1
|
Poch T, Bahn J, Casar C, Krause J, Evangelakos I, Gilladi H, Kunzmann LK, Laschtowitz A, Iuso N, Schäfer AM, Liebig LA, Steinmann S, Sebode M, Folseraas T, Engesæter LK, Karlsen TH, Franke A, Hubner N, Schlein C, Galun E, Huber S, Lohse AW, Gagliani N, Schwinge D, Schramm C. Intergenic risk variant rs56258221 skews the fate of naive CD4 + T cells via miR4464-BACH2 interplay in primary sclerosing cholangitis. Cell Rep Med 2024; 5:101620. [PMID: 38901430 PMCID: PMC11293351 DOI: 10.1016/j.xcrm.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Collapse
Affiliation(s)
- Tobias Poch
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Bahn
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Ioannis Evangelakos
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hilla Gilladi
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Lilly K Kunzmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicola Iuso
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne-Marie Schäfer
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura A Liebig
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Silja Steinmann
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Trine Folseraas
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Lise K Engesæter
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Tom H Karlsen
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Norwegian PSC Research Centre, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Samuel Huber
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Department for General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17177 Solna, Sweden
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; European Reference Network for Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany; Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
2
|
Song B, Hou G, Xu M, Chen M. Exosomal miR-122-3p represses the growth and metastasis of MCF-7/ADR cells by targeting GRK4-mediated activation of the Wnt/β-catenin pathway. Cell Signal 2024; 117:111101. [PMID: 38365112 DOI: 10.1016/j.cellsig.2024.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3' UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/β-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7 cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.
Collapse
Affiliation(s)
- Binbin Song
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.; Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guoxin Hou
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Maoyi Xu
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Ming Chen
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China..
| |
Collapse
|
3
|
Dai J, Hao Y, Chen X, Yu Q, Wang B. miR‑122/SENP1 axis confers stemness and chemoresistance to liver cancer through Wnt/β‑catenin signaling. Oncol Lett 2023; 26:390. [PMID: 37559577 PMCID: PMC10407855 DOI: 10.3892/ol.2023.13976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 08/11/2023] Open
Abstract
The property of inherent stemness of tumor cells coupled with the development of chemoresistance results in a poor prognosis for patients with liver cancer. Therefore, the present study focused on microRNA (miR)-122, a potential tumor suppressor, the expression of which has been previously shown to be significantly decreased and negatively associated with cancer cell stemness in liver cancer. The present study aimed to identify the molecular targets of miR-122 whilst uncovering the mechanism underlying chemoresistance and stemness of HepG2 cells in liver cancer. Bioinformatics online tools, such as ENCORI, coupled with dual-luciferase reporter assays in HepG2 cells, were used to identify and validate small ubiquitin-like modifier (SUMO) specific peptidase 1 (SENP1) as a potential target of miR-122 in liver cancer. The liver cancer stem cell population was determined using sphere formation assays and flow cytometry, whilst stem cell markers (Oct3/4, Nanog, B lymphoma Mo-MLV insertion region 1 homolog and Notch1) were detected by reverse transcription-quantitative PCR. Chemoresistance, cell proliferation and migratory ability of HepG2 cells were monitored using Cell Counting Kit-8, colony formation and Transwell assays, respectively. The overexpression of miR-122 by mimic transfection led to a significant decrease in the number spheres, downregulation of stem cell marker expression, the number of CD24+ cells, drug-resistance protein levels (P-glycoprotein and multidrug resistance protein), impaired chemoresistance, proliferation and migration of HepG2 cells. The transfection of SENP1 overexpression vector resulted in contrasting functions to miR-122 mimics, by partially reversing the effects induced by miR-122 mimic transfection in HepG2 cells. Wnt/β-catenin signaling has been proven to be involved in cancer stemness and malignant behavior. Western blotting analysis in HepG2 cells showed that the expression levels of both Wnt1 and β-catenin were significantly reduced after overexpressing miR-122, but increased after overexpressing SENP1. Co-transfection with the SENP1 overexpression vector reversed the suppression induced by the miR-122 mimics on Wnt1 and β-catenin expression. Co-immunoprecipitation, SUMOylation and half-life assays showed SENP1 interacted with β-catenin and decreased the SUMOylation of β-catenin, thereby enhancing its stability. Finally, tumor xenograft analyses revealed that HepG2 cells transfected with Agomir-122 exerted significantly lower tumor initiation frequency and growth rate, and a superior response to DOX in vivo, compared with those transfected with Agomir NC. Taken together, data from the present study miR-122/SENP1 axis can regulate β-catenin stability through de-SUMOylation, thereby promoting stemness and chemoresistance in liver cancer.
