodiamine decreased the levels of IL-1β, IL-6, and TNF-α by 27.82%, 24.76%, and 29.72% in NASH rats, respectively. DISCUSSION AND CONCLUSIONS Evodiamine decreased the systemic exposure of pravastatin by up-regulating the expression of OATPs. These results provide a reference for further validation of this interaction in humans.
Collapse
Affiliation(s)
- Ruifeng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wenjing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Bingjie Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
- School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Weifeng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaofan Ma
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuying Pan
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Gengsheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
36
|
Wupperfeld D, Fricker G, Bois De Fer B, Frank L, Wehrle A, Popovic B. Essential phospholipids decrease apoptosis and increase membrane transport in human hepatocyte cell lines. Lipids Health Dis 2022; 21:91. [PMID: 36153592 PMCID: PMC9508738 DOI: 10.1186/s12944-022-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated.
Methods
Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).
Results
Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells.
Conclusions
EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.
Collapse
|
37
|
Qin N, Qin M, Shi W, Kong L, Wang L, Xu G, Guo Y, Zhang J, Ma Q. Investigation of pathogenesis of hyperuricemia based on untargeted and targeted metabolomics. Sci Rep 2022; 12:13980. [PMID: 35978088 PMCID: PMC9386008 DOI: 10.1038/s41598-022-18361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
Hyperuricemia (HUA) seriously harms human health but the exact etiology and pathogenesis of HUA are not fully understood. Therefore, it is still of great significance to find effective biomarkers and explore the pathogenesis of HUA. Metabolomics reflects the influence of internal and external factors on system metabolism, explains the changes in metabolite levels during the development of diseases, and reveals the molecular mechanism of pathogenesis. Metabolomics is divided into untargeted metabolomics and targeted metabolomics according to different research modes. Each other's advantages can be fully utilized by combining the two so that the results of metabolomics research can be consummated. 20 HUA patients and 20 healthy individuals participated in the experiment, and untargeted metabolomics was employed to find 50 differential metabolites in HUA serum samples. Twelve candidate biomarkers were screened based on literature research and ROC Curve analysis for subsequent verification. Based on the UPLC-TQ-MS analysis platform, the targeted metabolomics detection methods were established and the content of 12 candidate biomarkers was precisely quantified. Compare with the results of untargeted metabolomics, the targeted metabolomics results were considered more reliable.
Collapse
Affiliation(s)
- Nankun Qin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ming Qin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenjun Shi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingbo Kong
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
| | - Liting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guang Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qun Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
38
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
39
|
Zhang X, Diao P, Yokoyama H, Inoue Y, Tanabe K, Wang X, Hayashi C, Yokoyama T, Zhang Z, Hu X, Nakajima T, Kimura T, Nakayama J, Nakamuta M, Tanaka N. Acidic Activated Charcoal Prevents Obesity and Insulin Resistance in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:852767. [PMID: 35634388 PMCID: PMC9134190 DOI: 10.3389/fnut.2022.852767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Obesity is becoming a major public health problem worldwide. Making charcoal from wood (“Sumi-yaki”) has been a traditional activity in the southern part of Nagano Prefecture for centuries, with activated charcoal having reported detoxifying effects. However, it is unclear whether activated charcoal also possesses anti-obesity properties. Additionally, since activated charcoal is usually alkaline and might be affected by gastric juice, we evaluated the effect of acidic activated charcoal on high-fat diet (HFD)-induced obesity. This study demonstrated that co-treatment of acidic activated charcoal with a HFD significantly improved obesity and insulin resistance in mice in a dose-dependent manner. Metabolomic analysis of cecal contents revealed that neutral lipids, cholesterol, and bile acids were excreted at markedly higher levels in feces with charcoal treatment. Moreover, the hepatic expressions of genes encoding cholesterol 7 alpha-hydroxylase and hydroxymethylglutaryl-CoA reductase/synthase 1 were up-regulated by activated charcoal, likely reflecting the enhanced excretions from the intestine and the enterohepatic circulation of cholesterol and bile acids. No damage or abnormalities were detected in the gastrointestinal tract, liver, pancreas, and lung. In conclusion, acidic activated charcoal may be able to attenuate HFD-induced weight gain and insulin resistance without serious adverse effects. These findings indicate a novel function of charcoal to prevent obesity, metabolic syndrome, and related diseases.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
| | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Chihiro Hayashi
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
| | | | - Zhe Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, Kyushu Medical Center, Fukuoka, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
- *Correspondence: Naoki Tanaka,
| |
Collapse
|
40
|
Zhou M, Cheng C, Han Y, Niu M, Huang Y, He X, Liu Y, Xiao X, Wang J, Ma Z. 自身免疫性肝炎、原发性胆汁性胆管炎及其重叠综合征的临床代谢组学表征及区分. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Li R, Zhao YL, Qin F, Zhao Y, Xiao XR, Cao WY, Fan MR, Wang SG, Wu Y, Wang B, Fan CZ, Guo ZN, Yang QN, Zhang WT, Li XG, Li F, Luo XD, Gao R. The clinical population pharmacokinetics, metabolomics and therapeutic analysis of alkaloids from Alstonia scholaris leaves in acute bronchitis patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153979. [PMID: 35176533 DOI: 10.1016/j.phymed.2022.153979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.
