1
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
2
|
Tanaka A, Ma X, Takahashi A, Vierling JM. Primary biliary cholangitis. Lancet 2024; 404:1053-1066. [PMID: 39216494 DOI: 10.1016/s0140-6736(24)01303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Primary biliary cholangitis is a chronic, autoimmune, cholestatic disease that mainly affects women aged 40-70 years. Recent epidemiological studies have shown an increasing incidence worldwide despite geographical heterogeneity and a decrease in the female-to-male ratio of those the disease affects. Similar to other autoimmune diseases, primary biliary cholangitis occurs in genetically predisposed individuals upon exposure to environmental triggers, specifically xenobiotics, smoking, and the gut microbiome. Notably, the diversity of the intestinal microbiome is diminished in individuals with primary biliary cholangitis. The intricate interplay among immune cells, cytokines, chemokines, and biliary epithelial cells is postulated as the underlying pathogenic mechanism involved in the development and progression of primary biliary cholangitis, and extensive research has been dedicated to comprehending these complex interactions. Following the official approval of obeticholic acid as second-line treatment for patients with an incomplete response or intolerance to ursodeoxycholic acid, clinical trials have indicated that peroxisome proliferator activator receptor agonists are promising additional second-line drugs. Future dual or triple drug regimens might reach a new treatment goal of normalisation of alkaline phosphatase levels, rather than a decrease to less than 1·67 times the upper limit of normal levels, and potentially improve long-term outcomes. Improvement of health-related quality of life with better recognition and care of subjective symptoms, such as pruritus and fatigue, is also an important treatment goal. Promising clinical investigations are underway to alleviate these symptoms. Efforts to facilitate better access to medical care and dissemination of current knowledge should enable diagnosis at an earlier stage of primary biliary cholangitis and ensure access to treatments based on risk stratification for all patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - John M Vierling
- Department of Medicine and Surgery, Section of Gastroenterology, Baylor College of Medicine, Houston, TX, USA; Hepatology, and Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Trivedi PJ, Hirschfield GM, Adams DH, Vierling JM. Immunopathogenesis of Primary Biliary Cholangitis, Primary Sclerosing Cholangitis and Autoimmune Hepatitis: Themes and Concepts. Gastroenterology 2024; 166:995-1019. [PMID: 38342195 DOI: 10.1053/j.gastro.2024.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune liver diseases include primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis, a family of chronic immune-mediated disorders that target hepatocytes and cholangiocytes. Treatments remain nonspecific, variably effective, and noncurative, and the need for liver transplantation is disproportionate to their rarity. Development of effective therapies requires better knowledge of pathogenic mechanisms, including the roles of genetic risk, and how the environment and gut dysbiosis cause immune cell dysfunction and aberrant bile acid signaling. This review summarizes key etiologic and pathogenic concepts and themes relevant for clinical practice and how such learning can guide the development of new therapies for people living with autoimmune liver diseases.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom.
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - David H Adams
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - John M Vierling
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
4
|
Padilla CM, Valenzi E, Tabib T, Nazari B, Sembrat J, Rojas M, Fuschiotti P, Lafyatis R. Increased CD8+ tissue resident memory T cells, regulatory T cells and activated natural killer cells in systemic sclerosis lungs. Rheumatology (Oxford) 2024; 63:837-845. [PMID: 37310903 PMCID: PMC10907815 DOI: 10.1093/rheumatology/kead273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.
Collapse
Affiliation(s)
- Cristina M Padilla
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Banafsheh Nazari
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Abstract
Primary biliary cholangitis (PBC) is the most common of the autoimmune liver diseases, in which there is chronic small bile duct inflammation. The pathophysiology of PBC is multifactorial, involving immune dysregulation and damage to biliary epithelial cells, with influences from genetic factors, epigenetics, the gut-liver axis, and environmental exposures.
Collapse
Affiliation(s)
- Inbal Houri
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
6
|
Weiner L, Fitzgerald A, Maynard R, Marcisak E, Nasir A, Glasgow E, Jablonski S, Van Der Veken P, Pearson G, Eisman S, Mace E, Fertig E. Fibroblast activation protein regulates natural killer cell migration, extravasation and tumor infiltration. RESEARCH SQUARE 2023:rs.3.rs-3706465. [PMID: 38196606 PMCID: PMC10775390 DOI: 10.21203/rs.3.rs-3706465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Natural killer (NK) cells play a critical role in physiologic and pathologic conditions such as pregnancy, infection, autoimmune disease and cancer. In cancer, numerous strategies have been designed to exploit the cytolytic properties of NK cells, with variable success. A major hurdle to NK-cell focused therapies is NK cell recruitment and infiltration into tumors. While the chemotaxis pathways regulating NK recruitment to different tissues are well delineated, the mechanisms human NK cells employ to physically migrate are ill-defined. We show for the first time that human NK cells express fibroblast activation protein (FAP), a cell surface protease previously thought to be primarily expressed by activated fibroblasts. FAP degrades the extracellular matrix to facilitate cell migration and tissue remodeling. We used novel in vivo zebrafish and in vitro 3D culture models to demonstrate that FAP knock out and pharmacologic inhibition restrict NK cell migration, extravasation, and invasion through tissue matrix. Notably, forced overexpression of FAP promotes NK cell invasion through matrix in both transwell and tumor spheroid assays, ultimately increasing tumor cell lysis. Additionally, FAP overexpression enhances NK cells invasion into a human tumor in immunodeficient mice. These findings demonstrate the necessity of FAP in NK cell migration and present a new approach to modulate NK cell trafficking and enhance cell-based therapy in solid tumors.
Collapse
Affiliation(s)
| | - Allison Fitzgerald
- Lombardi Comprehensive Cancer Center, Georgetown University Medial Center, Washington
| | | | - Emily Marcisak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine
| | | | | | | | | | | | | | - Emily Mace
- Columbia University Irving Medical Center
| | - Elana Fertig
- Johns Hopkins Convergence Institute, Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Department of Biomedical Engineeri
| |
Collapse
|
7
|
Hou C, Ren C, Luan L, Li S. A case report of primary biliary cholangitis combined with ankylosing spondylitis. Medicine (Baltimore) 2023; 102:e35655. [PMID: 37832080 PMCID: PMC10578735 DOI: 10.1097/md.0000000000035655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
RATIONALE A chronic autoimmune liver disease known as primary biliary cholangitis (PBC) that selectively destructs small intrahepatic biliary epithelial cells and may result in biliary cirrhosis and eventually liver transplantation or death. PBC is associated with various other extrahepatic autoimmune diseases; however, the combination of PBC with ankylosing spondylitis has been rarely reported in the literature. Here, we reported a case of PBC with ankylosing spondylitis to improve our understanding of such coexistence and provide new ideas for the treatment of such patients. PATIENT CONCERNS A 54-year-old man was presented to the Department of Rheumatology because of an abnormal liver function test for 7 years, chest and back pain for 1 year, and low back pain for 2 months. DIAGNOSES Primary biliary cholangitis, ankylosing spondylitis, and old pulmonary tuberculosis. INTERVENTIONS The patient refused to use nonsteroidal anti-inflammatory drugs, conventional synthetic disease-modifying antirheumatic drugs, and biologic disease-modifying antirheumatic drugs; thus, he was treated with methylenediphosphonate (99Tc-MDP) and ursodeoxycholic acid (UDCA). OUTCOMES The patient achieved remission with UDCA and 99Tc-MDP therapy. LESSONS In the treatment of PBC combined with other disorders, the characteristics of different diseases should be considered. The patient reported herein was treated with 99Tc-MDP and UDCA, and his condition improved; thus, we consider 99Tc-MDP to be an effective treatment. Furthermore, in line with the current understanding of the pathogenesis of PBC and ankylosing spondylitis, we hypothesize that interleukin-17 inhibitor is an effective treatment for such patients.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Chunfeng Ren
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Luan Luan