Collapse
Affiliation(s)
- Jianbo Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400060, P.R. China
- Department of General Surgery, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Yaqin Hao
- Department of Gastroenterology, The Fifth People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Xun Chen
- Department of Anesthesiology, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Qingsan Yu
- Department of General Surgery, Nan'an District People's Hospital of Chongqing, Chongqing 400060, P.R. China
| | - Bin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400060, P.R. China
- Department of General Surgery, Chongqing Hospital of Integrated Traditional Chinese and Western Medicine, Chongqing 400060, P.R. China
| |
Collapse
|
4
|
Non-Coding RNAs in Hepatocellular Carcinoma. LIVERS 2022. [DOI: 10.3390/livers2030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liver cancer ranks as the fourth leading cause of cancer-related deaths. Despite extensive research efforts aiming to evaluate the biological mechanisms underlying hepatocellular carcinoma (HCC) development, little has been translated towards new diagnostic and treatment options for HCC patients. Historically, the focus has been centered on coding RNAs and their respective proteins. However, significant advances in sequencing and RNA detection technologies have shifted the research focus towards non-coding RNAs (ncRNA), as well as their impact on HCC development and progression. A number of studies reported complex post-transcriptional interactions between various ncRNA and coding RNA molecules. These interactions offer insights into the role of ncRNAs in both the known pathways leading to oncogenesis, such as dysregulation of p53, and lesser-known mechanisms, such as small nucleolar RNA methylation. Studies investigating these mechanisms have identified prevalent ncRNA changes in microRNAs, snoRNAs, and long non-coding RNAs that can both pre- and post-translationally regulate key factors in HCC progression. In this review, we present relevant publications describing ncRNAs to summarize the impact of different ncRNA species on liver cancer development and progression and to evaluate recent attempts at clinical translation.
Collapse
|
5
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
6
|
The diagnostic utility of microRNA 222-3p, microRNA 21-5p, and microRNA 122-5p for HCV-related hepatocellular carcinoma and its relation to direct-acting antiviral therapy. Arab J Gastroenterol 2022; 23:108-114. [DOI: 10.1016/j.ajg.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
7
|
Pan Y, Zhan L, Chen L, Chen L, Sun C. miR-660 promotes liver cancer cell proliferation by targeting PPP2R2A. Exp Ther Med 2021; 22:683. [PMID: 33986848 DOI: 10.3892/etm.2021.10115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Liver cancer (LC) is the leading cause for tumor-related death worldwide, and microRNAs (miRs) have been demonstrated to regulate the progression of LC. In the current study, the function of miR-660 in LC cells was investigated, and the results indicated that miR-660 was highly expressed in LC tissues and cells. This increased expression promoted LC cell proliferation and increased the percentage of S phase cells, while miR-660 knockdown inhibited cell proliferation and increased the percentage of G0/G1 phase cells. A Ser/Thr phosphatase protein phosphatase 2 regulatory subunit βα (PPP2R2A) was indicated as the target of miR-660, and miR-660 could inhibit PPP2R2A levels. The luciferase reporter assay suggested that miR-660 directly bound to the 3'-untranslated region of PPP2R2A. Additionally, it was revealed that miR-660 inhibited p21 expression and promoted cyclin D1 expression, confirming that miR-660 regulated LC cell proliferation by regulating cell cycle progression. The double knockdown of miR-660 and PPP2R2A promoted LC cell proliferation, suggesting that miR-660 promoted LC proliferation by targeting PPP2R2A.