Collapse
Affiliation(s)
- Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Feng Qin
- Department of Analytical Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yang Zhao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Mao-Rong Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Bing Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Chang-Zheng Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Zhong-Ning Guo
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, PR China.
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China.
| |
Collapse
|
42
|
Marie S, Tripp DKK, Cherrington NJ. Strategies to Diagnose Nonalcoholic Steatohepatitis: A Novel Approach to Take Advantage of Pharmacokinetic Alterations. Drug Metab Dispos 2022; 50:492-499. [PMID: 34531312 PMCID: PMC9014462 DOI: 10.1124/dmd.121.000413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is diagnosed by a liver biopsy. Because of the invasiveness of a biopsy, the majority of patients with NASH are undiagnosed. Additionally, the prevalence of NAFLD and NASH creates the need for a simple screening method to differentiate patients with NAFLD versus NASH. Noninvasive strategies for diagnosing NAFLD versus NASH have been developed, typically relying on imaging techniques and endogenous biomarker panels. However, each technique has limitations, and none can accurately predict the associated functional impairment of drug metabolism and disposition. The function of several drug-metabolizing enzymes and drug transporters has been described in NASH that impacts drug pharmacokinetics. The aim of this review is to give an overview of the existing noninvasive strategies to diagnose NASH and to propose a novel strategy based on altered pharmacokinetics using an exogenous biomarker whose disposition and elimination pathways are directly impacted by disease progression. Altered disposition of safe and relatively inert exogenous compounds may provide the sensitivity and specificity needed to differentiate patients with NAFLD and NASH to facilitate a direct indication of hepatic impairment on drug metabolism and prevent subsequent adverse drug reactions. SIGNIFICANCE STATEMENT: This review provides an overview of the main noninvasive techniques (imaging and panels of biomarkers) used to diagnose NAFLD and NASH along with a biopsy. Pharmacokinetic changes have been identified in NASH, and this review proposes a new approach to predict NASH and the related risk of adverse drug reactions based on the assessment of drug elimination disruption using exogenous biomarkers.
Collapse
Affiliation(s)
- Solène Marie
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - David K K Tripp
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
43
|
Alaei Faradonbeh F, Lastuvkova H, Cermanova J, Hroch M, Nova Z, Uher M, Hirsova P, Pavek P, Micuda S. Multidrug Resistance-Associated Protein 2 Deficiency Aggravates Estrogen-Induced Impairment of Bile Acid Metabolomics in Rats. Front Physiol 2022; 13:859294. [PMID: 35388287 PMCID: PMC8979289 DOI: 10.3389/fphys.2022.859294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2) mediates biliary secretion of anionic endobiotics and xenobiotics. Genetic alteration of Mrp2 leads to conjugated hyperbilirubinemia and predisposes to the development of intrahepatic cholestasis of pregnancy (ICP), characterized by increased plasma bile acids (BAs) due to mechanisms that are incompletely understood. Therefore, this study aimed to characterize BA metabolomics during experimental Mrp2 deficiency and ICP. ICP was modeled by ethinylestradiol (EE) administration to Mrp2-deficient (TR) rats and their wild-type (WT) controls. Spectra of BAs were analyzed in plasma, bile, and stool using an advanced liquid chromatography–mass spectrometry (LC–MS) method. Changes in BA-related genes and proteins were analyzed in the liver and intestine. Vehicle-administered TR rats demonstrated higher plasma BA concentrations consistent with reduced BA biliary secretion and increased BA efflux from hepatocytes to blood via upregulated multidrug resistance-associated protein 3 (Mrp3) and multidrug resistance-associated protein 4 (Mrp4) transporters. TR rats also showed a decrease in intestinal BA reabsorption due to reduced ileal sodium/bile acid cotransporter (Asbt) expression. Analysis of regulatory mechanisms indicated that activation of the hepatic constitutive androstane receptor (CAR)-Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by accumulating bilirubin may be responsible for changes in BA metabolomics in TR rats. Ethinylestradiol administration to TR rats further increased plasma BA concentrations as a result of reduced BA uptake and increased efflux via reduced Slco1a1 and upregulated Mrp4 transporters. These results demonstrate that Mrp2-deficient organism is more sensitive to estrogen-induced cholestasis. Inherited deficiency in Mrp2 is associated with activation of Mrp3 and Mrp4 proteins, which is further accentuated by increased estrogen. Bile acid monitoring is therefore highly desirable in pregnant women with conjugated hyperbilirubinemia for early detection of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Uher
