1
|
Un H, Wusimanjiang W, Zhan W, Zhang X, Li M, Lei J, Lin R, Zhang Y, Chen J, Wang Z. Understanding bladder cancer risk: Mendelian randomization analysis of immune cell and inflammatory factor influence. Front Immunol 2024; 15:1460275. [PMID: 39450166 PMCID: PMC11499096 DOI: 10.3389/fimmu.2024.1460275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The intricate roles of immune cells and inflammatory factors in cancer, particularly their association with the risk of bladder cancer, are not well understood. Methods This study aimed to clarify potential causal relationships between these elements and the development of bladder cancer using genome-wide association study (GWAS) summary statistics for 731 immune cell phenotypes and 91 circulating inflammatory factors (cases=2,053; controls=287,137). The primary analytical approach was Inverse Variance Weighting (IVW), supplemented by MR-Egger regression, weighted median, and weighted mode analyses. Sensitivity analyses included Cochran Q test, MR-Egger intercept test, and Leave-one-out test. Results The findings indicated that monocytes are positively correlated with an increased risk of bladder cancer. On the contrary, double-negative (DN) T cells, HLA DR+CD8br, and CD28 on CD28+CD45RA+CD8br T cells exhibited an inverse correlation, suggesting a possible protective effect. Furthermore, inflammatory factors IL-20, IL-22RA1, and Eotaxin were significantly associated with an increased risk of bladder cancer. Discussion These results suggest that certain immune cell phenotypes and inflammatory factors may play a role in the development of bladder cancer and could serve as potential biomarkers for assessing tumor risk. The findings also offer new insights into the pathogenesis of bladder cancer, indicating a need for further investigation.
Collapse
Affiliation(s)
- Hiocheng Un
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wumier Wusimanjiang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinxin Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghao Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahao Lei
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renxuan Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Li H, Xia N. The multifaceted roles of B lymphocytes in metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1447391. [PMID: 39372417 PMCID: PMC11449700 DOI: 10.3389/fimmu.2024.1447391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Recent evidence suggests that adaptive immune cells are important contributors to metabolic dysfunction-associated steatotic liver disease (MASLD, formerly non-alcoholic fatty liver disease, NAFLD). In liver biopsies from MASLD patients, the accumulation of intrahepatic B cells is positively correlated with the MASLD activity score. Hepatic B-cell infiltration is observed in experimental models of metabolic dysfunction-associated steatohepatitis (MASH, formerly non-alcoholic steatohepatitis, NASH). Intrahepatic B2 cells have been shown to contribute to MASLD/MASH by activating T cells, macrophages and hepatic stellate cells, and by producing pathogenic IgG antibodies. In mice fed a MASH diet, selective depletion of B2 cells reduces steatohepatitis and fibrosis. Intestinal B cells are metabolically activated in MASH and promote T-cell activation independently of TCR signaling. In addition, B cells have been shown to contribute to liver fibrosis by activating monocyte-derived macrophages through the secretion of IgA immunoglobulins. Furthermore, our recent study indicates that certain B cell subsets, very likely regulatory B cells, may play a protective role in MASLD. This review summarizes the molecular mechanisms of B cell functions and discusses future research directions on the different roles of B cells in MASLD and MASH.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg
University, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg
University, Mainz, Germany
| |
Collapse
|
3
|
Guo E, Yuan H, Li R, Yang J, Liu S, Liu A, Jiang X. Calcitriol ameliorates the progression of hepatic fibrosis through autophagy-related gene 16-like 1-mediated autophagy. Am J Med Sci 2024; 367:382-396. [PMID: 38431191 DOI: 10.1016/j.amjms.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor β1 (TGFβ1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.
Collapse
Affiliation(s)
- Enshuang Guo
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixing Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Renlong Li
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaojing Jiang
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Wang K, Zhan HQ, Hu Y, Yuan ZY, Yang JF, Yang DS, Tao LS, Xu T. The role of interleukin-20 in liver disease: Functions, mechanisms and clinical applications. Heliyon 2024; 10:e29853. [PMID: 38699038 PMCID: PMC11064155 DOI: 10.1016/j.heliyon.2024.e29853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Liver disease is a severe public health concern worldwide. There is a close relationship between the liver and cytokines, and liver inflammation from a variety of causes leads to the release and activation of cytokines. The functions of cytokines are complex and variable, and are closely related to their cellular origin, target molecules and mode of action. Interleukin (IL)-20 has been studied as a pro-inflammatory cytokine that is expressed and regulated in some diseases. Furthermore, accumulating evidences has shown that IL-20 is highly expressed in clinical samples from patients with liver disease, promoting the production of pro-inflammatory molecules involved in liver disease progression, and antagonists of IL-20 can effectively inhibit liver injury and produce protective effects. This review highlights the potential of targeting IL-20 in liver diseases, elucidates the potential mechanisms of IL-20 inducing liver injury, and suggests multiple viable strategies to mitigate the pro-inflammatory response to IL-20. Genomic CRISPR/Cas9-based screens may be a feasible way to further explore the signaling pathways and regulation of IL-20 in liver diseases. Nanovector systems targeting IL-20 offer new possibilities for the treatment and prevention of liver diseases.
Collapse
Affiliation(s)
- Kun Wang
- School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhan-Yuan Yuan
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun-Fa Yang
- Department of orthopedics, Anhui Children's Hospital, Hefei, Anhui, 230032, China
| | - Da-Shuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Liang-Song Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
5
|
Du X, Hua R, He X, Hou W, Li S, Yang A, Yang G. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGFβ1-induced LX-2 cells. Parasit Vectors 2024; 17:190. [PMID: 38643149 PMCID: PMC11031992 DOI: 10.1186/s13071-024-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFβ1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.
Collapse
Affiliation(s)
- Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Hou
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
7
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
8
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542940. [PMID: 37398163 PMCID: PMC10312526 DOI: 10.1101/2023.05.30.542940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infection of the female genital tract by Chlamydia trachomatis can produce severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. While infection demonstrably mediates a pro-fibrotic response in host cells, it remains unclear if intrinsic properties of the upper genital tract exacerbate chlamydial fibrosis. The relatively sterile environment of the upper genital tract is primed for a pro-inflammatory response to infection, potentially enhancing fibrosis - however, subclinical C. trachomatis infections still develop fibrosis-related sequelae. Here, we compare infection-associated and steady-state gene expression of primary human cervical and vaginal epithelial cells. In the former, we observe enhanced baseline expression and infection-mediated induction of fibrosis-associated signal factors (e.g. TGFA , IL6 , IL8 , IL20 ), implying predisposition to Chlamydia -associated pro-fibrotic signaling. Transcription factor enrichment analysis identified regulatory targets of YAP, a transcriptional cofactor induced by infection of cervical epithelial cells, but not vaginal epithelial cells. YAP target genes induced by infection include secreted fibroblast-activating signal factors; therefore, we developed an in vitro model involving coculture of infected endocervical epithelial cells with uninfected fibroblasts. Coculture enhanced fibroblast expression of type I collagen, as well as prompting reproducible (albeit statistically insignificant) induction of α-smooth muscle actin. Fibroblast collagen induction was sensitive to siRNA-mediated YAP knockdown in infected epithelial cells, implicating chlamydial YAP activation in this effect. Collectively, our results present a novel mechanism of fibrosis initiated by Chlamydia, wherein infection-mediated induction of host YAP facilitates pro-fibrotic intercellular communication. Chlamydial YAP activation in cervical epithelial cells is thus a determinant of this tissue's susceptibility to fibrosis. Importance Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP - a pro-fibrotic transcriptional cofactor - as a potential driver of infection-mediated fibrotic gene expression. Further, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts, and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling, and identify YAP as a potential therapeutic target for prevention of Chlamydia -associated scarring of the female genital tract.