Collapse
Affiliation(s)
- Yaozhen Pan
- Department of Biliary-Hepatic Surgery, The Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R China.,Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Lei Zhan
- Department of Biliary-Hepatic Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R China
| | - Ling Chen
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Liwen Chen
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Chengyi Sun
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| |
Collapse
|
8
|
Chen E, Li E, Liu H, Zhou Y, Wen L, Wang J, Wang Y, Ye L, Liang T. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int J Biol Sci 2021; 17:781-795. [PMID: 33767588 PMCID: PMC7975695 DOI: 10.7150/ijbs.52517] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
Multi-drug resistance is a major challenge to hepatocellular carcinoma (HCC) treatment, and the over-expression or deletion of microRNA (miRNA) expression is closely related to the drug-resistant properties of various cell lines. However, the underlying molecular mechanisms remain unclear. CCK-8, EdU, flow cytometry, and transmission electron microscopy were performed to determine cell viability, proliferation, apoptosis, autophagic flow, and nanoparticle characterization, respectively. In this study, the results showed that the expression of miR-26b was downregulated following doxorubicin treatment in human HCC tissues. An miR-26b mimic enhanced HCC cell doxorubicin sensitivity, except in the absence of p53 in Hep3B cells. Delivery of the proteasome inhibitor, MG132, reversed the inhibitory effect of miR-26b on the level of p53 following doxorubicin treatment. Tenovin-1 (an MDM2 inhibitor) protected p53 from ubiquitination-mediated degradation only in HepG2 cells with wild type p53. Tenovin-1 pretreatment enhanced HCC cell resistance to doxorubicin when transfected with an miR-26b mimic. Moreover, the miR-26b mimic inhibited doxorubicin-induced autophagy and the autophagy inducer, rapamycin, eliminated the differences in the drug sensitivity effect of miR-26b. In vivo, treatment with sp94dr/miR-26b mimic nanoparticles plus doxorubicin inhibited tumor growth. Our current data indicate that miR-26b enhances HCC cell sensitivity to doxorubicin through diminishing USP9X-mediated p53 de-ubiquitination caused by DNA damaging drugs and autophagy regulation. This miRNA-mediated pathway that modulates HCC will help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Enjiang Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Liu
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Disease, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
9
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Huang R, Bai C, Liu X, Zhou Y, Hu S, Li D, Xiang J, Chen J, Zhou P. The p53/RMRP/miR122 signaling loop promotes epithelial-mesenchymal transition during the development of silica-induced lung fibrosis by activating the notch pathway. CHEMOSPHERE 2021; 263:128133. [PMID: 33297121 DOI: 10.1016/j.chemosphere.2020.128133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding the roles of long noncoding RNAs (lncRNAs) in EMT would help with establishing novel avenues for further uncovering the mechanisms of lung fibrosis and identifying preventative and therapeutic targets. This study aimed to identify silica-induced specific lncRNAs and investigate the feedback loop regulation among their upstream and downstream genes. METHODS AND MATERIALS A microarray assay, quantitative real-time polymerase chain reaction and Western blot analysis dual-luciferase reporter gene activity and chromatin immunoprecipitation assays were used. Moreover, a silica-induced lung fibrosis mouse model was used to verify the roles of the lncRNAs. RESULTS Following silica exposure, both RNA component of mitochondrial RNA processing endoribonuclease (RMRP) and p53 were significantly upregulated during the EMT. The upregulation of p53 upon silica exposure activated RMRP expression, which promoted the EMT. When RMRP is overexpressed, additional RMRP acts as a sponge to bind to miR122, thus decreasing miR122 levels. Using microarrays, miR122 was identified as a potential upstream regulator of p53. This relationship was also verified using the dual-luciferase reporter gene. Hence, decreased miR122 levels result in an increase in p53 activity. More importantly, RMRP promotes the transcription of Notch 1, which, in turn, results in Notch pathway activation. We show that the p53/RMRP/miR122 pathway creates a positive feedback loop that promotes EMT progress by activating the Notch signaling pathway. CONCLUSION Our data indicated that p53/RMRP/miR122 feedback loop might contribute to the EMT development by activating Notch pathway, which provides new sight into understanding of the complex network regulating silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Sai Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Decheng Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 410078, Changsha, 63455553, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
11
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
12
|
Chai C, Cox B, Yaish D, Gross D, Rosenberg N, Amblard F, Shemuelian Z, Gefen M, Korach A, Tirosh O, Lanton T, Link H, Tam J, Permyakova A, Ozhan G, Citrin J, Liao H, Tannous M, Hahn M, Axelrod J, Arretxe E, Alonso C, Martinez-Arranz I, Betés PO, Safadi R, Salhab A, Amer J, Tber Z, Mengshetti S, Giladi H, Schinazi RF, Galun E. Agonist of RORA Attenuates Nonalcoholic Fatty Liver Progression in Mice via Up-regulation of MicroRNA 122. Gastroenterology 2020; 159:999-1014.e9. [PMID: 32450149 PMCID: PMC7722250 DOI: 10.1053/j.gastro.2020.05.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced β-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.