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Shujie Li
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
8
|
Lenci I, Carnì P, Milana M, Bicaj A, Signorello A, Baiocchi L. Sequence of events leading to primary biliary cholangitis. World J Gastroenterol 2023; 29:5305-5312. [PMID: 37899786 PMCID: PMC10600805 DOI: 10.3748/wjg.v29.i37.5305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease that is observed more frequently in middle-aged women. This disorder is considered an autoimmune disease, since liver injury is sustained by the presence of self-directed antimitochondrial antibodies targeting the bile duct cells. The prognosis may vary depending on an early diagnosis and response to therapy. However, nearly a third of patients can progress to liver cirrhosis, thus requiring a liver transplant. Traditional immunosuppressive therapies, commonly employed for other autoimmune diseases, have limited effects on PBC. In fact, dramatic functional changes that occur in the biliary epithelium in the course of inflammation play a major role in perpetuating the injury. In this minireview, after a background on the disease and possible predisposing factors, the sequential cooperation of cellular/molecular events leading to end-stage PBC is discussed in detail. The rise and maintenance of the autoimmune process, as well as the response of the biliary epithelia during inflammatory injury, are key factors in the progression of the disease. The so-called "ductular reaction (DR)", intended as a reactive expansion of cells with biliary phenotype, is a process frequently observed in PBC and partially understood. However, recent findings suggest a strict relationship between this pathological picture and the progression to liver fibrosis, cell senescence, and loss of biliary ducts. All these issues (onset of chronic inflammation, changes in secretive and proliferative biliary functions, DR, and its relationship with other pathological events) are discussed in this manuscript in an attempt to provide a snapshot, for clinicians and researchers, of the most relevant and sequential contributors to the progression of this human cholestatic disease. We believe that interpreting this disorder as a multistep process may help identify possible therapeutic targets to prevent evolution to severe disease.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, University of Tor Vergata, Rome 00133, Italy
| | - Paola Carnì
- Hepatology Unit, University of Tor Vergata, Rome 00133, Italy
- Postgraduate School in Hepato/Gastroenterology, Catholic University Our Lady of Good Counsel, Tirana 1004, Albania
| | - Martina Milana
- Hepatology Unit, University of Tor Vergata, Rome 00133, Italy
| | - Agreta Bicaj
- Hepatology Unit, University of Tor Vergata, Rome 00133, Italy
- Postgraduate School in Hepato/Gastroenterology, Catholic University Our Lady of Good Counsel, Tirana 1004, Albania
| | | | - Leonardo Baiocchi
- Hepatology Unit, University of Tor Vergata, Rome 00133, Italy
- Postgraduate School in Hepato/Gastroenterology, Catholic University Our Lady of Good Counsel, Tirana 1004, Albania
| |
Collapse
|
9
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
10
|
Hitomi Y, Nakamura M. The Genetics of Primary Biliary Cholangitis: A GWAS and Post-GWAS Update. Genes (Basel) 2023; 14:405. [PMID: 36833332 PMCID: PMC9957238 DOI: 10.3390/genes14020405] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which the small intrahepatic bile ducts are destroyed by autoimmune reactions. Among autoimmune diseases, which are polygenic complex traits caused by the combined contribution of genetic and environmental factors, PBC exhibits the strongest involvement of genetic heritability in disease development. As at December 2022, genome-wide association studies (GWASs) and associated meta-analyses identified approximately 70 PBC susceptibility gene loci in various populations, including those of European and East Asian descent. However, the molecular mechanisms through which these susceptibility loci affect the pathogenesis of PBC are not fully understood. This study provides an overview of current data regarding the genetic factors of PBC as well as post-GWAS approaches to identifying primary functional variants and effector genes in disease-susceptibility loci. Possible mechanisms of these genetic factors in the development of PBC are also discussed, focusing on four major disease pathways identified by in silico gene set analyses, namely, (1) antigen presentation by human leukocyte antigens, (2) interleukin-12-related pathways, (3) cellular responses to tumor necrosis factor, and (4) B cell activation, maturation, and differentiation pathways.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 2-1001-1 Kubara, Omura 856-8562, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
| |
Collapse
|
11
|
Yoshimura K, Tamano Y, Nguyen Canh H, Zihan L, Le Thanh D, Sato Y, Terashima T, Shimoda S, Harada K. A novel pathologic marker, indoleamine 2,3-dioxygenase 1, for the cholangiopathy of immune checkpoint inhibitors-induced immune mediated hepatotoxicity as adverse events and the prediction of additional ursodeoxycholic acid treatment. Med Mol Morphol 2023; 56:106-115. [PMID: 36599971 DOI: 10.1007/s00795-022-00344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Immune-related adverse events (irAE) has been clarified according the usage of immune checkpoint inhibitors(ICI). We primarily found indoleamine 2,3-dioxygenase 1(IDO-1) as a histologic biomarker for the cholangiopathy of primary biliary cholangitis(PBC). In this study, we evaluated the utility of IDO-1 in identifying ICI-induced immune-mediated hepatotoxicity(IMH). Immunostaining for IDO-1 using liver sections of PBC, ICI-induced IMH and controls, revealed that IDO-1 expression in bile ducts is mostly restricted in PBC and ICI-induced IMH. In ICI-induced IMH, IDO-1-positive bile ducts is found in 2/2 cases of cholangitis type and also positive/focal ducts in 11/15 cases of hepatitis type. Moreover, in 8/13 positive/focal cases, ursodeoxycholic acid as well as steroids were needed to improve liver dysfunction, but just one case (1/4) in IDO-1-negative cases. One IDO-1 positive case of hepatitis type did not receive additional UDCA, but biliary enzymes worsen. In vitro study using cultured human biliary epithelial cells revealed that IDO-1 induction was found with the stimulation of IFN-γ. In conclusion, the presence of IDO-1-positive cells is found in bile ducts in hepatitic type as well as sclerosing cholangitis of ICI-induced IMH. IDO-1 is surely a valuable pathologic marker for diagnosing ICI-induced IMH and also for predicting an additional need of UDCA in clinical practice.
Collapse
Affiliation(s)
- Kaori Yoshimura
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yuko Tamano
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Hiep Nguyen Canh
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Li Zihan
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Dong Le Thanh
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shinji Shimoda
- Internal Medicine, Karatsu Red Cross Hospital, Karatsu, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| |
Collapse
|
12
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
13
|
She C, Yang Y, Zang B, Yao Y, Liu Q, Leung PSC, Liu B. Effect of LncRNA XIST on Immune Cells of Primary Biliary Cholangitis. Front Immunol 2022; 13:816433. [PMID: 35309298 PMCID: PMC8931309 DOI: 10.3389/fimmu.2022.816433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objective Primary biliary cholangitis (PBC) is an autoimmune disease with significant gender difference. X chromosome inactivation (XCI) plays important roles in susceptibility to diseases between genders. This work focuses on the differences of LncRNA XIST in several defined immune cells populations as well as its effects on naive CD4+ T cells proliferation and differentiation in patients with PBC. Methods NKs, B cells, CD4+ T, and CD8+ T cells were separated by MicroBeads from peripheral blood mononuclear cells (PBMCs) of PBC patients and healthy control (HC). The expression levels of LncRNA XIST in these immune cells were quantified by qRT-PCR and their subcellular localized analyzed by FISH. Lentivirus were used to interfere the expression of LncRNA XIST, and CCK8 was used to detect the proliferation of naive CD4+ T cells in PBC patients. Finally, naive CD4+ T cells were co-cultured with the bile duct epithelial cells (BECs), and the effects of LncRNA XIST on the typing of naive CD4+ T cells and related cytokines were determined by qRT-PCR and ELISA. Results The expression levels of LncRNA XIST in NKs and CD4+ T cells in PBC patients were significantly higher than those in HC, and were primarily located at the nucleus. LncRNA XIST could promote the proliferation of naive CD4+ T cells. When naive CD4+ T cells were co-cultured with BECs, the expressions of IFN-γ, IL-17, T-bet and RORγt in naive CD4+ T cells were decreased. Conclusion LncRNA XIST was associated with lymphocyte abnormalities in patients with PBC. The high expression of LncRNA XIST could stimulate proliferation and differentiation of naive CD4+ T cells, which might account for the high occurrence of PBC in female.