Collapse
|
9
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
10
|
Lu YS, Chiang PM, Huang YC, Yang SJ, Hung LY, Medeiros LJ, Chen YP, Chen TY, Chang MS, Chang KC. Overexpression of interleukin-20 correlates with favourable prognosis in diffuse large B-cell lymphoma. Pathology 2023; 55:94-103. [PMID: 36175183 DOI: 10.1016/j.pathol.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, accounting for about 40% of cases. The role of cytokines in the pathogenesis of lymphomas has been rarely addressed, although cytokines have a close immunological relationship with lymphocytes. We observed overexpression of interleukin (IL)-20 in reactive germinal centres (GCs) leading us to hypothesise that IL-20 may play a role in lymphomagenesis. In this study, we surveyed for IL-20 expression in various types of lymphoma and found that IL-20 was expressed most frequently in follicular lymphoma (94%), but also in Burkitt lymphoma (81%), mantle cell lymphoma (57%), nodal marginal zone lymphoma (56%), Hodgkin lymphomas (50%), small lymphocytic lymphoma (50%) and diffuse large B-cell lymphoma (DLBCL, 48%). IL-20 was not expressed in extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), lymphoplasmacytic lymphoma, and plasmacytoma. T-cell lymphomas were largely negative for IL-20 expression, except for anaplastic large cell lymphoma (ALCL, 61%), which frequently expressed IL-20, especially in cutaneous ALCL, and showed an inverse association with ALK expression (p=0.024). We further tested IL-20 expression in another large cohort of DLBCL and found IL-20 expression more frequently in germinal centre B-cell (GCB) than in non-GCB subtype [16/26 (62%) versus 24/64 (38%), p=0.038]. In this cohort, IL-20 was associated with a lower rate of extranodal involvement (p=0.009), bone marrow involvement (p=0.040), and better overall survival (p=0.020). Mechanistically, IL-20 overexpression promoted G1 cell cycle arrest and subsequent apoptosis of DLBCL cells and vice versa in vitro. We conclude that IL-20 may be involved in lymphomagenesis and may be useful as a prognostic marker in patients with DLBCL. In addition, IL-20 plays an inhibitory role in DLBCL growth, probably through cell cycle regulation.
Collapse
Affiliation(s)
- Yi-Sian Lu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Huang
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiang-Jie Yang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya-Ping Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Dang H, Hassan Z, Jia Z, Wu Y, Xiao H, Huang W, Guo X, Zhao X, Li Y, Zou J, Wang J. Grass carp IL-20 binds to IL-20R2 but induces STAT3 phosphorylation via IL-20R1. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108445. [PMID: 36414129 DOI: 10.1016/j.fsi.2022.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and has a variety of biological functions in tissue homeostasis and regulation of host immune defenses. It signals through a heterodimeric receptor composed of a subunit with a long intracellular domain (R1 type receptor) and a subunit with a short intracellular domain (R2 type receptor). In this study, the R1 type receptor (CiIL-20R1/CRFB8) and the R2 type receptor (CiIL-20R2/CRFB16) were identified in grass carp Ctenopharyngodon idella. Expression analysis revealed that IL-20R2 was highly expressed in the gills and skin in healthy fish. Infection with Flavobacterium columnare resulted in the downregulation of both receptors in the gill at 48 and 72 h, whilst infection with grass carp reovirus induced their expression in the head kidney and spleen at 72 h. In the primary head kidney leucocytes, the expression levels of IL-20R1 and IL-20R2 were decreased after stimulation with 250 ng/mL IL-1β but not affected by IFN-γ. Co-immunoprecipitation analysis showed that CiIL-20R2/CRFB16 but not CiIL-20R1/CRFB8 bound to CiIL-20L. Furthermore, it was shown that CiIL-20R1/CRFB8 was responsible for activating the phosphorylation of STAT3, whilst CiIL-20R2/CRFB16 was not involved. Structural modeling analysis showed that key residues involved in the interaction between IL-20 and receptors were highly conserved between grass carp and humans, suggesting that the signal transduction and functions of IL-20/IL-20R axis are evolutionarily conserved.
Collapse
Affiliation(s)
- Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zeinab Hassan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Sahari, Airport Way, 81528, Egypt
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China.
| |
Collapse
|
12
|
Bao H, Li X, Lai X, Chen X, Li Y, Yao Z, Huang Z, Huang J, Chang L, Zhang G. Interleukin-19 upregulates fibronectin and collagen I expression via the NF-κB-Smad2/3 pathway in fibroblasts of patients with chronic rhinosinusitis. Inflamm Res 2023; 72:43-55. [PMID: 36316415 DOI: 10.1007/s00011-022-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Tissue remodeling is a prominent characteristic of chronic rhinosinusitis (CRS). Excess deposition of fibronectin (FN) and collagen (Col) I by fibroblasts is crucial for the pathologic tissue remodeling in CRS without nasal polyps (CRSsNP). Increased interleukin (IL)-19 level in patients with CRS had been demonstrated in our previous studies. Here, we aimed to evaluate the role of IL-19 in mediating FN and Col I expression in CRS. METHODS Nasal mucosal tissue samples were collected from patients with CRS with nasal polyps (CRSwNP), CRSsNP, and controls. The expression of IL-19, vimentin, FN, and Col I were detected using immunohistochemistry and immunofluorescence. Primary human nasal fibroblasts were treated with IL-19, then the activation of Smad2/3, NF-κB and relevant pathways, and the expression of FN and Col I were measured. RESULTS Expression levels of vimentin, FN, and Col I were significantly increased in nasal tissues from patients with CRSsNP compared with CRSwNP and control subjects. Moreover, IL-19 co-localized with FN and Col Ι in nasal tissues. IL-19-treated fibroblasts had increased production of FN and Col I, which was associated with the activated Smad2/3 and NF-κB pathways. Moreover, Smad2/3 activation was mediated by the NF-κB pathway in IL-19-treated fibroblasts. CONCLUSIONS IL-19 promotes FN and Col I production via the activated NF-κB-Smad2/3 pathway in fibroblasts, leading to fibrosis and collagen deposition in patients with CRS.
Collapse
Affiliation(s)
- Hongwei Bao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoping Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhouzhou Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Gehua Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Barbarroja N, Ruiz-Ponce M, Cuesta-López L, Pérez-Sánchez C, López-Pedrera C, Arias-de la Rosa I, Collantes-Estévez E. Nonalcoholic fatty liver disease in inflammatory arthritis: Relationship with cardiovascular risk. Front Immunol 2022; 13:997270. [PMID: 36211332 PMCID: PMC9539434 DOI: 10.3389/fimmu.2022.997270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver disease is one of the most important causes of morbidity and mortality worldwide whose prevalence is dramatically increasing. The first sign of hepatic damage is inflammation which could be accompanied by the accumulation of fat called non-alcoholic fatty liver disease (NAFLD), causing damage in the hepatocytes. This stage can progress to fibrosis where the accumulation of fibrotic tissue replaces healthy tissue reducing liver function. The next stage is cirrhosis, a late phase of fibrosis where a high percentage of liver tissue has been replaced by fibrotic tissue and liver functionality is substantially impaired. There is a close interplay of cardiovascular disease (CVD) and hepatic alterations, where different mechanisms mediating this relation between the liver and systemic vasculature have been described. In chronic inflammatory diseases such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in which the CVD risk is high, hepatic alterations seem to be more prevalent compared to the general population and other rheumatic disorders. The pathogenic mechanisms involved in the development of this comorbidity are still unraveled, although chronic inflammation, autoimmunity, treatments, and metabolic deregulation seem to have an important role. In this review, we will discuss the involvement of liver disease in the cardiovascular risk associated with inflammatory arthritis, the pathogenic mechanisms, and the recognized factors involved. Likewise, monitoring of the liver disease risk in routine clinical practice through both, classical and novel techniques and indexes will be exposed. Finally, we will examine the latest controversies that have been raised about the effects of the current therapies used to control the inflammation in RA and PsA, in the liver damage of those patients, such as methotrexate, leflunomide or biologics.