Collapse
Affiliation(s)
- Chofit Chai
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Bryan Cox
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Dayana Yaish
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Devora Gross
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Nofar Rosenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Franck Amblard
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Zohar Shemuelian
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Maytal Gefen
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amit Korach
- Cardiothoracic Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Lanton
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Henrike Link
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Multidisciplinary Center for Cannabinoid Research, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Multidisciplinary Center for Cannabinoid Research, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Jonathan Citrin
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Haixing Liao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mirna Tannous
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Michal Hahn
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Rifaat Safadi
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ahmad Salhab
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Johnny Amer
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Zahira Tber
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Seema Mengshetti
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Hilla Giladi
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Raymond F. Schinazi
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
13
|
Khandelwal N, Chander Y, Kumar R, Riyesh T, Dedar RK, Kumar M, Gulati BR, Sharma S, Tripathi BN, Barua S, Kumar N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res 2020; 181:104870. [PMID: 32707051 DOI: 10.1016/j.antiviral.2020.104870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.
Collapse
Affiliation(s)
- Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India; Department of Biotechnology, GLA University, Mathura, UP, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- Equine Production Campus, ICAR-National Research Centre on Equines, Hisar, India
| | - Manoj Kumar
- Department of Mathematics and Statistics, College of Basic Science and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Baldev R Gulati
- Equine Health Unit, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| |
Collapse
|
14
|
Yamashita H, Surapureddi S, Kovi RC, Bhusari S, Ton TV, Li JL, Shockley KR, Peddada SD, Gerrish KE, Rider CV, Hoenerhoff MJ, Sills RC, Pandiri AR. Unique microRNA alterations in hepatocellular carcinomas arising either spontaneously or due to chronic exposure to Ginkgo biloba extract (GBE) in B6C3F1/N mice. Arch Toxicol 2020; 94:2523-2541. [PMID: 32306082 DOI: 10.1007/s00204-020-02749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Ginkgo biloba extract (GBE) is used in traditional Chinese medicine as a herbal supplement for improving memory. Exposure of B6C3F1/N mice to GBE in a 2-year National Toxicology Program (NTP) bioassay resulted in a dose-dependent increase in hepatocellular carcinomas (HCC). To identify key microRNAs that modulate GBE-induced hepatocarcinogenesis, we compared the global miRNA expression profiles in GBE-exposed HCC (GBE-HCC) and spontaneous HCC (SPNT-HCC) with age-matched vehicle control normal livers (CNTL) from B6C3F1/N mice. The number of differentially altered miRNAs in GBE-HCC and SPNT-HCC was 74 (52 up and 22 down) and 33 (15 up and 18 down), respectively. Among the uniquely differentially altered miRNAs in GBE-HCC, miR-31 and one of its predicted targets, Cdk1 were selected for functional validation. A potential miRNA response element (MRE) in the 3'-untranslated regions (3'-UTR) of Cdk1 mRNA was revealed by in silico analysis and confirmed by luciferase assays. In mouse hepatoma cell line HEPA-1 cells, we demonstrated an inverse correlation between miR-31 and CDK1 protein levels, but no change in Cdk1 mRNA levels, suggesting a post-transcriptional effect. Additionally, a set of miRNAs (miRs-411, 300, 127, 134, 409-3p, and 433-3p) that were altered in the GBE-HCCs were also altered in non-tumor liver samples from the 90-day GBE-exposed group compared to the vehicle control group, suggesting that some of these miRNAs could serve as potential biomarkers for GBE exposure or hepatocellular carcinogenesis. These data increase our understanding of miRNA-mediated epigenetic regulation of GBE-mediated hepatocellular carcinogenesis in B6C3F1/N mice.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Ginkgo biloba
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plant Extracts/toxicity
- Time Factors
- Transcriptome
Collapse
Affiliation(s)
- Haruhiro Yamashita