Collapse
Affiliation(s)
- Chunhui She
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yifei Yang
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Zang
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Yao
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qixuan Liu
- Epidemiology and Biostatistics, Maternal and Child Health, School of Public Health (SPH) Department, Boston University, Boston, MA, United States
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, United States
| | - Bin Liu
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bin Liu,
| |
Collapse
|
14
|
Cariello M, Gadaleta RM, Moschetta A. The gut-liver axis in cholangiopathies: focus on bile acid based pharmacological treatment. Curr Opin Gastroenterol 2022; 38:136-143. [PMID: 35034082 PMCID: PMC10826921 DOI: 10.1097/mog.0000000000000807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review analyses the main features of primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) and provides an overview of the currently available (bile acid) bile acid related treatments. RECENT FINDINGS In PBC, biliary injury is the consequence of a dysregulated intrahepatic and systemic immune response. Given the close association between PSC and inflammatory bowel disease (IBD), the microbiota represents an important factor in the development of PSC. Bile acid based pharmacological treatments could represent promising therapeutic strategies in the management of cholangiopathies. SUMMARY Cholangiopathies include a spectrum of diseases resulting in cholestasis, an impairment of bile flow in the biliary tree, leading to biliary obstruction and damage as well as liver inflammation and fibrosis. PSC and PBC are highly heterogeneous cholangiopathies and progressive disorders with defined pathophysiological mechanisms. Curative treatments have not been established, and although their prevalence is low, they are a frequent indication for liver transplantation in the advanced stages of cholangiopathies. These diseases still present with unmet therapeutic strategies, also taking into account that on average 30-40% of patients undergoing liver transplantation will have recurrence of the original illness.
Collapse
Affiliation(s)
- Marica Cariello
- INBB, National Institute for Biostructures and Biosystems, Rome
| | - Raffaella M. Gadaleta
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Antonio Moschetta
- INBB, National Institute for Biostructures and Biosystems, Rome
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| |
Collapse
|
15
|
Fuchs S, Scheffschick A, Gunnarsson I, Brauner H. Natural Killer Cells in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis - A Review of the Literature. Front Immunol 2022; 12:796640. [PMID: 35116030 PMCID: PMC8805084 DOI: 10.3389/fimmu.2021.796640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.
Collapse
Affiliation(s)
- Sina Fuchs
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
rs9459874 and rs1012656 in CCR6/FGFR1OP confer susceptibility to primary biliary cholangitis. J Autoimmun 2021; 126:102775. [PMID: 34864633 DOI: 10.1016/j.jaut.2021.102775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic autoimmune liver disease that appears to be strongly influenced by genetic factors. Recently, an international meta-analysis of genome-wide association studies (GWAS) identified CC-Motif Chemokine Receptor-6 (CCR6) and FGFR1 Oncogene-Partner (FGFR1OP) as PBC-susceptibility genes. However, the lead single nucleotide polymorphisms (SNPs) of CCR6/FGFR1OP showed low linkage disequilibrium with each other in East Asian and European populations. Additionally, the primary functional variants and the molecular mechanisms responsible for PBC-susceptibility remain unclear. Here, among the PBC-susceptibility SNPs identified by high-density association mapping in our previous meta-GWAS (Patients: n = 10,516; healthy controls: n = 20,772) within the CCR6/FGFR1OP locus, rs9459874 and rs1012656 were identified as primary functional variants. These functional variants accounted for the effects of GWAS-identified lead SNPs in CCR6/FGFR1OP. Additionally, the roles of rs9459874 and rs1012656 in regulating FGFR1OP transcription and CCR6 translation, respectively, were supported by expression quantitative trait loci (eQTL) analysis and gene editing technology using the CRISPR/Cas9 system. Immunohistochemistry showed higher expression of CCR6 protein in the livers of patients with PBC than in those of a non-diseased control. In conclusion, we identified primary functional variants in CCR6/FGFR1OP and revealed the molecular mechanisms by which these variants confer PBC-susceptibility in an eQTL-dependent or -independent manner. The approach in this study is applicable for the elucidation of the pathogenesis of other autoimmune disorders in which CCR6/FGFR1OP is known as a susceptibility locus, as well as PBC.
Collapse
|
17
|
Guo C, Dong C, Zhang J, Wang R, Wang Z, Zhou J, Wang W, Ji B, Ma B, Ge Y, Wang Z. An Immune Signature Robustly Predicts Clinical Deterioration for Hepatitis C Virus-Related Early-Stage Cirrhosis Patients. Front Med (Lausanne) 2021; 8:716869. [PMID: 34350203 PMCID: PMC8326446 DOI: 10.3389/fmed.2021.716869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV)-related cirrhosis leads to a heavy global burden of disease. Clinical risk stratification in HCV-related compensated cirrhosis remains a major challenge. Here, we aim to develop a signature comprised of immune-related genes to identify patients at high risk of progression and systematically analyze immune infiltration in HCV-related early-stage cirrhosis patients. Bioinformatics analysis was applied to identify immune-related genes and construct a prognostic signature in microarray data set. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were conducted with the “clusterProfiler” R package. Besides, the single sample gene set enrichment analysis (ssGSEA) was used to quantify immune-related risk term abundance. The nomogram and calibrate were set up via the integration of the risk score and clinicopathological characteristics to assess the effectiveness of the prognostic signature. Finally, three genes were identified and were adopted to build an immune-related prognostic signature for HCV-related cirrhosis patients. The signature was proved to be an independent risk element for HCV-related cirrhosis patients. In addition, according to the time-dependent receiver operating characteristic (ROC) curves, nomogram, and calibration plot, the prognostic model could precisely forecast the survival rate at the first, fifth, and tenth year. Notably, functional enrichment analyses indicated that cytokine activity, chemokine activity, leukocyte migration and chemotaxis, chemokine signaling pathway and viral protein interaction with cytokine and cytokine receptor were involved in HCV-related cirrhosis progression. Moreover, ssGSEA analyses revealed fierce immune-inflammatory response mechanisms in HCV progress. Generally, our work developed a robust prognostic signature that can accurately predict the overall survival, Child-Pugh class progression, hepatic decompensation, and hepatocellular carcinoma (HCC) for HCV-related early-stage cirrhosis patients. Functional enrichment and further immune infiltration analyses systematically elucidated potential immune response mechanisms.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenglai Dong
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Ji
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol 2021; 43:519-533. [PMID: 34230995 PMCID: PMC8260327 DOI: 10.1007/s00281-021-00877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The liver is an important immunological site that can promote immune tolerance or activation. Natural killer (NK) cells are a major immune subset within the liver, and therefore understanding their role in liver homeostasis and inflammation is crucial. Due to their cytotoxic function, NK cells are important in the immune response against hepatotropic viral infections but are also involved in the inflammatory processes of autoimmune liver diseases and fatty liver disease. Whether NK cells primarily promote pro-inflammatory or tolerogenic responses is not known for many liver diseases. Understanding the involvement of NK cells in liver inflammation will be crucial in effective treatment and future immunotherapeutic targeting of NK cells in these disease settings. Here, we explore the role that NK cells play in inflammation of the liver in the context of viral infection, autoimmunity and fatty liver disease.