Collapse
|
14
|
Wang HH, Chen WY, Huang YH, Hsu SM, Tsao YP, Hsu YH, Chang MS. Interleukin-20 is involved in dry eye disease and is a potential therapeutic target. J Biomed Sci 2022; 29:36. [PMID: 35681232 PMCID: PMC9178884 DOI: 10.1186/s12929-022-00821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dry eye disease (DED) is a common disease in ophthalmology, affecting millions of people worldwide. Recent studies have shown that inflammation is the core mechanism of DED. IL-20 is a proinflammatory cytokine involved in various inflammatory diseases. Therefore, we aimed to explore the role of this cytokine in the pathogenesis of DED and evaluate the therapeutic potential of the anti-IL-20 monoclonal antibody (mAb) 7E for DED treatment. Methods Clinical tear samples from patients with DED and non-DED controls were collected and their IL-20 protein levels were determined. We established three DED animal models to explore the role of IL-20 and the efficacy of IL-20 antibody in DED. Benzalkonium chloride (BAC)-induced over-evaporative DED, extra-orbital lacrimal gland excision (LGE)-induced aqueous tear-deficient DED, and desiccating stress (DS)-induced combined over-evaporative and aqueous tear-deficient DED animal models were established to investigate the role of IL-20. The anti-IL-20 antibody 7E was established to neutralize IL-20 activity. The effects of IL-20 or 7E on human corneal epithelial cells and macrophages under hyperosmotic stress were analyzed. 7E was topically applied to eyes to evaluate the therapeutic effects in the DED animal models. Results IL-20 was significantly upregulated in the tears of patients with DED and in the tears and corneas of DED animal models. Under hyperosmotic stress, IL-20 expression was induced via NFAT5 activation in corneal epithelial cells. 7E suppressed hyperosmotic stress-induced activation of macrophages. IL-20 induced cell death in corneal epithelial cells and 7E protected cells from hyperosmotic stress-induced cell death. Blocking IL-20 signaling with 7E protected mice from BAC-induced, LGE-induced, and DS-induced DED by reducing DED symptoms and inhibiting inflammatory responses, macrophage infiltration, apoptosis, and Th17 populations in the conjunctiva and draining lymph nodes. Conclusions Our results demonstrated the functions of IL-20 in DED and presented a potential therapeutic option for this condition. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00821-2.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Ghanim M, Amer J, Salhab A, Jaradat N. Ecballium elaterium improved stimulatory effects of tissue-resident NK cells and ameliorated liver fibrosis in a thioacetamide mice model. Biomed Pharmacother 2022; 150:112942. [PMID: 35429743 DOI: 10.1016/j.biopha.2022.112942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ecballium elaterium (EE), widely used plant in Mediterranean medicine, showed anticancer activity. This study aimed to investigate EE effects on liver fibrosis in an animal model of thioacetamide (TAA). Intraperitoneal administration of TAA was performed twice weekly for four weeks in C57BL6J mice. Livers were extracted and serum were evaluated for inflammatory markers (H&E staining, ALT, AST, ALP), pro-inflammatory cytokines, fibrosis (Sirius red staining, Masson's trichrome, α-smooth muscle actin and collagen III), and metabolic (cholesterol, triglyceride, C-peptide, and fasting-blood-sugar) profiles. Glutathione, glutathione peroxidase, and catalase liver antioxidant markers were assessed. Tissue-resident NK cells from mice livers were functionally assessed for activating receptors and cytotoxicity. Compared to vehicle-treated mice, the TAA-induced liver injury showed attenuation in the histopathology outcome following EE treatment. In addition, EE-treated mice resulted in decreased serum levels of ALT, AST, and ALP, associated with a decrease in IL-20, TGF-β, IL-17, IL-22 and MCP-1 concentrations. Moreover, EE-treated mice exhibited improved lipid profile of cholesterol, triglycerides, C-peptide, and FBS. EE treatment maintained GSH, GPX, and CAT liver antioxidant activity and led to elevated counts of tissue-resident NK (trNK) cells in the TAA-mice. Consequently, trNK demonstrated an increase in CD107a and IFN-γ with improved potentials to kill activated hepatic-stellate cells in an in vitro assay. EE exhibited antifibrotic and antioxidative effects, increased the number of trNK cells, and improved metabolic outcomes. This plant extract could be a targeted therapy for patients with advanced liver injury.
Collapse
Affiliation(s)
- Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Johnny Amer
- Department of Allied and Applied Medical Sciences, Division of Anatomy Biochemistry and Genetics, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Ahmad Salhab
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
16
|
Interleukin-19 Aggravates Pulmonary Fibrosis via Activating Fibroblast through TGF-β/Smad Pathway. Mediators Inflamm 2022; 2022:6755407. [PMID: 35281428 PMCID: PMC8913154 DOI: 10.1155/2022/6755407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023] Open
Abstract
Background. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia disease with no cure. Communication between injured cells is triggered and maintained by a complicated network of cytokines and their receptors. IL-19 is supported by increasing evidences for a deleterious role in respiratory diseases. However, its potential role in lung fibrosis has never been explored. Methods. Bioinformatic, immunohistochemistry and western blot analysis were used to assess the expression of IL-19 in human and mouse fibrosis lung tissues. CCK-8, transwell and flow cytometry assay were utilized to analyze the effect of IL-19 on biological behaviors of lung fibroblasts. Histopathology was used to elucidate profibrotic effect of IL-19 in vivo. Results. IL-19 was upregulated in fibrosis lung tissues. IL-19 promoted lung fibroblasts proliferation and invasion, inhibited cell apoptosis, and induced differentiation of fibroblasts to the myofibroblast phenotype, which could be revised by LY2109761, a TGF-β/Smad signaling pathway inhibitor. Furthermore, we found that IL-19 aggravated lung fibrosis in murine bleomycin-induced lung fibrosis. Conclusions. Our results imply the profibrotic role for IL-19 through direct effects on lung fibroblasts and the potential of targeting IL-19 for therapeutic intervention in pulmonary fibrosis.
Collapse
|
17
|
Baghaei K, Mazhari S, Tokhanbigli S, Parsamanesh G, Alavifard H, Schaafsma D, Ghavami S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2021; 27:1044-1061. [PMID: 34952225 DOI: 10.1016/j.drudis.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Hepatic fibrosis is a manifestation of different etiologies of liver disease with the involvement of multiple mediators in complex network interactions. Activated hepatic stellate cells (aHSCs) are the central driver of hepatic fibrosis, given their potential to induce connective tissue formation and extracellular matrix (ECM) protein accumulation. Therefore, identifying the cellular and molecular pathways involved in the activation of HSCs is crucial in gaining mechanistic and therapeutic perspectives to more effectively target the disease. In addition to a comprehensive summary of our current understanding of the role of HSCs in liver fibrosis, we also discuss here the proposed therapeutic strategies based on targeting HSCs.
Collapse
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
18
|
Barrow F, Khan S, Wang H, Revelo XS. The Emerging Role of B Cells in the Pathogenesis of NAFLD. Hepatology 2021; 74:2277-2286. [PMID: 33961302 PMCID: PMC8463421 DOI: 10.1002/hep.31889] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
NAFLD is one of the leading causes of abnormal liver function worldwide. NAFLD refers to a group of liver conditions ranging from nonalcoholic fatty liver to NASH, which involves inflammation, hepatocellular damage, and fibrosis. Triggering of inflammation in NASH is a key event in the progression of the disease, and identifying the factors that initiate or dysregulate this process is needed to develop strategies for its prevention or treatment. B cells have been implicated in several autoimmune and inflammatory diseases. However, their role in the pathogenesis of NAFLD and NASH is less clear. This review discusses the emerging evidence implicating intrahepatic B cells in the progression of NAFLD. We highlight the potential mechanisms of B-cell activation during NAFLD, such as increased hepatic expression of B-cell-activating factor, augmented oxidative stress, and translocation of gut-derived microbial products. We discuss the possible effector functions by which B cells promote NAFLD, including the production of proinflammatory cytokines and regulation of intrahepatic T cells and macrophages. Finally, we highlight the role of regulatory and IgA+ B cells in the pathogenesis of NASH-associated HCC. In this review, we make the case that future research is needed to investigate the potential of B-cell-targeting strategies for the treatment of NAFLD.