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Frontier Research Center, Taisho Pharmaceutical Co. Ltd, Tokyo, 100-6609, Japan
| | - Sailesh Surapureddi
- Signal Transduction Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- United States Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA
| | - Ramesh C Kovi
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, 27709, USA
| | - Sachin Bhusari
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, 1 Coca Cola Plaza, NW, Atlanta, GA, USA
| | - Thai Vu Ton
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
- Department of Biostatistics, University of Pittsburgh, 7126 Public Health, 130 DeSoto Street, Pittsburgh, PA, 1526, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, DIR, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Cynthia V Rider
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
15
|
Wang JW, Qian Y, Wu CS, Zhao NH, Fang Y, Yuan XD, Gao S, Fan YC, Wang K. Combined use of murine double minute-2 promoter methylation and serum AFP improves diagnostic efficiency in hepatitis B virus-related hepatocellular carcinoma. Int J Med Sci 2020; 17:3190-3199. [PMID: 33173438 PMCID: PMC7646102 DOI: 10.7150/ijms.47003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/07/2020] [Indexed: 11/05/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) accounts for approximately 85% of all cases of liver cancer. In China, chronic hepatitis B virus-related HCC (HBV-related HCC) is the most common type of HCC. However, the majority of HBV-related HCC patients are asymptomatic, and the best opportunities for treating these patients are missed. The precise diagnosis of HBV-related HCC is crucial. The main purpose of this study was to evaluate the diagnostic value of murine double minute-2 (MDM2) promoter methylation in HBV-related HCC patients. Methods: The methylation status of the MDM2 promoter was detected by methylation-specific PCR. The MDM2 expression levels were validated by quantitative real-time PCR. Enzyme-linked immunosorbent assay was used to determine the levels of interleukin-6 (IL-6) and tumor-necrosis factor-α (TNF-α) in plasma. Results: The methylation frequency of the MDM2 promoter was decreased in HBV-related HCC patients. The MDM2 mRNA levels of patients with HBV-related HCC were higher than those of patients with liver cirrhosis and chronic hepatitis B. The plasma levels of IL-6 and TNF-α were significantly higher in HBV-related HCC patients than that in liver cirrhosis and chronic hepatitis B patients. The TNF-α levels were higher in the unmethylated MDM2 promoter group than in the methylated MDM2 promoter group in HBV-related HCC patients. Moreover, the combination of MDM2 promoter methylation and alpha-fetoprotein (AFP) improved the diagnosis of HBV-related HCC. Conclusions: Our study indicates, for the first time, that MDM2 promoter hypomethylation is present in HBV-related HCC patients. The combination of MDM2 promoter methylation and AFP can greatly improve diagnostic efficiency in HBV-related HCC, which might provide a new method for HBV-related HCC diagnosis.
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ning-Hui Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China.,Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China.,Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
17
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
18
|
Liu YX, Bai JX, Li T, Fu XQ, Chen YJ, Zhu PL, Chou JY, Yin CL, Li JK, Wang YP, Wu JY, Yu ZL. MiR-let-7a/f-CCR7 signaling is involved in the anti-metastatic effects of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos in melanoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153084. [PMID: 31514083 DOI: 10.1016/j.phymed.2019.153084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metastasized melanoma is extremely difficult to treat. Activation of C-C chemokine receptor type 7 (CCR7) has been linked to melanoma metastasis. CCR7 can be directly regulated by miR-let-7. We have previously shown that an ethanolic extract of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos (SLE) inhibits melanoma cell migration and invasion. PURPOSE In this study, we determined whether SLE suppresses melanoma metastasis, and whether regulation of miR-let-7a/f-CCR7 signaling is involved in the effect. STUDY DESIGN AND METHODS Small RNA sequencing was conducted to compare miRNA expression profiles of B16F10 tumors dissected from SLE-treated or untreated mice. Western blot and RT-qPCR analyses were employed to examine protein and miRNA levels, respectively. A B16F10 melanoma lung metastasis mouse model was used to evaluate the effects of SLE on melanoma metastasis. MiR-let-7a/f-knockdown and CCR7-overexpression cell models were used to investigate the involvement of miR-let-7a/f-CCR7 signaling in the anti-metastatic effects of SLE. RESULTS It was found that SLE upregulated levels of miR-let-7a/f in B16F10 melanoma tissues. SLE significantly elevated levels of