Collapse
Affiliation(s)
- A J Highton
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - I S Schuster
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M A Degli-Esposti
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M Altfeld
- Institute for Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Sasaki M, Sato Y, Nakanuma Y. Interferon-induced protein with tetratricopeptide repeats 3 may be a key factor in primary biliary cholangitis. Sci Rep 2021; 11:11413. [PMID: 34075171 PMCID: PMC8169865 DOI: 10.1038/s41598-021-91016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating studies suggest that senescent biliary epithelial cells (BECs) produce senescence-associated secretory phenotypes (SASPs) and play various roles in the pathogenesis of primary biliary cholangitis (PBC) and other cholangiopathies. We examined comprehensive profiles of senescent BECs and its contribution to the pathogenesis of PBC taking advantage of microarray analysis. cDNA microarray analysis revealed that 1841 genes including CCL2, IFIT3, CPQ were commonly up-regulated in senescent BECs cultured in serum depleted media or media with glycochenodeoxycholic acid. Knockdown of IFIT3 significantly suppressed cellular senescence (p < 0.01) and significantly increased apoptosis (p < 0.01) in BECs treated with serum depletion or glycochenodeoxycholic acid. Significantly increased expression of IFIT3 was seen in senescent BECs in small bile ducts showing cholangitis and in ductular reactions in PBC, compared to control livers (p < 0.01). An inadequate response to UDCA was inversely correlated to the increased expression of IFIT3 in small bile duct in PBC (p < 0.05). In conclusion, the expression of various genes related to immunity and inflammation including SASPs were increased in senescent BECs. Upregulated IFIT3 in senescent BECs may be associated with the pathogenesis of PBC and may be a possible therapeutic target in PBC.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui, 918-8503, Japan
| |
Collapse
|
20
|
Li H, Guan Y, Han C, Zhang Y, Liu Q, Wei W, Ma Y. The pathogenesis, models and therapeutic advances of primary biliary cholangitis. Biomed Pharmacother 2021; 140:111754. [PMID: 34044277 DOI: 10.1016/j.biopha.2021.111754] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by the destruction of intrahepatic small bile ducts and the presence of antimitochondrial antibody (AMA), eventually progresses to liver fibrosis and cirrhosis. Genetic predisposition and environmental factors are involved in the occurrence of PBC, and the epitopes exposure and the imbalance of autoimmune tolerance are the last straw. The apoptosis of biliary epithelial cell (BEC) leads to the release of autoantigen epitopes, which activate the immune system, and the disorder of innate and adaptive immunity eventually leads to the start of disease. Animal models have unique advantages in investigating the pathogenesis and drug exploitation of PBC. Multiple models have been reported, and spontaneous model and induced model have been widely used in relevant research of PBC in recent years. Currently, the only drugs licensed for PBC are ursodesoxycholic acid (UDCA) and obeticholic acid (OCA). In the last few years, as the learned more about the pathogenesis of PBC, more and more targets have been discovered, and multiple targeted drugs are being in developed. In this review, the pathogenesis, murine models and treatment strategies of PBC were summarized, and the current research status was discussed to provide insights for the further study of PBC.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qian Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
21
|
Shimoyama S, Kawata K, Ohta K, Chida T, Suzuki T, Tsuneyama K, Shimoda S, Kurono N, Leung PSC, Gershwin ME, Suda T, Kobayashi Y. Ursodeoxycholic acid impairs liver-infiltrating T-cell chemotaxis through IFN-γ and CX3CL1 production in primary biliary cholangitis. Eur J Immunol 2021; 51:1519-1530. [PMID: 33710617 DOI: 10.1002/eji.202048589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 11/05/2022]
Abstract
Ursodeoxycholic acid (UDCA) is the primary treatment for primary biliary cholangitis (PBC), but its mechanism of action remains unclear. Studies suggest that UDCA enhances NF erythroid 2-related factor 2 (NFE2L2) expression and that the interaction between IFN-γ and C-X3-C motif chemokine ligand 1 (CX3CL1) facilitates biliary inflammation in PBC. Therefore, we examined the effects of UDCA on the expression of IFN-γ and CX3CL1 in in vitro and in vivo PBC models such as human liver tissue, a murine model, cell lines, and isolated human intrahepatic biliary epithelial cells (IHBECs). We observed a significant decrease in IFN-γ mRNA levels and positive correlations between IFN-γ and CX3CL1 mRNA levels post-UDCA treatment in PBC livers. NFE2L2-mediated transcriptional activation was significantly enhanced in UDCA-treated Jurkat cells. In 2-octynoic acid-immunized mice, IFN-γ production by liver-infiltrating T cells was dependent on NFE2L2 activation. IFN-γ significantly and dose-dependentlyinduced CX3CL1 expression, which was significantly decreased in HuCC-T1 cells and IHBECs upon UDCA treatment. These results suggest that UDCA-induced suppression of IFN-γ and CX3CL1 production attenuates the chemotactic and adhesive abilities of liver-infiltrating T cells in PBC.
Collapse
Affiliation(s)
- Shin Shimoyama
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Takafumi Suda
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshimasa Kobayashi
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
22
|
Hitomi Y, Aiba Y, Kawai Y, Kojima K, Ueno K, Nishida N, Kawashima M, Gervais O, Khor SS, Nagasaki M, Tokunaga K, Nakamura M, Tsuiji M. rs1944919 on chromosome 11q23.1 and its effector genes COLCA1/COLCA2 confer susceptibility to primary biliary cholangitis. Sci Rep 2021; 11:4557. [PMID: 33633225 PMCID: PMC7907150 DOI: 10.1038/s41598-021-84042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which intrahepatic bile ducts are destroyed by an autoimmune reaction. Our previous genome-wide association study (GWAS) identified chromosome 11q23.1 as a susceptibility gene locus for PBC in the Japanese population. Here, high-density association mapping based on single nucleotide polymorphism (SNP) imputation and in silico/in vitro functional analyses identified rs1944919 as the primary functional variant. Expression-quantitative trait loci analyses showed that the PBC susceptibility allele of rs1944919 was significantly associated with increased COLCA1/COLCA2 expression levels. Additionally, the effects of rs1944919 on COLCA1/COLCA2 expression levels were confirmed using genotype knock-in versions of cell lines constructed using the CRISPR/Cas9 system and differed between rs1944919-G/G clones and -T/T clones. To our knowledge, this is the first study to demonstrate the contribution of COLCA1/COLCA2 to PBC susceptibility.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan.,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | | | - Olivier Gervais
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.,Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
23
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy.,Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
24
|
Hydes T, Khakoo SI. A spotlight on natural killer cells in primary biliary cholangitis. J Hepatol 2021; 74:254-255. [PMID: 33069496 DOI: 10.1016/j.jhep.2020.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
|
25
|
Yan C, Koda S, Wu J, Zhang BB, Yu Q, Netea MG, Tang RX, Zheng KY. Roles of Trained Immunity in the Pathogenesis of Cholangiopathies: A Therapeutic Target. Hepatology 2020; 72:1838-1850. [PMID: 32463941 DOI: 10.1002/hep.31395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jing Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
26
|
Galectin-3 in Inflammasome Activation and Primary Biliary Cholangitis Development. Int J Mol Sci 2020; 21:ijms21145097. [PMID: 32707678 PMCID: PMC7404314 DOI: 10.3390/ijms21145097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic inflammatory autoimmune liver disease characterized by inflammation and damage of small bile ducts. The NLRP3 inflammasome is a multimeric complex of proteins that after activation with various stimuli initiates an inflammatory process. Increasing data obtained from animal studies implicate the role of NLRP3 inflammasome in the pathogenesis of various diseases. Galectin-3 is a β-galactoside-binding lectin that plays important roles in various biological processes including cell proliferation, differentiation, transformation and apoptosis, pre-mRNA splicing, inflammation, fibrosis and host defense. The multilineage immune response at various stages of PBC development includes the involvement of Gal-3 in the pathogenesis of this disease. The role of Galectin-3 in the specific binding to NLRP3, and inflammasome activation in models of primary biliary cholangitis has been recently described. This review provides a brief pathogenesis of PBC and discusses the current knowledge about the role of Gal-3 in NLRP3 activation and PBC development.
Collapse
|
27
|
Fu HY, Bao WM, Yang CX, Lai WJ, Xu JM, Yu HY, Yang YN, Tan X, Gupta AK, Tang YM. Kupffer Cells Regulate Natural Killer Cells Via the NK group 2, Member D (NKG2D)/Retinoic Acid Early Inducible-1 (RAE-1) Interaction and Cytokines in a Primary Biliary Cholangitis Mouse Model. Med Sci Monit 2020; 26:e923726. [PMID: 32599603 PMCID: PMC7346879 DOI: 10.12659/msm.923726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Kupffer cells and natural killer (NK) cells has been identified as contributing factors in the pathogenesis of hepatitis, but the detailed mechanism of these cell types in the pathogenesis of primary biliary cholangitis (PBC) is poorly understood. Material/Methods In this study, polyinosinic: polycytidylic acid (poly I: C), 2-octynoic acid-bovine serum albumin (2OA-BSA) and Freund’s adjuvant (FA) were injected to establish a murine PBC model, from which NK cells and Kupffer cells were extracted and isolated. The cells were then co-cultivated in a designed culture system, and then NK group 2, member D (NKG2D), retinoic acid early inducible-1 (RAE-1), F4/80, and cytokine expression levels were detected. Results The results showed close crosstalk between Kupffer cells and NK cells. PBC mice showed increased surface RAE-1 protein expression and Kupffer cell cytokine secretion, which subsequently activated NK cell-mediated target cell killing via NKG2D/RAE-1 recognition, and increased inflammation. NK cell-derived interferon-γ (IFN-γ) and Kupffer cell-derived tumor necrosis factor α (TNF-α) were found to synergistically regulate inflammation. Moreover, interleukin (IL)-12 and IL-10 improved the crosstalk between NK cells and Kupffer cells. Conclusions Our findings in mice are the first to suggest the involvement of the NKG2D/RAE-1 interaction and cytokines in the synergistic effects of NK and Kupffer cells in PBC.