Collapse
Affiliation(s)
- Fanta Barrow
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMN
| | - Saad Khan
- Department of ImmunologyUniversity of TorontoTorontoONCanada
| | - Haiguang Wang
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMN
| | - Xavier S. Revelo
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMN,Center for ImmunologyUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
19
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Unscrambling a novel pathogenic role for interleukin-20 in acute hepatitis and bacterial infection: A double-edged sword? J Hepatol 2021; 75:22-24. [PMID: 33985818 DOI: 10.1016/j.jhep.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/04/2022]
|
21
|
He Y, Feng D, Hwang S, Mackowiak B, Wang X, Xiang X, Rodrigues RM, Fu Y, Ma J, Ren T, Ait-Ahmed Y, Xu M, Liangpunsakul S, Gao B. Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes. J Hepatol 2021; 75:163-176. [PMID: 33610678 PMCID: PMC8323118 DOI: 10.1016/j.jhep.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. METHODS Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. RESULTS Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. CONCLUSIONS IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. LAY SUMMARY Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait-Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Abstract
The role of immune mediators, including proinflammatory cytokines in chemotherapy-induced peripheral neuropathy (CIPN), remains unclear. Here, we studied the contribution of interleukin-20 (IL-20) to the development of paclitaxel-induced peripheral neuropathy. Increased serum levels of IL-20 in cancer patients with chemotherapy were accompanied by increased CIPN risk. In mouse models, proinflammatory IL-20 levels in serum and dorsal root ganglia fluctuated with paclitaxel treatment. Blocking IL-20 with the neutralizing antibody or genetic deletion of its receptors prevented CIPN, alleviated peripheral nerve damage, and dampened inflammatory responses, including macrophage infiltration and cytokine release. Mechanistically, paclitaxel upregulated IL-20 through dysregulated Ca homeostasis, which augmented chemotherapy-induced neurotoxicity. Importantly, IL-20 suppression did not alter paclitaxel efficacy on cancer treatment both in vitro and in vivo. Together, targeting IL-20 ameliorates paclitaxel-induced peripheral neuropathy by suppressing neuroinflammation and restoring Ca homeostasis. Therefore, the anti-IL-20 monoclonal antibody is a promising therapeutic for the prevention and treatment of paclitaxel-induced neuropathy.
Collapse
|
23
|
Zhou J, Zhang X, Wan L, Yu J, Li T, Lu Z, Fang N, Sun L, Ye F. Zi Qi Decoction Alleviates Liver Fibrosis by Inhibiting the Toll-Like Receptor 4 (TLR4)-Related Nuclear Factor kappa b (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways. Med Sci Monit 2021; 27:e929438. [PMID: 33850093 PMCID: PMC8054620 DOI: 10.12659/msm.929438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic stellate cells (HSCs) play a vital role in hepatic fibrogenesis. Our recent clinical study indicated that the Zi Qi decoction, a Traditional Chinese Medicine formula, exhibited good efficacy in alleviating liver fibrosis, but the underlying mechanism remains elusive. Material/Methods Rats repeatedly injected with CCl4 and cells stimulated with lipopolysaccharide were used as in vivo and in vitro models for liver fibrosis, respectively. The viability of LX-2 cells was evaluated with MTT assay. Relative messenger RNA (mRNA) expression of representative extracellular matrix (ECM) components was detected with real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, total and phosphorylation levels of ECM proteins and pathway-related proteins were detected with western blotting. Immunofluorescent staining was used to show the nuclear translocation of nuclear factor kappa b (NF-κB) p65. Hematoxylin & eosin (H&E) and Masson trichrome staining and immunohistochemistry were performed to evaluate the extent of liver fibrosis. The levels of alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transpeptidase (GGT), Hyp, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were tested with an enzyme-linked immunosorbent assay. In addition, 7.0T micro-magnetic resonance imaging (micro-MRI) was used to evaluate the severity of hepatic damage. Results The Zi Qi decoction inhibited lipopolysaccharide-mediated upregulation of mRNA and protein levels of representative ECM proteins both in vivo and in vitro. The Zi Qi decoction also suppressed activation of the Toll-like receptor 4 (TLR4)-related NF-κB signaling pathway and subsequently inhibited the nuclear translocation of activated NF-κB. Moreover, another TLR4 downstream pathway, mitogen-activated protein kinase (MAPK), was simultaneously restrained. The results of liver pathology and MRI in rat models also suggested the efficacy of the Zi Qi decoction in attenuating liver damage. Conclusions The Zi Qi decoction inhibited liver fibrosis by inhibiting the TLR4-related NF-κB and MAPK signaling pathways and preventing activation of HSCs.
Collapse
Affiliation(s)
- Jingwen Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xiaolong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Lingfeng Wan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Jun Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Tianci Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Ziyu Lu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Nanyuan Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Fang Ye
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
24
|
Li X, Huang J, Chen X, Lai X, Huang Z, Li Y, Li S, Chang L, Zhang G. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-κB signaling pathway. Clin Transl Allergy 2021; 11:e12003. [PMID: 33900049 PMCID: PMC8099262 DOI: 10.1002/clt2.12003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tissue remodeling is a crucial characteristic of chronic rhinosinusitis (CRS). Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) is crucial for the pathologic tissue remodeling in CRS. Elevation of interleukin (IL)‐19 or MMP‐9 levels in patients with CRS had been proven in previous studies. Here, we aimed to investigate the role of IL‐19 in mediating MMP‐9 expression in CRS. Methods Nasal tissue samples were collected from 45 individuals having chronic rhinosinusitis with nasal polyps (CRSwNP), 24 CRS without nasal polyps (CRSsNP), and 17 controls. Expression of IL‐19, its receptors (IL‐20R1/IL‐20R2), and MMP‐9 were investigated using RT‐qPCR and Immunofluorescence (IF). Human nasal epithelial cells (HNECs) were stimulated by IL‐19; ERK phosphorylation, nuclear factor‐κB (NF‐κB) pathway activation, and MMP‐9 level were detected by RT‐qPCR, enzyme‐linked immunosorbent assay, western blot, and IF. We also explored the effect of type1/2/3 cytokines on IL‐19 production by RT‐qPCR, and western blot. Results Expression levels of IL‐19, its receptors (IL‐20R1/IL‐20R2), and MMP‐9 were increased in nasal tissues from individuals with CRSwNP compared to those with CRSsNP as well as the controls. IL‐19 significantly elevated the production of MMP‐9 in HNECs. Furthermore, IL‐19 could activate the ERK and NF‐κB pathways, accompanied by increased MMP‐9 production in HNECs. Conversely, both ERK and NF‐κB inhibitors significantly attenuated the role of IL‐19 in MMP‐9 production. siRNA knockdown of IL‐20R1 suppressed ERK and NF‐κB pathway activation, thereby decreasing MMP‐9 expression. IL‐13 and IL‐17A were found to stimulate IL‐19 production in HNECs. Conclusion IL‐19, promoted by IL‐13 and IL‐17A, contributes to the upregulation of secretion of the tissue remodeling factor MMP‐9 in patients with CRS.
Collapse
Affiliation(s)
- Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoping Lai
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuaixiang Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
An SY, Petrescu AD, DeMorrow S. Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Front Pharmacol 2021; 12:645703. [PMID: 33841164 PMCID: PMC8024568 DOI: 10.3389/fphar.2021.645703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.
Collapse
Affiliation(s)
- Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.,Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Research Division, Central Texas Veterans Healthcare System, Temple, TX, United States
| |
Collapse
|
26
|
Abstract
Since it was first described by the German anatomist and histologist, Joseph Hugo Vincenz Disse, the structure and functions of the space of Disse, a thin perisinusoidal area between the endothelial cells and hepatocytes filled with blood plasma, have acquired great importance in liver disease. The space of Disse is home for the hepatic stellate cells (HSCs), the major fibrogenic players in the liver. Quiescent HSCs (qHSCs) store vitamin A, and upon activation they lose their retinol reservoir and become activated. Activated HSCs (aHSCs) are responsible for secretion of extracellular matrix (ECM) into the space of Disse. This early event in hepatic injury is accompanied by loss of the pores—known as fenestrations—of the endothelial cells, triggering loss of balance between the blood flow and the hepatocyte, and underlies the link between fibrosis and organ dysfunction. If the imbalance persists, the expansion of the fibrotic scar followed by the vascularized septae leads to cirrhosis and/or end-stage hepatocellular carcinoma (HCC). Thus, researchers have been focused on finding therapeutic targets that reduce fibrosis. The space of Disse provides the perfect microenvironment for the stem cells niche in the liver and the interchange of nutrients between cells. In the present review article, we focused on the space of Disse, its components and its leading role in liver disease development.