miR-let-7a/f, lowered the protein level of CCR7, inhibited the phosphorylation of CCR7 downstream molecules p38 and JNK in B16F10 and A375 melanoma cells. SLE inhibited B16F10 melanoma lung metastasis in mice. SLE upregulated levels of miR-let-7a/f, and lowered protein levels of CCR7, MMP-2, MMP-9, phospho-p38 (Thr180/Tyr182) and phospho-JNK (Thr183/Tyr185) in melanoma-invaded lung tissues. Knockdown of miR-let-7a/f diminished the effects of SLE on CCR7 signaling in, and invasion of, melanoma cells. Overexpression of CCR7 lessened the effects of SLE in inhibiting the phosphorylation of p38 and JNK in, and the invasive capability of, melanoma cells. CONCLUSION We for the first time demonstrated that SLE inhibits melanoma metastasis in mice, and that regulation of the miR-let-7a/f-CCR7 pathway contributes to the anti-metastatic mechanisms of SLE. These findings provide a pharmacological basis for developing SLE as a modern agent for treating metastatic melanoma. Additionally and importantly, this study suggests that regulating the miR-let-7a/f-CCR7 pathway is a novel strategy for controlling melanoma metastasis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lonicera
- Lung Neoplasms/drug therapy
- Lung Neoplasms/secondary
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Sophora/chemistry
Collapse
Affiliation(s)
- Yu-Xi Liu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jia-Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
19
|
Maximov VV, Akkawi R, Khawaled S, Salah Z, Jaber L, Barhoum A, Or O, Galasso M, Kurek KC, Yavin E, Aqeilan RI. MiR-16-1-3p and miR-16-2-3p possess strong tumor suppressive and antimetastatic properties in osteosarcoma. Int J Cancer 2019; 145:3052-3063. [PMID: 31018244 DOI: 10.1002/ijc.32368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is an aggressive malignancy affecting mostly children and adolescents. MicroRNAs (miRNAs) play important roles in OS development and progression. Here we found that miR-16-1-3p and miR-16-2-3p "passenger" strands, as well as the "lead" miR-16-5p strand, are frequently downregulated and possess strong tumor suppressive functions in human OS. Furthermore, we report different although strongly overlapping functions for miR-16-1-3p and miR-16-2-3p in OS cells. Ectopic expression of these miRNAs affected primary tumor growth, metastasis seeding and chemoresistance and invasiveness of human OS cells. Loss-of-function experiments verified tumor suppressive functions of these miRNAs at endogenous levels of expression. Using RNA immunoprecipitation (RIP) assays, we identify direct targets of miR-16-1-3p and miR-16-2-3p in OS cells. Moreover, validation experiments identified FGFR2 as a direct target for miR-16-1-3p and miR-16-2-3p. Overall, our findings underscore the importance of passenger strand miRNAs, at least some, in osteosarcomagenesis.
Collapse
Affiliation(s)
- Vadim V Maximov
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel
| | - Rania Akkawi
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel
| | - Saleh Khawaled
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel
| | - Zaidoun Salah
- Al Quds-Bard College, Al-Quds University, Al-Bireh, East Jerusalem, Palestine
| | - Lina Jaber
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel
| | - Ahlam Barhoum
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel
| | - Omer Or
- Department of Orthopedics Surgery, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Marco Galasso
- Biosystems Analysis, LTTA, Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, Ferrara, Italy
| | - Kyle C Kurek
- Department of Pathology and Medical Genetics Cumming School of Medicine, University of Calgary, Alberta Children's Hospital & Research Institute, Calgary, AB, Canada
| | - Eylon Yavin
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, The Hebrew University-Hadassah Medical School at Ein-Kerem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
20
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
21
|
Que KT, Zhou Y, You Y, Zhang Z, Zhao XP, Gong JP, Liu ZJ. MicroRNA-31-5p regulates chemosensitivity by preventing the nuclear location of PARP1 in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:268. [PMID: 30400960 PMCID: PMC6219257 DOI: 10.1186/s13046-018-0930-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) posttranscriptionally regulate gene expression and thereby contribute to the modulation of numerous complex and disease-relevant cellular processes, including cell proliferation, cell motility, apoptosis and stress response. miRNA-31-5p is encoded on a genomic fragile site, 9p21.3, which is reportedly lost in many hepatocellular carcinoma (HCC) tumors. Based on previous findings, we hypothesized that miR-31-5p alters chemosensitivity and that miR-31-5p mimics may influence sensitivity to chemotherapeutics in HCC as well as in a variety of other cancers. METHODS MiR-31-5p and PARP1 in HCC