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Stanislav Micuda,
| |
Collapse
|
44
|
Li C, Wang M, Fu T, Li Z, Chen Y, He T, Feng D, Wang Z, Fan Q, Chen M, Zhang H, Lin R, Zhao C. Lipidomics Indicates the Hepatotoxicity Effects of EtOAc Extract of Rhizoma Paridis. Front Pharmacol 2022; 13:799512. [PMID: 35211012 PMCID: PMC8861452 DOI: 10.3389/fphar.2022.799512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Rhizoma Paridis is a traditional Chinese medicine commonly used in the clinical treatment of gynecological diseases. Previous studies have shown that aqueous extracts of Rhizoma Paridis exhibit some hepatotoxicity to hepatocytes. Here, using lipidomics analysis, we investigated the potential hepatotoxicity of Rhizoma Paridis and its possible mechanism. The hepatic damaging of different solvent extracts of Rhizoma Paridis on zebrafish larvae were determined by a combination of mortality dose, biochemical, morphological, and functional tests. We found that ethyl acetate extracts (AcOEtE) were the most toxic fraction. Notably, lipidomic responsible for the pharmacological effects of AcOEtE were investigated by Q-Exactive HF-X mass spectrometer (Thermo Scientific high-resolution) coupled in tandem with a UHPLC system. Approximately 1958 unique spectral features were detected, of which 325 were identified as unique lipid species. Among these lipid species, phosphatidylethanolamine cardiolipin Ceramide (Cer), lysophosphatidylinositol sphingosine (Sph), etc., were significantly upregulated in the treated group. Pathway analysis indicates that Rhizoma Paridis may cause liver damage via interfering with the glycerophospholipid metabolism. Collectively, this study has revealed previously uncharacterized lipid metabolic disorder involving lipid synthesis, metabolism, and transport that functionally determines hepatic fibrosis procession.
Collapse
Affiliation(s)
- Chaofeng Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqi Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Feng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoyi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Fan
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meilin Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Honggui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Jonas JP, Hackl H, Pereyra D, Santol J, Ortmayr G, Rumpf B, Najarnia S, Schauer D, Brostjan C, Gruenberger T, Starlinger P. Circulating metabolites as a concept beyond tumor biology determining disease recurrence after resection of colorectal liver metastasis. HPB (Oxford) 2022; 24:116-129. [PMID: 34257019 DOI: 10.1016/j.hpb.2021.06.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Micro-metastatic growth is considered the main source of early cancer recurrence. Nutritional and microenvironmental components are increasingly recognized to play a significant role in the liver. We explored the predictive potential of preoperative plasma metabolites for postoperative disease recurrence in colorectal cancer liver metastasis (CRCLM) patients. METHODS All included patients (n = 71) had undergone R0 liver resection for colorectal cancer liver metastasis in the years between 2012 and 2018. Preoperative blood samples were collected and assessed for 180 metabolites using a preconfigured mass-spectrometry kit (Biocrates Absolute IDQ p180 kit). Postoperative disease-free (DFS) and overall survival (OS) were prospectively recorded. Patients that recurred within 6 months after surgery were defined as "high-risk" and, subsequently, a three-metabolite model was created which can assess DFS in our collective. RESULTS Multiple lysophosphatidylcholines (lysoPCs) and phosphatidylcholines (PCs) significantly predicted disease recurrence within 6 months (strongest: PC aa C36:1 AUC = 0.83, p = 0.003, PC ae C34:0 AUC = 0.83, p = 0.004 and lysoPC a C18:1 AUC = 0.8, p = 0.006). High-risk patients had a median DFS of 183 days versus 522 days in low-risk population (p = 0.016, HR = 1.98 95% CI 1.16-4.35) with a 6 months recurrence rate of 47.6% versus 4.7%, outperforming routine predictors of oncological outcome. CONCLUSION Circulating metabolites identified CRCLM patients at highest risk for 6 months disease recurrence after surgery. Our data also suggests that circulating metabolites might play a significant pathophysiological role in micro-metastatic growth and concomitant early tumor recurrences after liver resection. However, the clinical applicability and performance of this proposed metabolomic concept needs to be independently validated in future studies.