Collapse
|
27
|
Wang HH, Huang JH, Sue MH, Ho WC, Hsu YH, Chang KC, Chang MS. Interleukin-24 protects against liver injury in mouse models. EBioMedicine 2021; 64:103213. [PMID: 33508745 PMCID: PMC7841303 DOI: 10.1016/j.ebiom.2021.103213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-24 (IL-24) binds to two kinds of receptor complexes, namely IL-20R1/IL-20R2 and IL-20R2/IL-22R1, which are also bound by IL-20. IL-20 plays a detrimental role in liver fibrosis. Due to the sharing of receptor complexes, we aimed to determine whether IL-24 also participates in liver fibrosis. Methods Clinical biopsy specimens from various stages of liver fibrosis were used to analyze IL-24 expression. IL-24 protein was administered to mice with thioacetamide (TAA)-induced liver injury. The direct effects of IL-24 on mouse primary hepatocytes or hepatic stellate cells (HSCs) were analyzed. Wild-type, IL-20R1-, and IL20R2-deficient mice were used to establish a model of acute TAA-induced liver injury. Findings Among patients with more severe liver fibrosis, there was a reduced IL-24/IL-20 ratio. Administration of IL-24 protein protected mice from TAA-induced liver injury and reduction of liver inflammation by antioxidant effects. IL-24 protected hepatocytes from TAA-induced apoptosis and prevented liver fibrosis through the inhibition of the HSCs activation. The protective role of IL-24 acted on liver cells were mainly IL-20R1-independent. IL-20R2-deficient mice exhibited more severe liver injury upon TAA treatment, thus confirming the protective role of IL-24. Interpretation IL-24 plays a key protective role in the progression of liver injury and has therapeutic potential for treating liver injuries. Funding This work was supported by the Ministry of Science and Technology of Taiwan (MOST 106–2320-B-006–024) and Taiwan Liver Disease Prevention & Treatment Research Foundation.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Hao Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hao Sue
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
FUJIMOTO Y, KUWAMURA M, AZUMA YT. Deficiency of interleukin-19 exacerbates lipopolysaccharide/D-galactosamine-induced acute liver failure. J Vet Med Sci 2020; 82:1450-1455. [PMID: 32779617 PMCID: PMC7653317 DOI: 10.1292/jvms.20-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023] Open
Abstract
Interleukin (IL)-19 is a cytokine clustered in the IL-20 cytokine superfamily with both anti-inflammatory and pro-inflammatory aspects depending on the etiology of inflammatory disease. The function of IL-19 has been evaluated in cutaneous and inflammatory bowel diseases, but has not been studied in liver diseases. Here, we examined the effect of IL-19 on acute liver failure (ALF) using two mouse models of ALF: lipopolysaccharide and D-galactosamine (LPS/GalN)-induced model and concanavalin A (ConA)-induced model. In the LPS/GalN-induced ALF model, which is mainly caused by the innate immune response of liver macrophages, IL-19 knockout (KO) mice showed increased plasma level of liver deviation enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) compared with wild-type (WT) mice. In histopathology of liver sections, IL-19 KO mice exacerbated liver injury with marked hemorrhagic lesions and hepatocellular death in the liver compared with WT mice. In this model, mRNA expressions of pro-inflammatory chemokines, CCL2 and CCL5 were increased in liver tissue from IL-19 KO mice compared with WT mice. Moreover, the mRNA expressions of IL-19 and its receptor subunit were induced in liver tissue by LPS/GalN administration. However, there is no difference in liver injury between WT and IL-19KO in the ConA-induced ALF model induced by CD4+ T cell activation. These data suggest that IL-19 has a protective effect against inflammation-mediated liver injury, which is dependent on the etiology.
Collapse
Affiliation(s)
- Yasuyuki FUJIMOTO
- Laboratory of Veterinary Pharmacology, Division of
Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental
Sciences, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru KUWAMURA
- Laboratory of Veterinary Pathology, Division of Veterinary
Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences,
Izumisano, Osaka 598-8531, Japan
| | - Yasu-Taka AZUMA
- Laboratory of Veterinary Pharmacology, Division of
Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental
Sciences, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
30
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
31
|
Wang W, Huang X, Fan X, Yan J, Luan J. Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Mol Med Rep 2020; 22:4116-4124. [PMID: 33000255 DOI: 10.3892/mmr.2020.11516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global public health problem. Cirrhosis and hepatocellular carcinoma are the main causes of death in patients with chronic hepatitis C (CHC) infection. Liver fibrosis is an important cause of cirrhosis and end‑stage liver disease after CHC infection. Along with the course of infection, liver fibrosis exhibits a progressive exacerbation. Hepatic stellate cells (HSCs) are involved in both physiological and pathological processes of the liver. During the chronic liver injury process, the activated HSCs transform into myofibroblasts, which are important cells in the development of liver fibrosis. At present, HCV infection still lacks specific markers for the accurate detection of the disease condition and progression. Therefore, the present review focused on HSCs, which are closely related to HCV‑infected liver fibrosis, and analyzed the changes in the HSCs, including their surface‑specific markers, cytokine production, activation, cell function and morphological structure. The present review aimed to propose novel diagnostic markers, at both the cellular and molecular level, which would be of great significance for the timely diagnosis of the disease. According to this aim, the characteristic changes of HSCs during HCV infection were reviewed in the present article.
Collapse
Affiliation(s)
- Wei Wang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuelian Huang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuzhou Fan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingmei Yan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianfeng Luan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
32
|
IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun 2020; 11:4611. [PMID: 32929072 PMCID: PMC7490368 DOI: 10.1038/s41467-020-18244-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression. The pro-inflammatory cytokine IL-20 promotes tumor growth in several cancer types. Here, the authors show that high levels of IL-20 are associated with poor survival in patients with pancreatic ductal adenocarcinoma (PDAC) and that IL-20 blockade reduces tumor growth and alleviates cachexia symptoms in mouse models of PDAC.
Collapse
|
33
|
Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, Dominguez DA, Kirton KJ, Shah AP, Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front Cell Dev Biol 2020; 8:709. [PMID: 32850829 PMCID: PMC7419619 DOI: 10.3389/fcell.2020.00709] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma (HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-like cells to promote fibrosis in response to liver injury or chronic inflammation, leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components, including activated HSCs, tumor-associated macrophages, endothelial cells, immune cells, and non-cellular components, such as growth factors, proteolytic enzymes and their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between HCC cells and their microenvironment have become topics under active investigation. These interactions within the hepatic TME have the potential to drive carcinogenesis and create challenges in generating effective therapies. Current studies reveal potential mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs are primary secretors of ECM proteins during liver injury and inflammation, they help promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development. In this review, we examine several recent studies revealing the roles of HSCs and their clinical implications in the development of fibrosis and cirrhosis within the hepatic TME.
Collapse
Affiliation(s)
- Anna E Barry
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Rajkumar Baldeosingh
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kai Zhang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Dana A Dominguez
- Department of General Surgery, UCSF East Bay, Oakland, CA, United States
| | - Kayla J Kirton
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashesh P Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
34
|
Lee JS, Hsu YH, Chiu YS, Jou IM, Chang MS. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. J Neuroinflammation 2020; 17:156. [PMID: 32408881 PMCID: PMC7227062 DOI: 10.1186/s12974-020-01814-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes devastating neurological consequences, which can result in partial or total paralysis. Irreversible neurological deficits and glial scar formation are characteristic of SCI. Inflammatory responses are a major component of secondary injury and play a central role in regulating the pathogenesis of SCI. IL-20 is a proinflammatory cytokine involved in renal fibrosis and liver cirrhosis through its role in upregulating TGF-β1 production. However, the role of IL-20 in SCI remains unclear. We hypothesize that IL-20 is upregulated after SCI and is involved in regulating the neuroinflammatory response. METHODS The expression of IL-20 and its receptors was examined in SCI rats. The regulatory roles of IL-20 in astrocytes and neuron cells were examined. The therapeutic effects of anti-IL-20 monoclonal antibody (mAb) 7E in SCI rats were evaluated. RESULTS Immunofluorescence staining showed that IL-20 and its receptors were expressed in astrocytes, oligodendrocytes, and microglia in the spinal cord after SCI in rats. In vitro, IL-20 enhanced astrocyte reactivation and cell migration in human astrocyte (HA) cells by upregulating glial fibrillary acidic protein (GFAP), TGF-β1, TNF-α, MCP-1, and IL-6 expression. IL-20 inhibited cell proliferation and nerve growth factor (NGF)-derived neurite outgrowth in PC-12 cells through Sema3A/NRP-1 upregulation. In vivo, treating SCI rats with anti-IL-20 mAb 7E remarkably inhibited the inflammatory responses. 7E treatment not only improved motor and sensory functions but also improved spinal cord tissue preservation and reduced glial scar formation in SCI rats. CONCLUSIONS IL-20 might regulate astrocyte reactivation and axonal regeneration and result in the secondary injury in SCI. These findings demonstrated that IL-20 may be a promising target for SCI treatment.