Collapse
Affiliation(s)
- Hai-Yan Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Min Bao
- Department of Hepatobiliary Surgery, First People's Hospital of Yunnan, Kunming, Yunnan, China (mainland)
| | - Cai-Xia Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Ju Lai
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jia-Min Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hai-Yan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yi-Na Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xu Tan
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ajay Kumar Gupta
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
28
|
Ronca V, Mancuso C, Milani C, Carbone M, Oo YH, Invernizzi P. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J Leukoc Biol 2020; 108:659-671. [PMID: 32349179 DOI: 10.1002/jlb.5mr0320-200r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Ye Htun Oo
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
29
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
30
|
Wasik U, Kempinska-Podhorodecka A, Bogdanos DP, Milkiewicz P, Milkiewicz M. Enhanced expression of miR-21 and miR-150 is a feature of anti-mitochondrial antibody-negative primary biliary cholangitis. Mol Med 2020; 26:8. [PMID: 31948396 PMCID: PMC6966805 DOI: 10.1186/s10020-019-0130-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 02/02/2023] Open
Abstract
Background & Aims Anti-mitochondrial-autoantibodies (AMA) remain a hallmark of Primary Biliary Cholangitis (PBC) however approximately 10% of patients test negative for these antibodies. They do not differ in terms of biochemistry or clinical presentation from AMA positive ones. Epigenetics play a key role in immune signalling. Two microRNAs (miRs), namely, miR-21 and miR-150 are known to be involved in liver inflammation and fibrosis. The expression of those two microRNAs and their downstream targets were analyze in the context of AMA-status and the stage of liver fibrosis. Methods The relative levels of miR-21 and miR-150 and their target genes: cMyb, RAS-guanyl-releasing protein-1(RASGRP1), and DNA-methyltransferase-1(DNMT1) were determined by Real-Time PCR in serum, liver tissue and peripheral blood mononuclear cells (PBMCs) of patients with PBC. Results Serum expressions of miR-21 and miR-150 were significantly enhanced in AMA-negative patients, and they inversely correlated with disease-specific AMA titers in PBS patients. In PBMCs, an increased expression of miR-21 correlated with decreased levels of RASGRP1 and DNMT1 mRNAs whereas, the level of miR-150 remained comparable to controls; and cMyb mRNA was downregulated. In cirrhotic livers, the level of miR-21 was unchanged while miR-150 expression was increased. Conclusion This study convincingly report, that AMA-negative PBC is characterized by notable alternations of miR-21 and miR-150 and their downstream targets compared to AMA-positive patients underlining their possible importance in the induction of the disease and its progression to fibrosis.
Collapse
Affiliation(s)
- Urszula Wasik
- Department of Medical Biology, Pomeranian Medical University, Szczecin, Poland
| | | | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University of Thessaly, Larissa, Greece
| | - Piotr Milkiewicz
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland.,Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
31
|
Hydes TJ, Blunt MD, Naftel J, Vallejo AF, Seumois G, Wang A, Vijayanand P, Polak ME, Khakoo SI. Constitutive Activation of Natural Killer Cells in Primary Biliary Cholangitis. Front Immunol 2019; 10:2633. [PMID: 31803181 PMCID: PMC6874097 DOI: 10.3389/fimmu.2019.02633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that interface with the adaptive immune system to generate a pro-inflammatory immune environment. Primary Biliary Cholangitis (PBC) is a hepatic autoimmune disorder with extrahepatic associations including systemic sclerosis, Sjogren's syndrome and thyroiditis. Immunogenetic studies have identified polymorphisms of the IL-12/STAT4 pathway as being associated with PBC. As this pathway is important for NK cell function we investigated NK cells in PBC. Circulating NK cells from individuals with PBC were constitutively activated, with higher levels of CD49a and the liver-homing marker, CXCR6, compared to participants with non-autoimmune chronic liver disease and healthy controls. Stimulation with minimal amounts of IL-12 (0.005 ng/ml) led to significant upregulation of CXCR6 (p < 0.005), and enhanced IFNγ production (p < 0.02) on NK cells from PBC patients compared to individuals with non-autoimmune chronic liver disease, indicating dysregulation of the IL-12/STAT4 axis. In RNAseq studies, resting NK cells from PBC patients had a constitutively activated transcriptional profile and upregulation of genes associated with IL-12/STAT4 signaling and metabolic reprogramming. Consistent with these findings, resting NK cells from PBC patients expressed higher levels of pSTAT4 compared to control groups (p < 0.001 vs. healthy controls and p < 0.05 vs. liver disease controls). In conclusion NK cells in PBC are sensitive to minute quantities of IL-12 and have a “primed” phenotype. We therefore propose that peripheral priming of NK cells to express tissue-homing markers may contribute to the pathophysiology of PBC.
Collapse
Affiliation(s)
- Theresa J Hydes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer Naftel
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Grégory Seumois
- Department of Medicine, La Jolla Institute for Allergy and Immunology, University of California, San Diego, San Diego, CA, United States
| | - Alice Wang
- Department of Medicine, La Jolla Institute for Allergy and Immunology, University of California, San Diego, San Diego, CA, United States
| | - Pandurangan Vijayanand
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Department of Medicine, La Jolla Institute for Allergy and Immunology, University of California, San Diego, San Diego, CA, United States
| | - Marta E Polak
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|
33
|
Bowlus CL, Yang GX, Liu CH, Johnson CR, Dhaliwal SS, Frank D, Levy C, Peters MG, Vierling JM, Gershwin ME. Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature. J Autoimmun 2019; 101:26-34. [DOI: 10.1016/j.jaut.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
|
34
|
Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front Immunol 2019; 10:946. [PMID: 31114585 PMCID: PMC6502999 DOI: 10.3389/fimmu.2019.00946] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The liver is considered a preferential tissue for NK cells residency. In humans, almost 50% of all intrahepatic lymphocytes are NK cells that are strongly imprinted in a liver-specific manner and show a broad spectrum of cellular heterogeneity. Hepatic NK (he-NK) cells play key roles in tuning liver immune response in both physiological and pathological conditions. Therefore, there is a pressing need to comprehensively characterize human he-NK cells to better understand the related mechanisms regulating their effector-functions within the dynamic balance between immune-tolerance and immune-surveillance. This is of particular relevance in the liver that is the only solid organ whose parenchyma is constantly challenged on daily basis by millions of foreign antigens drained from the gut. Therefore, the present review summarizes our current knowledge on he-NK cells in the light of the latest discoveries in the field of NK cell biology and clinical relevance.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Bruni
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Immunological abnormalities in patients with primary biliary cholangitis. Clin Sci (Lond) 2019; 133:741-760. [DOI: 10.1042/cs20181123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Primary biliary cholangitis (PBC), an autoimmune liver disease occurring predominantly in women, is characterized by high titers of serum anti-mitochondrial antibodies (AMAs) and progressive intrahepatic cholestasis. The immune system plays a critical role in PBC pathogenesis and a variety of immune cell subsets have been shown to infiltrate the portal tract areas of patients with PBC. Amongst the participating immune cells, CD4 T cells are important cytokine-producing cells that foster an inflammatory microenvironment. Specifically, these cells orchestrate activation of other immune cells, including autoreactive effector CD8 T cells that cause biliary epithelial cell (BEC) injury and B cells that produce large quantities of AMAs. Meanwhile, other immune cells, including dendritic cells (DCs), natural killer (NK) cells, NKT cells, monocytes, and macrophages are also important in PBC pathogenesis. Activation of these cells initiates and perpetuates bile duct damage in PBC patients, leading to intrahepatic cholestasis, hepatic damage, liver fibrosis, and eventually cirrhosis or even liver failure. Taken together, the body of accumulated clinical and experimental evidence has enhanced our understanding of the immunopathogenesis of PBC and suggests that immunotherapy may be a promising treatment option. Herein, we summarize current knowledge regarding immunological abnormalities of PBC patients, with emphasis on underlying pathogenic mechanisms. The differential immune response which occurs over decades of disease activity suggests that different therapies may be needed at different stages of disease.