Collapse
Affiliation(s)
- Jan P Jonas
- Department of Surgery, Hepatico-Pancreato-Biliary Center, Clinicum Favoriten, Vienna, Austria; Department of Visceral and Transplant Surgery, University Hospital of Zurich, Switzerland
| | - Hubert Hackl
- Department of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - David Pereyra
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Jonas Santol
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Gregor Ortmayr
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Benedikt Rumpf
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Sina Najarnia
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Dominic Schauer
- Department of Radiology, Clinicum Landstrasse, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, Hepatico-Pancreato-Biliary Center, Clinicum Favoriten, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria; Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Kim HS, Jung SJ, Jang S, Kim MJ, Cha YS. Rice-based breakfast improves fasting glucose and HOMA-IR in Korean adolescents who skip breakfast, but breakfast skipping increases aromatic amino acids associated with diabetes prediction in Korean adolescents who skip breakfast: a randomized, parallel-group, controlled trial. Nutr Res Pract 2022; 16:450-463. [PMID: 35919293 PMCID: PMC9314192 DOI: 10.4162/nrp.2022.16.4.450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hyun Suk Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Soyoung Jang
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Min Jung Kim
- Research Group of Healthcare, Korea Food Research, Wanju 55365, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
- Department of Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
47
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
48
|
Zhang XJ, She ZG, Wang J, Sun D, Shen LJ, Xiang H, Cheng X, Ji YX, Huang YP, Li PL, Yang X, Cheng Y, Ma JP, Wang HP, Hu Y, Hu F, Tian S, Tian H, Zhang P, Zhao GN, Wang L, Hu ML, Yang Q, Zhu LH, Cai J, Yang J, Zhang X, Ma X, Xu Q, Touyz RM, Liu PP, Loomba R, Wang Y, Li H. Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Sci Transl Med 2021; 13:eabg8117. [PMID: 34910546 DOI: 10.1126/scitranslmed.abg8117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Junyong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yong-Ping Huang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng-Long Li
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xia Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yanjie Cheng
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Peng Ma
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yufeng Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guang-Nian Zhao
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lin Wang
- Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Man-Li Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qin Yang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Juan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Qingbo Xu
- Centre for Clinic Pharmacology, The William Harvey Research Institute, Queen Mary University of London, London SE5 9NU, UK
| | - Rhian M Touyz
- British Heart Foundation Chair in Cardiovascular Medicine, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Peter P Liu
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California, San Diego, San Diego, CA 92093, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Institute of Model Animal of Wuhan University, Wuhan 430071, China.,School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
49
|
Engel KM, Schiller J, Galuska CE, Fuchs B. Phospholipases and Reactive Oxygen Species Derived Lipid Biomarkers in Healthy and Diseased Humans and Animals - A Focus on Lysophosphatidylcholine. Front Physiol 2021; 12:732319. [PMID: 34858200 PMCID: PMC8631503 DOI: 10.3389/fphys.2021.732319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids (PL) are converted into lipid biomarkers by the action of phospholipases and reactive oxygen species (ROS), which are activated or released under certain physiological and pathophysiological conditions. Therefore, the in vivo concentration of such lipid biomarkers [e.g., lysophospholipids (LPLs)] is altered in humans and animals under different conditions such as inflammation, stress, medication, and nutrition. LPLs are particularly interesting because they are known to possess pro- and anti-inflammatory properties and may be generated by two different pathways: either by the influence of phospholipase A2 or by different reactive oxygen species that are generated in significant amounts under inflammatory conditions. Both lead to the cleavage of unsaturated acyl residues. This review provides a short summary of the mechanisms by which lipid biomarkers are generated under in vitro and in vivo conditions. The focus will be on lysophosphatidylcholine (LPC) because usually, this is the LPL species which occurs in the highest concentration and is, thus, easily detectable by chromatographic and spectroscopic methods. Finally, the effects of lipid biomarkers as signaling molecules and their roles in different human and animal pathologies such as infertility, cancer, atherosclerosis, and aging will be shortly discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christina E Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
50
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|