Collapse
Affiliation(s)
- Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shu Chiu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
35
|
Xu S, Mao Y, Wu J, Feng J, Li J, Wu L, Yu Q, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Wang F, Dai W, Fan X, Guo C. TGF-β/Smad and JAK/STAT pathways are involved in the anti-fibrotic effects of propylene glycol alginate sodium sulphate on hepatic fibrosis. J Cell Mol Med 2020; 24:5224-5237. [PMID: 32233073 PMCID: PMC7205790 DOI: 10.1111/jcmm.15175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/25/2022] Open
Abstract
Liver fibrosis, a consequence of unhealthy modern lifestyles, has a growing impact on human health, particularly in developed countries. Here, we have explored the anti‐fibrotic effects of propylene glycol alginate sodium sulphate (PSS), a natural extract from brown algae, in fibrotic mice and cell models. Thus, we established bile duct ligature and carbon tetrachloride mouse models and LX‐2 cell models with or without PSS treatment. Liver pathological sections and the relevant indicators in serum and liver tissues were examined. PSS prevented hepatic injury and fibrosis to a significant extent, and induced up‐regulation of matrix metalloproteinase‐2 and down‐regulation of tissue inhibitor of metalloproteinase‐1 through suppressing the transforming growth factor β1 (TGF‐β1)/Smad pathway. PSS additionally exerted an anti‐autophagy effect through suppressing the Janus kinase (JAK) 2/transducer and activator of transcription 3 (STAT3) pathway. In conclusion, PSS prevents hepatic fibrosis by suppressing inflammation, promoting extracellular matrix (ECM) decomposition and inactivating hepatic stellate cells through mechanisms involving the TGF‐β1/Smad2/3 and JAK2/STAT3 pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Shizan Xu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Wang K, Yang X, Wu Z, Wang H, Li Q, Mei H, You R, Zhang Y. Dendrobium officinale Polysaccharide Protected CCl 4-Induced Liver Fibrosis Through Intestinal Homeostasis and the LPS-TLR4-NF-κB Signaling Pathway. Front Pharmacol 2020; 11:240. [PMID: 32226380 PMCID: PMC7080991 DOI: 10.3389/fphar.2020.00240] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
We explored the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on CCl4-induced liver fibrosis with respect to the intestinal hepatic axis using a rat model. Histopathological staining results showed that DOP alleviated extensive fibrous tissue proliferation in interstitium and lessened intestinal mucosal damage. Western blot and PCR results showed that DOP maintained intestinal balance by upregulating the expression of tight junction proteins such as occludin, claudin-1, ZO-1, and Bcl-2 proteins while downregulating the expression of Bax and caspase-3 proteins in the intestine. The transepithelial electrical resistance (TEER) value of the LPS-induced Caco-2 monolayer cell model was increased after DOP administration. These illustrated that DOP can protect the intestinal mucosal barrier function. DOP also inhibited activation of the LPS-TLR4-NF-κB signaling pathway to reduce the contents of inflammatory factors TGF-β and TNF-α, increased the expression of anti-inflammatory factor IL-10, and significantly decreased α-SMA and collagen I expression. These results indicated that DOP maintained intestinal homeostasis by enhancing tight junctions between intestinal cells and reducing apoptosis, thereby inhibiting activation of the LPS-TLR4-NF-κB signaling pathway to protect against liver fibrosis.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiawen Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Hongjing Wang
- Puai Hospital, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Mei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ruxu You
- Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
IL-20 in Acute Kidney Injury: Role in Pathogenesis and Potential as a Therapeutic Target. Int J Mol Sci 2020; 21:ijms21031009. [PMID: 32028746 PMCID: PMC7037658 DOI: 10.3390/ijms21031009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.
Collapse
|
38
|
Wu BM, Liu JD, Li YH, Li J. Margatoxin mitigates CCl4‑induced hepatic fibrosis in mice via macrophage polarization, cytokine secretion and STAT signaling. Int J Mol Med 2019; 45:103-114. [PMID: 31746414 PMCID: PMC6889929 DOI: 10.3892/ijmm.2019.4395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
A number of macrophage phenotypes have been previously identified as crucial regulators in the progression of hepatic fibrosis (HF). Cytokines from macrophages or Kupffer cells (KCs) have also been identified to be important regulators in HF. Blocking Kv1.3 in models of HF, regulating macrophage polarization and cytokine secretion have not yet been assessed as potential treatments options for this condition. In the current study, a model of carbon tetrachloride (CCl4)-induced HF was established and examined the effects of margatoxin (MgTX; an inhibitor of Kv1.3) on HF. Hematoxylin and eosin, Masson's trichrome and immunohistochemistry staining were performed to determine whether MgTX can alleviate liver fibrosis. To elucidate the mechanisms through which MgTX attenuates liver injury, reverse transcription-quantitative PCR and western blot analysis were used to detect polarized macrophage markers in RAW264.7 cells and cytokines were examined using ELISA. Furthermore, macrophage polarization signal transducer and activator of transcription (STAT) signaling, which is associated with macrophage polarization, was identified in RAW264.7 cells. The results revealed that MgTX protected the mice from CCl4-induced liver fibrosis. Furthermore, MgTX decreased the expression of M1 phenotype biomarkers, and increased the expression of M2 phenotype biomarkers in CCl4-induced HF. Additionally, the production of pro-inflammatory cytokines was decreased and interleukin-10 production was increased in the serum of mice with HF injected with MgTX. Furthermore, MgTX was found to regulate the expression of M1 markers by suppressing p-STAT1 activity and increasing the expression of M2 markers by promoting p-STAT6 activity. On the whole, the findings of this study demonstrate that MgTX is able to alleviate CCl4-induced HF in mice, possibly via macrophage polarization, cytokine secretion and STAT signaling.
Collapse
Affiliation(s)
- Bao-Ming Wu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Jun-Da Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Yuan-Hai Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Anhui 230032, P.R. China
| |
Collapse
|
39
|
Moscoso CG, Steer CJ. "Let my liver rather heat with wine" - a review of hepatic fibrosis pathophysiology and emerging therapeutics. Hepat Med 2019; 11:109-129. [PMID: 31565001 PMCID: PMC6731525 DOI: 10.2147/hmer.s213397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is characterized by extensive hepatic fibrosis, and it is the 14th leading cause of death worldwide. Numerous contributing conditions have been implicated in its development, including infectious etiologies, medication overdose or adverse effects, ingestible toxins, autoimmunity, hemochromatosis, Wilson’s disease and primary biliary cholangitis to list a few. It is associated with portal hypertension and its stigmata (varices, ascites, hepatic encephalopathy, combined coagulopathy and thrombophilia), and it is a major risk factor for hepatocellular carcinoma. Currently, orthotopic liver transplantation has been the only curative modality to treat cirrhosis, and the scarcity of donors results in many people waiting years for a transplant. Identification of novel targets for pharmacologic therapy through elucidation of key mechanistic components to induce fibrosis reversal is the subject of intense research. Development of robust models of hepatic fibrosis to faithfully characterize the interplay between activated hepatic stellate cells (the principal fibrogenic contributor to fibrosis initiation and perpetuation), hepatocytes and extracellular matrix components has the potential to identify critical components and mechanisms that can be exploited for targeted treatment. In this review, we will highlight key cellular pathways involved in the pathophysiology of fibrosis from extracellular ligands, effectors and receptors, to nuclear receptors, epigenetic mechanisms, energy homeostasis and cytokines. Further, molecular pathways of hepatic stellate cell deactivation are discussed, including apoptosis, senescence and reversal or transdifferentiation to an inactivated state resembling quiescence. Lastly, clinical evidence of fibrosis reversal induced by biologics and small molecules is summarized, current compounds under clinical trials are described and efforts for treatment of hepatic fibrosis with mesenchymal stem cells are highlighted. An enhanced understanding of the rich tapestry of cellular processes identified in the initiation, perpetuation and resolution of hepatic fibrosis, driven principally through phenotypic switching of hepatic stellate cells, should lead to a breakthrough in potential therapeutic modalities.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition.,Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Fujimoto Y, Azuma YT. [Recent progress in the pathophysiological role of interleukin-19]. Nihon Yakurigaku Zasshi 2019; 154:66-71. [PMID: 31406045 DOI: 10.1254/fpj.154.