Collapse
|
36
|
Hitomi Y, Ueno K, Kawai Y, Nishida N, Kojima K, Kawashima M, Aiba Y, Nakamura H, Kouno H, Kouno H, Ohta H, Sugi K, Nikami T, Yamashita T, Katsushima S, Komeda T, Ario K, Naganuma A, Shimada M, Hirashima N, Yoshizawa K, Makita F, Furuta K, Kikuchi M, Naeshiro N, Takahashi H, Mano Y, Yamashita H, Matsushita K, Tsunematsu S, Yabuuchi I, Nishimura H, Shimada Y, Yamauchi K, Komatsu T, Sugimoto R, Sakai H, Mita E, Koda M, Nakamura Y, Kamitsukasa H, Sato T, Nakamuta M, Masaki N, Takikawa H, Tanaka A, Ohira H, Zeniya M, Abe M, Kaneko S, Honda M, Arai K, Arinaga-Hino T, Hashimoto E, Taniai M, Umemura T, Joshita S, Nakao K, Ichikawa T, Shibata H, Takaki A, Yamagiwa S, Seike M, Sakisaka S, Takeyama Y, Harada M, Senju M, Yokosuka O, Kanda T, Ueno Y, Ebinuma H, Himoto T, Murata K, Shimoda S, Nagaoka S, Abiru S, Komori A, Migita K, Ito M, Yatsuhashi H, Maehara Y, Uemoto S, Kokudo N, Nagasaki M, Tokunaga K, Nakamura M. POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep 2019; 9:102. [PMID: 30643196 PMCID: PMC6331557 DOI: 10.1038/s41598-018-36490-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4,045 Japanese individuals (2,060 cases and 1,985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10-9). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10-8). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hitomi Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ohta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Komeda
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masahiro Kikuchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noriaki Naeshiro
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Haruhiro Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kouki Matsushita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seiji Tsunematsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Iwao Yabuuchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yusuke Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhiko Yamauchi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironori Sakai
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Eiji Mita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaharu Koda
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yoko Nakamura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kamitsukasa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naohiko Masaki
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Rheumatic Diseases, Fukushima Medical University of Medicine, Fukushima, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Etsuko Hashimoto
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuki Ichikawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Michio Senju
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio Graduate School of Medicine, Tokyo, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Kazumoto Murata
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Masahiro Ito
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan. .,Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan. .,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan. .,Headquaters of PBC-GWAS study group in Japan, Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan.
| |
Collapse
|
37
|
Tang YM, Yu HY. Progress in research of mechanism of biliary epithelial cell injury in primary biliary cholangitis. Shijie Huaren Xiaohua Zazhi 2019; 27:36-42. [DOI: 10.11569/wcjd.v27.i1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by chronic biliary cholestasis and progressive intrahepatic and small bile duct non- suppurative inflammation with early infiltration of inflammatory cells around biliary epithelial cells (BECs). BECs lining the bile duct express multiple receptors for pathogen-associated molecular patterns and can activate intracellular signaling pathways and participate in immune regulation. The etiology and pathogenesis of PBC are not fully understood yet, but the key step found in its pathogenesis is the targeted destruction of biliary cells. Since bile duct epithelial cells participate in a series of intrahepatic immune regulation processes, bile duct epithelial cell injury is an important mechanism involved in the development of intrahepatic inflammation in PBC. Therefore, understanding the mechanism of BEC injury can help us find some new targets for the treatment of PBC. This article briefly reviews the progress in the research of mechanism of biliary epithelial cell injury in PBC.
Collapse
Affiliation(s)
- Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Hai-Yan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| |
Collapse
|
38
|
Hitomi Y, Nakatani K, Kojima K, Nishida N, Kawai Y, Kawashima M, Aiba Y, Nagasaki M, Nakamura M, Tokunaga K. NFKB1 and MANBA Confer Disease Susceptibility to Primary Biliary Cholangitis via Independent Putative Primary Functional Variants. Cell Mol Gastroenterol Hepatol 2018; 7:515-532. [PMID: 30528300 PMCID: PMC6396435 DOI: 10.1016/j.jcmgh.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is a chronic and cholestatic liver disease that eventually leads to cirrhosis and hepatic failure. We recently identified several susceptibility genes included NFKB1 and MANBA for PBC in the Japanese population by genome-wide association study. However, the primary functional variants in the NFKB1/MANBA region and the molecular mechanism for conferring disease susceptibility to PBC have not yet been clarified. METHODS We performed high-density association mapping based on a single-nucleotide polymorphism (SNP) imputation analysis, using data from a whole-genome sequence reference panel of 1070 Japanese individuals and the previous genome-wide association study (1389 PBC patients, 1508 healthy controls). Among SNPs (P < 5.0 × 10-7) in the NFKB1/MANBA region, putative primary functional variants and the molecular mechanism for conferring disease susceptibility to PBC were identified by in silico/in vitro functional analysis. RESULTS Among the SNPs in the NFKB1/MANBA region, rs17032850 and rs227361, which changed the binding of transcription factors lymphoid enhancer-binding factor 1 (LEF-1) and retinoid X receptor α (RXRα), respectively, were identified as putative primary functional variants that regulate gene expression. In addition, expression-quantitative trait locus data and gene editing using a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system supported the potential role of rs17032850 and rs227361 in regulating NFKB1 and MANBA expression, respectively. CONCLUSIONS We identified independent putative primary functional variants in NFKB1/MANBA and showed the distinct molecular mechanism by which each putative primary functional variant conferred susceptibility to PBC. Our approach was useful to dissect the pathogenesis not only of PBC, but also other digestive diseases in which NFKB1/MANBA has been reported as a susceptibility locus.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Correspondence Address correspondence to: Yuki Hitomi, PhD, Department of Human Genetics, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. fax: (81) 3-5802-8619.
| | - Ken Nakatani
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Japan Science and Technology Agency, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Medicine, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Minoru Nakamura
- Headquarters of Primary Biliary Cholangitis (PBC) Research in National Hospital Organization Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan,Clinical Research Center, National Hospital Organization, Nagasaki Medical Center, Omura, Japan,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Hsueh YH, Chen HW, Syu BJ, Lin CI, Leung PSC, Gershwin ME, Chuang YH. Endogenous IL-10 maintains immune tolerance but IL-10 gene transfer exacerbates autoimmune cholangitis. J Autoimmun 2018; 95:159-170. [PMID: 30274824 DOI: 10.1016/j.jaut.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022]
Abstract
The immunomodulatory effect of IL-10 as an immunosuppressive and anti-inflammatory cytokine is well known. Taking advantage of our established mouse model of autoimmune cholangitis using 2-octynoic acid conjugated ovalbumin (2-OA-OVA) induction, we compared liver pathology, immune cell populations and antimitochondrial antibodies between IL-10 knockout and wild type mice immunized with 2-OA-OVA. At 10 weeks post immunization, portal inflammation and fibrosis were more severe in 2-OA-OVA immunized IL-10 knockout mice than in wild type mice. This was accompanied by significant higher levels of collagen I and III expression, T, NK and NKT subsets in liver and IgG anti-mitochondrial autoantibodies (AMAs) compared to 2-OA-OVA immunized wild type mice, suggesting that endogenous IL-10 is necessary for the maintenance of immune tolerance in primary biliary cholangitis (PBC). Further, we investigated whether administration of exogenous IL-10 could prevent PBC by administration of IL-10 expressing recombinant adeno-associated virus (AAV-IL-10) either 3 days before or 3 weeks after the establishment of liver pathology. Interestingly, administration of AAV-IL-10 resulted in increased liver inflammation and fibrosis, accompanied by increases in IFN-γ in liver CD4+ T cell, granzyme B, FasL, and CD107a in liver CD8+ T and NKT cells, and granzyme B and FasL in liver NK cells of AAV-IL-10 administered mice compared with control mice. Furthermore, administration of AAV-IL-10 significantly increased levels of proinflammatory cytokines and chemokines (IFN-γ, TNF-α, CXCL9 and CXCL10) and collagen I and III production in naïve mice, together with increase in immune cell infiltration and collagen deposition in the liver, suggesting a role of IL-10 in fibrosis. In conclusion, our data demonstrate that endogenous IL-10 is critical in the maintenance of immune tolerance but exogenous administration of IL-10 exacerbates liver inflammation and fibrosis. Furthermore, the distinctive presence of inflammatory immune cell populations and collagen expression in AAV-IL-10 treated naïve mice cautions against the clinical use of exogenous IL-10 in patients with autoimmune cholangitis.