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytokine signal is essential for the biological function including development, maintenance of homeostasis and progression of disease. There are growing evidences that signaling via pro-inflammatory cytokines underlie a variety of immunological diseases such as psoriasis, atopic dermatitis, inflammatory bowel disease, and metabolic syndromes, in which cytokine signals are known as a potential therapeutic target of antibody drugs. In contrast, anti-inflammatory cytokines, which is represented by IL-10, largely contribute to suppression of inflammation and restoration of injured tissues. IL-19 is a member of IL-10 cytokine family, which comprises IL-20 cytokine subfamily with IL-20, IL-22, IL-24, and IL-26. IL-19 is produced by myeloid and epithelial cells with stimulation of bacterial components and cytokines. Although IL-19 has been originally recognized as a potential Th2-related cytokine, in recent researches, it has been reported that this cytokine upregulates Th17 response to reflect and promote progression of Th17-related disease including psoriasis. On the other hand, IL-19 has anti-inflammatory effects on inflammatory diseases such as infectious skin disease, inflammatory bowel disease, and cardiovascular disease. Therefore, IL-19 may exert pleiotropic effects dependent on the pathological mechanism of inflammatory diseases. In this review, we summarize recent studies about IL-19 and introduce the pathophysiological and therapeutic role of IL-19 in inflammatory diseases.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences
| |
Collapse
|
41
|
Network Pharmacology-Based Prediction of the Active Compounds, Potential Targets, and Signaling Pathways Involved in Danshiliuhao Granule for Treatment of Liver Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2630357. [PMID: 31354851 PMCID: PMC6636523 DOI: 10.1155/2019/2630357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
This study aims to predict the active ingredients, potential targets, signaling pathways and investigate the “ingredient-target-pathway” mechanisms involved in the pharmacological action of Danshiliuhao Granule (DSLHG) on liver fibrosis. Pharmacodynamics studies on rats with liver fibrosis showed that DSLHG generated an obvious anti-liver fibrosis action. On this basis, we explored the possible mechanisms underlying its antifibrosis effect using network pharmacology approach. Information about compounds of herbs in DSLHG was collected from TCMSP public database and literature. Furthermore, the oral bioavailability (OB) and drug-likeness (DL) were screened according to ADME features. Compounds with OB≥30% and DL≥0.18 were selected as active ingredients. Then, the potential targets of the active compounds were predicted by pharmacophore mapping approach and mapped with the target genes of the specific disease. The compound-target network and Protein-Protein Interaction (PPI) network were built by Cytoscape software. The core targets were selected by degree values. Furthermore, GO biological process analysis and KEGG pathway enrichment analysis were carried out to investigate the possible mechanisms involved in the anti-hepatic fibrosis effect of DSLHG. The predicted results showed that there were 108 main active components in the DSLHG formula. Moreover, there were 192 potential targets regulated by DSLHG, of which 86 were related to liver fibrosis, including AKT1, EGFR, and IGF1R. Mechanistically, the anti-liver fibrosis effect of DSLHG was exerted by interfering with 47 signaling pathways, such as PI3K-Akt, FoxO signaling pathway, and Ras signaling pathway. Network analysis showed that DSLHG could generate the antifibrosis action by affecting multiple targets and multiple pathways, which reflects the multicomponent, multitarget, and multichannel characteristics of traditional Chinese medicine and provides novel basis to clarify the mechanisms of anti-liver fibrosis of DSLHG.
Collapse
|
42
|
Weng YH, Chen WY, Lin YL, Wang JY, Chang MS. Blocking IL-19 Signaling Ameliorates Allergen-Induced Airway Inflammation. Front Immunol 2019; 10:968. [PMID: 31114590 PMCID: PMC6503049 DOI: 10.3389/fimmu.2019.00968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airway. Its major symptoms are reversible breathing problems causing airway narrowing and obstruction. IL-19 is a member of the IL-10 family cytokines. We previously showed that IL-19 induces T-helper 2 (Th2) cytokines and that asthma patients had higher serum IL-19 levels. To further examine whether inhibiting IL-19 and its receptor (IL-20R1) protected rodents against asthma, we used Dermatophagoides pteronyssinus (Der p; house dust mites) to induce chronic airway inflammation in wild-type C57BL/6 and IL-20R1-deficient mice and then analyzed the effect of the IL-20R1 deficiency on the pathogenesis of asthma. We also examined whether inhibiting IL-19 and IL-20R1 ameliorated Der p-induced chronic asthma. Der p induced IL-19 in lung airway epithelial cells, type 2 alveolar cells, and alveolar macrophages. An IL-20R1 deficiency abolished IL-19-induced Th2 cell differentiation in vitro. Th2 cytokine expression, immune cell infiltration in the bronchoalveolar lavage, airway hyperresponsiveness (AHR), and bronchial wall thickening were lower in Der p-challenged IL-20R1-deficient mice. Anti-IL-20R1 monoclonal antibody (mAb) 51D and IL-19 polyclonal antibody (pAb) both ameliorated Der p-induced AHR, lung immune cell infiltration, bronchial wall thickening, and Th2 cytokine expression. Moreover, we confirmed that anti-IL-19 mAb (1BB1) attenuated lung inflammation in a rat ovalbumin-induced asthma model. This is the first report to show that inhibition of IL-19 by targeting IL-19 or IL-20R1 protected rodents from allergic lung inflammation. Our study suggests that targeting IL-19 signaling might be a novel therapeutic strategy for treating allergic asthma.
Collapse
Affiliation(s)
- Yun-Han Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Yen-Lin Lin
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiu-Yao Wang
- Institute of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medical, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
43
|
Schistosoma japonicum soluble egg antigen inhibits TNF-α-induced IL-34 expression in hepatic stellate cells. Parasitol Res 2018; 118:551-557. [PMID: 30499009 DOI: 10.1007/s00436-018-6165-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023]
Abstract
Hepatic fibrosis is characterized by the activation of the main collagen-producing cells of the liver, hepatic stellate cells, and is associated with inflammation. Although the involvement of numerous inflammatory cytokines has been reported, IL-34 in particular has recently been identified as a profibrotic factor in the development of hepatic fibrosis. Previous studies have found that schistosome eggs can lead to transcriptional downregulation of fibrosis-associated genes, and based on this evidence, we attempted to investigate whether or not IL-34 is regulated by soluble egg antigen (SEA). Our findings testified that SEA inhibited TNF-α-induced expression of IL-34 at both the mRNA and protein levels. Furthermore, results from reporter assays and qPCR experiments demonstrated that SEA impaired the activation of NF-κB triggered by TNF-α, as well as the transcription of downstream genes. More importantly, SEA decreased the phosphorylation and degradation of IκBα induced by TNF-α, two events that are hallmarks of canonical NF-κB activation. In conclusion, our results suggest that, in hepatic stellate cells, SEA impairs NF-κB activation and thereby inhibits TNF-α-induced IL-34 expression. These findings reveal a previously unidentified target and signaling pathway that support SEA's involvement in hepatic fibrosis and provide a new clue to guide ongoing research into the anti-fibrotic effects of SEA.
Collapse
|
44
|
Ding WZ, Han GY, Jin HH, Zhan CF, Ji Y, Huang XL. Anti-IL-20 monoclonal antibody suppresses hepatocellular carcinoma progression. Oncol Lett 2018; 16:6156-6162. [PMID: 30333881 DOI: 10.3892/ol.2018.9402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
Interleukin (IL)-20 is a member of the IL-10 family of cytokines, which has been reported to participate in autoimmune inflammatory diseases. However, the potential role of IL-20 in hepatocellular carcinoma (HCC) progression has not yet been investigated. In the present study, it was observed that IL-20 mRNA and protein levels were markedly increased in the HCC tissues examined via reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining. In addition, IL-20 expression was significantly associated with tumor size, metastasis, TNM stage and poor prognosis in patients with HCC. Mouse recombinant IL-20 (mIL-20) enhanced liver cancer cell proliferation, migration and invasion in vitro, while the anti-IL-20 monoclonal antibody (mAb) attenuated the effect of mIL-20, inhibiting cancer cell migration and invasion in vitro and suppressing cell growth in vitro and in vivo. This was detected by Cell Counting Kit-8, colony formation, Transwell assays and a xenograft tumor nude mouse model. Western blotting revealed that IL-20 promoted HCC progression through inducing transforming growth factor-β and matrix metalloproteinase 9 expression and enhancing the phosphorylation of Jun N-terminal kinase and signal transducer and activator of transcription 3. The results of the present study indicated that IL-20 promotes HCC development. In addition, anti-IL-20 mAb may attenuate the effect of IL-20 and suppress liver tumorigenesis in vitro and in vivo, indicating that anti-IL-20 mAbs may potentially serve as effective therapeutic agents for HCC.