Collapse
Affiliation(s)
- Yu-Hsin Hsueh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Hung-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Bi-Jhen Syu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Czaja AJ. Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Dig Dis Sci 2018; 63:1706-1725. [PMID: 29671161 DOI: 10.1007/s10620-018-5072-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis is a consequence of perturbations in homeostatic mechanisms that maintain self-tolerance but are incompletely understood. The goals of this review are to describe key pathogenic pathways that have been under-evaluated or unassessed in autoimmune hepatitis, describe insights that may shape future therapies, and encourage investigational efforts. The T cell immunoglobulin mucin proteins constitute a family that modulates immune tolerance by limiting the survival of immune effector cells, clearing apoptotic bodies, and expanding the population of granulocytic myeloid-derived suppressor cells. Galectins influence immune cell migration, activation, proliferation, and survival, and T cell exhaustion can be induced and exploited as a possible management strategy. The programmed cell death-1 protein and its ligands comprise an antigen-independent inhibitory axis that can limit the performance of activated T cells by altering their metabolism, and epigenetic changes can silence pro-inflammatory genes or de-repress anti-inflammatory genes that affect disease severity. Changes in the intestinal microbiota and permeability of the intestinal mucosal barrier can be causative or consequential events that affect the occurrence and phenotype of immune-mediated disease, and they may help explain the female propensity for autoimmune hepatitis. Perturbations within these homeostatic mechanisms have been implicated in experimental models and limited clinical experiences, and they have been favorably manipulated by monoclonal antibodies, recombinant molecules, pharmacological agents or dietary supplements. In conclusion, pathogenic mechanisms that have been implicated in other systemic immune-mediated and liver diseases but under-evaluated or unassessed in autoimmune hepatitis warrant consideration and rigorous evaluation.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
41
|
Gulamhusein AF, Hirschfield GM. Pathophysiology of primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:17-25. [PMID: 30343706 DOI: 10.1016/j.bpg.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a prototypical autoimmune disease characterized by an overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an imbalance between effector and regulatory activity resulting in progressive and self-perpetuating biliary injury. Genome wide studies shed light on important pathways involved in disease, key among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on the missing heritability and female preponderance of disease. Taken together, these findings have dramatically advanced our understanding of disease and may lead to important therapeutic advances.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, 200 Elizabeth Street, Toronto, ON, Canada.
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
42
|
Dysregulation of peritoneal cavity B1a cells and murine primary biliary cholangitis. Oncotarget 2017; 7:26992-7006. [PMID: 27105495 PMCID: PMC5053627 DOI: 10.18632/oncotarget.8853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with progressive cholestasis and liver fibrosis. Similar to human patients with PBC, p40−/−IL-2Rα−/− mice spontaneously develop severe autoimmune cholangitis. Although there has been considerable work on immune regulation and autoimmunity, there is a relative paucity of work directed at the functional implications of the key peritoneal cavity (PC) B cell subset, coined B1a cells in PBC. We used flow cytometry and high-resolution microarrays to study the qualitative and quantitative characteristics of B cells, particularly B1a cells, in the PC of p40−/−IL-2Rα−/− mice compared to controls. Importantly, B1a cell proliferation was markedly lower as the expression of Ki67 decreased. Meanwhile, the apoptosis level was much higher. These lead to a reduction of B1a cells in the PC of p40−/−IL-2Rα−/− mice compared to controls. In contrast, there was a dramatic increase of CD4+ and CD8+ T cells accompanied by elevated production of IFN-γ. In addition, we found a negative correlation between the frequency of B1a cells and the presence of autoreactive CD8+ T cells in both liver and PC of p40−/−IL-2Rα−/− mice. From a functional perspective, B cells from p40−/−IL-2Rα−/− mice downregulated IL-10 production and CTLA-4 expression, leading to loss of B cell regulatory function. We suggest that the dysfunction of B1a cells in the PC in this murine model of autoimmune cholangitis results in defective regulatory function. This highlights a new potential therapeutic target in PBC.
Collapse
|
43
|
Zheng J, Wang T, Zhang L, Cui L. Dysregulation of Circulating Tfr/Tfh Ratio in Primary biliary cholangitis. Scand J Immunol 2017; 86:452-461. [PMID: 28941291 DOI: 10.1111/sji.12616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells are critical for the development and maintenance of germinal centre (GC) and humoral immune responses. Accumulating evidence has demonstrated that the dysregulation of either Tfh cells or Tfr cells contributes to the pathogenesis of autoimmune diseases. We aim to investigate the roles of circulating Tfh cells and circulating Tfr cells in the pathogenesis of primary biliary cholangitis (PBC). A total of 34 patients with PBC and 27 health individuals were enrolled in this study. Flow cytometry revealed that circulating Tfh (CD4+ CXCR5+ CD127hi CD25lo ) cells were increased, but Tfr (CD4+ CXCR5+ CD127lo CD25hi ) cells and ratio of Tfr/Tfh were dramatically decreased in PBC patients compared with healthy controls. The Tfr/Tfh ratio was negatively correlated with level of serum IgM. Meanwhile, we also observed effector memory (CCR7lo PD-1hi ) Tfh cells and Tfr cells were dramatically increased, but central memory (CCR7hi PD-1lo ) Tfh cells and Tfr cells were decreased in PBC patients compared with healthy controls. Effector memory Tfr cells were positively correlated with level of serum ALP. These results indicate that an imbalance of circulating Tfr cells and Tfh cells may be involved in the immunopathogenesis of PBC and may provide novel insight for the development of PBC therapies.
Collapse
Affiliation(s)
- J Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - T Wang
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - L Zhang
- Department of Gastroenterology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| | - L Cui
- Department of Laboratory Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 10019, P R, China
| |
Collapse
|
44
|
Chronic Autoimmune Epithelitis in Sjögren's Syndrome and Primary Biliary Cholangitis: A Comprehensive Review. Rheumatol Ther 2017; 4:263-279. [PMID: 28791611 PMCID: PMC5696286 DOI: 10.1007/s40744-017-0074-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Within the spectrum of autoimmune diseases, Sjögren's syndrome and primary biliary cholangitis are exemplary and can be coined as chronic epithelitis based on their frequent coexistence in clinical practice and the highly specific immune-mediated injury of the small bile ducts and the exocrine glands. The pathogenic mechanisms underlying the diseases are similar, with apoptosis being the key element leading to organ-specific immune-mediated injury directed against the small bile ducts and salivary gland epithelia, respectively along with similar epidemiological features, such as female predominance and the age of onset in the fifth decade of life. Indeed, novel insights into the pathogenesis of the diseases have been obtained in recent years, including a better definition of the role of B and T cells, particularly Th17 cells, and the mechanisms of autoantibody-mediated tissue injury, with anti-mitochondrial antibodies and SS-A/SS-B being identified as specific for primary biliary cholangitis and Sjögren's syndrome, respectively. These findings have opened the possibility to new targeted therapies, but most clinical needs remain unmet, particularly from a therapeutic standpoint where options diverge, with bile acids being the predominant treatment strategy in primary biliary cholangitis and immunomodulators being used to treat Sjögren's syndrome. Here we provide a comprehensive review of the most recent findings on the pathogenesis, clinical manifestations and therapeutic options for Sjögren's syndrome and primary biliary cholangitis, respectively, while stressing the common traits between these conditions. Our cumulative hypothesis is that similarities outnumber differences and that this may prove advantageous towards a better management of patients.
Collapse
|
45
|
Ali AH, Tabibian JH, Carey EJ, Lindor KD. Emerging drugs for the treatment of Primary Biliary Cholangitis. Expert Opin Emerg Drugs 2016; 21:39-56. [PMID: 26901615 DOI: 10.1517/14728214.2016.1150999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is an autoimmune chronic disease of the liver that can progress to cirrhosis and hepatocellular carcinoma. It affects approximately 1 in 4,000 with a 10:1 female to male ratio. The diagnosis of PBC can be made based on serum antimitochondrial antibodies (AMA) in a patient with abnormally high serum alkaline phosphatase after ruling out other causes of cholestasis and biliary obstruction. Genome-wide association studies have revealed several human leukocyte antigen (HLA) and non-HLA risk loci in PBC, and complex environmental-host immunogenetic interactions are believed to underlie the etiopathogenesis of the disease. Fatigue and pruritus are the most common and often problematic symptoms; although often mild, these can be severe and life-alternating in a subset of patients. Ursodeoxycholic acid (UDCA) is the only drug approved by the United States Food and Drug Administration for the treatment of PBC. Clinical trials have shown that UDCA significantly improves transplant-free survival. However, nearly 40% of PBC patients do not respond adequately to PBC and are at higher risk for serious complications when compared to PBC patients with complete response to UDCA. AREAS COVERED Here we provide a detailed discussion regarding novel therapeutic agents and potential areas for further investigation in PBC-related research. EXPERT OPINION Results of ongoing clinical trials and emerging treatment paradigms for PBC will likely further improve medical management of this disorder in the near future.
Collapse
|
46
|
Dual Roles of IFN-γ and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine. Sci Rep 2016; 6:34884. [PMID: 27721424 PMCID: PMC5056512 DOI: 10.1038/srep34884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022] Open
Abstract
Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease with a long natural history. The pathogenesis of PBC is thought to be orchestrated by Th1 and/or Th17. In this study, we investigated the role of CD4+ helper T subsets and their cytokines on PBC using our previous established murine model of 2-OA-OVA immunization. We prepared adeno-associated virus (AAV)-IFN-γ and AAV-IL-4 and studied their individual influences on the natural history of autoimmune cholangitis in this model. Administration of IFN-γ significantly promotes recruitment and lymphocyte activation in the earliest phases of autoimmune cholangitis but subsequently leads to downregulation of chronic inflammation through induction of the immunosuppressive molecule IL-30. In contrast, the administration of IL-4 does not alter the initiation of autoimmune cholangitis, but does contribute to the exacerbation of chronic liver inflammation and fibrosis. Thus Th1 cells and IFN-γ are the dominant contributors in the initiation phase of this model but clearly may have different effects as the disease progress. In conclusion, better understanding of the mechanisms by which helper T cells function in the natural history of cholangitis is essential and illustrates that precision medicine may be needed for patients with PBC at various stages of their disease process.
Collapse
|
47
|
Lleo A, Bian Z, Zhang H, Miao Q, Yang F, Peng Y, Chen X, Tang R, Wang Q, Qiu D, Fang J, Sobacchi C, Villa A, Di Tommaso L, Roncalli M, Gershwin ME, Ma X, Invernizzi P. Quantitation of the Rank-Rankl Axis in Primary Biliary Cholangitis. PLoS One 2016; 11:e0159612. [PMID: 27631617 PMCID: PMC5025177 DOI: 10.1371/journal.pone.0159612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
There is substantial data that suggests an abnormality of innate immunity in patients with primary biliary cholangitis (PBC) which includes the transcription factor nuclear factor-kB (NF-kB) and well as downstream inflammatory signaling pathways. In addition, ImmunoChip analysis has identified a novel PBC-associated locus near the receptor activator of NF-kB ligand (RANKL) gene. Based on these observations, we investigated the role of the RANKL axis in the liver of patients with PBC compared to controls. We used immunohistochemistry to quantitate liver expression of RANKL, its receptor (RANK), and importantly the decoy receptor osteoprotegerin (OPG), including a total of 122 liver samples (PBC = 37, primary sclerosing cholangitis = 20, autoimmune hepatitis = 26, chronic hepatitis B = 32 and unaffected controls = 7). In addition, we studied RANKL-RANK-OPG co-localization in CD4 and CD8 T cells, B cells, dendritic cells, macrophages, NK, NKT cells, hepatocytes, and cholangiocytes. We report herein that RANK is constitutively expressed by cholangiocytes in both unaffected and diseased liver. However, cholangiocytes from PBC express significantly higher levers of RANK than either the unaffected controls or liver diseased controls. CD4, CD8 and CD19 cells with in the portal areas around bile ducts in PBC express significantly higher levels of RANKL compared to controls. Importantly, the overall hepatic RANKL level and the ratio of hepatic RANKL/OPG correlated with disease severity in PBC. In conclusion, our data indicate a role of RANK-RANKL axis in the innate immune activation in PBC and we hypothesize that the damaged cholangiocytes, which express high levels of RANK, lead to the recruitment of RANKL positive cells and ultimately the classic portal tract infiltrates.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Zhaolian Bian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiyan Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Fang Yang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaoyu Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruqi Tang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dekai Qiu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States of America
- * E-mail: (MEG); (PI); (XM)
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
- * E-mail: (MEG); (PI); (XM)
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States of America
- International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- * E-mail: (MEG); (PI); (XM)
| |
Collapse
|
48
|
Hua F, Wang L, Rong X, Hu Y, Zhang JM, He W, Zhang FC. Elevation of Vδ1 T cells in peripheral blood and livers of patients with primary biliary cholangitis. Clin Exp Immunol 2016; 186:347-355. [PMID: 27543908 DOI: 10.1111/cei.12852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
Primary biliary cholangitis (PBC), hitherto called primary biliary cirrhosis, is a cholestatic liver disease of unclear aetiology with autoimmune features. Accumulating evidence revealed that γδ T cells were involved in the development of autoimmune diseases. As one of γδ T cells subsets, however, the role of Vδ1 T cells in the immunopathogenesis of PBC is poorly understood. We analysed peripheral blood Vδ1 T cells in PBC patients in active stage (ASP, n = 18), adequate responders (AR, n = 10) and inadequate responders (IAR, n = 4) to ursodeoxycholic acid (UDCA) and an age-matched healthy control group (n = 16) by flow cytometric analysis. The ASP group exhibited a significantly higher proportion and absolute number of Vδ1 T cells, which were also observed in immunofluorescence staining of liver biopsy specimens of PBC patients. Moreover, these Vδ1 T cells expressed a series of activation markers and intracellular cytokines, which may contribute to the immunopathogenesis of PBC. Our study will help to clarify the role of Vδ1 T cells in the development of PBC.
Collapse
Affiliation(s)
- F Hua
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education
| | - L Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education
| | - X Rong
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education
| | - Y Hu
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology, Beijing, China
| | - J M Zhang
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology, Beijing, China
| | - W He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology, Beijing, China
| | - F C Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education
| |
Collapse
|
49
|
Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y, Nakamura M, Bekki Y, Yoshizumi T, Ikegami T, Maehara Y, He XS, Gershwin ME, Akashi K. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 2016; 75:150-160. [PMID: 27592379 DOI: 10.1016/j.jaut.2016.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms of chronic inflammation in primary biliary cholangitis (PBC) is essential for successful treatment. Earlier work has demonstrated that patients with PBC have reduced expression of the anion exchanger 2 (AE2) on biliary epithelial cells (BEC) and deletion of AE2 gene has led to a PBC-like disorder in mice. To directly address the role of AE2 in preventing PBC pathogenesis, we took advantage of our ability to isolate human BEC and autologous splenic mononuclear cells (SMC). We studied the influence of hydrophobic bile acids, in particular, glycochenodeoxycholic acid (GCDC), on AE2 expression in BEC and the subsequent impact on the phenotypes of BEC and local inflammatory responses. We demonstrate herein that GCDC reduces AE2 expression in BEC through induction of reactive oxygen species (ROS), which enhances senescence of BEC. In addition, a reduction of AE2 levels by either GCDC or another AE2 inhibitor upregulates expression of CD40 and HLA-DR as well as production of IL-6, IL-8 and CXCL10 from BEC in response to toll like receptor ligands, an effect suppressed by inhibition of ROS. Importantly, reduced AE2 expression enhances the migration of autologous splenic mononuclear cells (SMC) towards BEC. In conclusion, our data highlight a key functional role of AE2 in the maintenance of the normal physiology of BEC and the pathogenic consequences of reduced AE2 expression, including abnormal intrinsic characteristics of BEC and their production of signal molecules that lead to the chronic inflammatory responses in small bile ducts.
Collapse
Affiliation(s)
- Satomi Hisamoto
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - Sho Iwasaka
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinya Onohara
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yong Chong
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minoru Nakamura
- Clinical Research Center in National Hospital Organization (NHO), Nagasaki Medical Center and Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California at Davis, Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California at Davis, Davis, CA, USA.
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
50
|
Yang GX, Sun Y, Tsuneyama K, Zhang W, Leung PSC, He XS, Ansari AA, Bowlus C, Ridgway WM, Gershwin ME. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice. Clin Exp Immunol 2016; 185:154-64. [PMID: 27148790 PMCID: PMC4955007 DOI: 10.1111/cei.12806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation.
Collapse
Affiliation(s)
- G-X Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Y Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302nd Military Hospital, Beijing, China
| | - K Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - W Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - P S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - X-S He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - A A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA, USA
| | - W M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|