Collapse
Affiliation(s)
- Wen-Zhou Ding
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Guo-Yong Han
- Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui-Han Jin
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Chuan-Fei Zhan
- Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Ji
- Department of Hepatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xin-Li Huang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
45
|
Proteomic-genomic adjustments and their confluence for elucidation of pathways and networks during liver fibrosis. Int J Biol Macromol 2018; 111:379-392. [DOI: 10.1016/j.ijbiomac.2017.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
|
46
|
Wang HH, Hsu YH, Chang MS. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci 2018; 25:38. [PMID: 29690863 PMCID: PMC5913811 DOI: 10.1186/s12929-018-0439-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Millions of people around the world suffer from bone disorders, likes osteoporosis, rheumatoid arthritis (RA), and cancer-induced osteolysis. In general, the bone remodeling balance is determined by osteoclasts and osteoblasts, respectively responsible for bone resorption and bone formation. Excessive inflammation disturbs the activities of these two kinds of cells, typically resulting in the bone loss. MAIN BODY IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory disorders likes psoriasis, atherosclerosis, cancer, liver fibrosis, and RA. IL-20 has an important role in the regulation of osteoclastogenesis and osteoblastogenesis and is upregulated in several bone-related diseases. The anti-IL-20 monoclonal antibody treatment has a therapeutic potential in several experimental disease models including ovariectomy-induced osteoporosis, cancer-induced osteolysis, and bone fracture. CONCLUSION This review article provides an overview describing the IL-20's biological functions in the common bone disorders and thus providing a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
47
|
Fu H, Xu J, Chen J, Li G, Zhao X, Chen P. Microarray analysis reveals Tmub1 as a cell cycle-associated protein in rat hepatocytes. Mol Med Rep 2018; 17:4337-4344. [PMID: 29344642 PMCID: PMC5802207 DOI: 10.3892/mmr.2018.8451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022] Open
Abstract
Transmembrane and ubiquitin-like domain containing protein 1 (Tmub1), formerly known as hepatocyte odd protein shuttling (HOPS) has been recognized as a ubiquitously expressed shuttling protein that moves between the nucleus and cytoplasm in hepatocytes. Tmub1 is involved in liver regeneration and functions as a bridging protein in tumor cell proliferation. To investigate the transcriptional profile and potential biological processes affected by Tmub1 expression in normal rat hepatocytes, microarray and bioinformatics experiments were used to identify 127 mRNAs differentially expressed between Tmub1-overexpression, Tmub1-knockdown and normal BRL-3A cells (fold-change ≥2.5). The expression levels of 17 key node genes associated with the cell cycle were confirmed by reverse transcription-quantitative polymerase chain reaction analysis. Flow cytometry, 5-Ethynyl-20-deoxyuridine, Cell Counting Kit-8 and western blotting experiments revealed the effects on the cell cycle and the inhibition of proliferation in BRL-3A cells overexpressing Tmub1. Further co-immunoprecipitation assays demonstrated that Tmub1 interacts with cyclin A2 during the cell cycle and that the overexpression of Tmub1 may postpone cyclin A2 and cyclin B1 degradation in the M phase. The results of the present study indicated that Tmub1 functions as a cell proliferation inhibitor and cell cycle-associated protein.
Collapse
Affiliation(s)
- Hangwei Fu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jianhua Xu
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jian Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaobiao Zhao
- Department of Hepatobiliary Surgery, 187 Military Hospital, Haikou, Hainan 571159, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
48
|
Bae M, Park YK, Lee JY. Food components with antifibrotic activity and implications in prevention of liver disease. J Nutr Biochem 2017; 55:1-11. [PMID: 29268106 DOI: 10.1016/j.jnutbio.2017.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
Increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in parallel with the obesity epidemic has been a major public health concern. NAFLD is the most common chronic liver disease in the United States, ranging from fatty liver to steatohepatitis, fibrosis and cirrhosis in the liver. In response to chronic liver injury, fibrogenesis in the liver occurs as a protective response; however, prolonged and dysregulated fibrogenesis can lead to liver fibrosis, which can further progress to cirrhosis and eventually hepatocellular carcinoma. Interplay of hepatocytes, macrophages and hepatic stellate cells (HSCs) in the hepatic inflammatory and oxidative milieu is critical for the development of NAFLD. In particular, HSCs play a major role in the production of extracellular matrix proteins. Studies have demonstrated that bioactive food components and natural products, including astaxanthin, curcumin, blueberry, silymarin, coffee, vitamin C, vitamin E, vitamin D, resveratrol, quercetin and epigallocatechin-3-gallate, have antifibrotic effects in the liver. This review summarizes current knowledge of the mechanistic insight into the antifibrotic actions of the aforementioned bioactive food components.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
49
|
Liu H, Wang B, Zhang J, Zhang S, Wang Y, Zhang J, Lv C, Song X. A novel lnc-PCF promotes the proliferation of TGF-β1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death Dis 2017; 8:e3137. [PMID: 29072702 PMCID: PMC5682666 DOI: 10.1038/cddis.2017.500] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that microRNA (miRNA) and long noncoding RNA (lncRNA) play important roles in disease development. However, the mechanism underlying mRNA interaction with miRNA and lncRNA in idiopathic pulmonary fibrosis (IPF) remains unknown. This study presents a novel lnc-PCF that promotes the proliferation of TGF-β1-activated epithelial cells through the regulation of map3k11 by directly targeting miR-344a-5p during pulmonary fibrogenesis. Bioinformatics and in vitro translation assay were performed to confirm whether or not lnc-PCF is an actual lncRNA. RNA fluorescent in situ hybridization (FISH) and nucleocytoplasmic separation showed that lnc-PCF is mainly expressed in the cytoplasm. Knockdown and knockin of lnc-PCF indicated that lnc-PCF could promote fibrogenesis by regulating the proliferation of epithelial cells activated by TGF-β1 according to the results of xCELLigence real-time cell analysis system, flow cytometry, and western blot analysis. Computational analysis and a dual-luciferase reporter system were used to identify the target gene of miR-344a-5p, whereas RNA pull down, anti-AGO2 RNA immunoprecipitation, and rescue experiments were conducted to confirm the identity of this direct target. Further experiments verified that lnc-PCF promotes the proliferation of activated epithelial cells that were dependent on miR-344a-5p, which exerted its regulatory functions through its target gene map3k11. Finally, adenovirus packaging sh-lnc-PCF was sprayed into rat lung tissues to evaluate the therapeutic effect of lnc-PCF. These findings revealed that lnc-PCF can accelerate pulmonary fibrogenesis by directly targeting miR-344a-5p to regulate map3k11, which may be a potential therapeutic target in IPF.
Collapse
Affiliation(s)
- Huizhu Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bingsi Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Songzi Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian 271016, China
| | - Youlei Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Xiaodong Song
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
50
|
Abstract
Hepatic fibrosis is a dynamic process characterized by the net accumulation of extracellular matrix resulting from chronic liver injury of any aetiology, including viral infection, alcoholic liver disease and NASH. Activation of hepatic stellate cells (HSCs) - transdifferentiation of quiescent, vitamin-A-storing cells into proliferative, fibrogenic myofibroblasts - is now well established as a central driver of fibrosis in experimental and human liver injury. Yet, the continued discovery of novel pathways and mediators, including autophagy, endoplasmic reticulum stress, oxidative stress, retinol and cholesterol metabolism, epigenetics and receptor-mediated signals, reveals the complexity of HSC activation. Extracellular signals from resident and inflammatory cells including macrophages, hepatocytes, liver sinusoidal endothelial cells, natural killer cells, natural killer T cells, platelets and B cells further modulate HSC activation. Finally, pathways of HSC clearance have been greatly clarified, and include apoptosis, senescence and reversion to an inactivated state. Collectively, these findings reinforce the remarkable complexity and plasticity of HSC activation, and underscore the value of clarifying its regulation in hopes of advancing the development of novel diagnostics and therapies for liver disease.
Collapse
Affiliation(s)
- Takuma Tsuchida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA.,Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA
| |
Collapse
|