tissues were tested by RT-PCR and histological analysis, respectively. Next, clonogenic assay and western blot were used to detect miR-31-5p and PARP1 to modulate sensitivity to OXA-based chemotherapy. The distribution of OXA in the nuclear and intracellular was detected by ICP-MS. Coimmunoprecipitation was used to characterize the protein-protein interaction between PARP1 and ABCB9. A xenograft nude mouse model was used to examine the in vivo effects of miR-31-5p. RESULTS Reintroduction of miR-31-5p into miR-31-5p-null Hep3B cells significantly enhanced clonogenic resistance to oxaliplatin. Although miR-31-5p re-expression increased chemoresistance, it paradoxically increased the relative intracellular accumulation of oxaliplatin. This effect was coupled with a significantly decreased intranuclear concentration of oxaliplatin by ICP-MS. miR-31-5p prevents the nuclear location of PARP1 detected by immunofluorescence, histological analysis and Western blotting analysis. We subsequently identified an indirect miR-31-5p-mediated upregulation of ABCB9, which is a transporter associated with drug accumulation in lysosomes, along with an increased uptake of oxaliplatin to lysosomes; these phenomena were associated with a downregulation of PARP1, a bipotential transcriptional regulator with multiple miR-31-5p binding sites. However, the indirect overexpression of ABCB9 promoted cellular chemosensitivity, suggesting that miR-31-5p promotes chemoresistance largely via an ABCB9-independent mechanism. CONCLUSIONS Overall, our data suggest that the loss of miR-31-5p from HCC tumors promotes chemosensitivity, and this knowledge may be prognostically beneficial in the context of therapeutic sensitivity.
Collapse
Affiliation(s)
- Ke-Ting Que
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yun Zhou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yu You
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhen Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Ping Zhao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zuo-Jin Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
22
|
Fu H, Zhang X, Wang Q, Sun Y, Liu L, Huang L, Ding L, Shen M, Zhang L, Duan Y. Simple and rational design of a polymer nano-platform for high performance of HCV related miR-122 reduction in the liver. Biomater Sci 2018; 6:2667-2680. [PMID: 30209483 DOI: 10.1039/c8bm00639c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
microRNA-122 (miR-122) is a kind of non-coding RNA expressed specifically in the liver and accumulating evidence elucidates its relationship with HCV virus replication. The utilization of anti-miRNA oligonucleotide (antimiR) offers tremendous potential for future HCV infection therapy. However, multiple existing problems, such as targeting and stability, impede in vivo application of antimiR. To overcome them, we synthesized monomethoxy (polyethylene glycol)-poly (d,l lactide-co-glycolide)-poly (l-lysine) (mPEG-b-PLGA-b-PLL) materials to deliver miR-122 antagomir (AN), and formed stable and well-distributed AN-loaded mPEG-b-PLGA-b-PLL nanoparticles (NP-AN). NP-AN showed a high degree of miR-122 inhibition after 72 h in vitro. In vivo results showed an NP-AN "leak" through a hepatic sinusoid to reach hepatocytes and over 90% reduction of miR-122 after being injected with NP-AN for 72 h. Besides, the inhibition of miR-122 lasted for 28 days with limited dosage in vivo. This study strongly suggests that the silencing of miR-122 was enhanced and the reduction of miR-122 expression could be extended by utilizing an mPEG-b-PLGA-b-PLL nano-platform, which potentially facilitate further studies on miRNA function loss and related RNAi therapy for HCV infection.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
You Y, Que K, Zhou Y, Zhang Z, Zhao X, Gong J, Liu Z. MicroRNA-766-3p Inhibits Tumour Progression by Targeting Wnt3a in Hepatocellular Carcinoma. Mol Cells 2018; 41:830-841. [PMID: 30145863 PMCID: PMC6182221 DOI: 10.14348/molcells.2018.0181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/09/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR-766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear β-catenin level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 up-regulation increased the nuclear β-catenin level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the β-catenin-TCF4 interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yu You
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Keting Que
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Yun Zhou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Zhen Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Xiaoping Zhao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Jianpin Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010,
China
| |
Collapse
|
24
|
Jiang XM, Yu XN, Liu TT, Zhu HR, Shi X, Bilegsaikhan E, Guo HY, Song GQ, Weng SQ, Huang XX, Dong L, Janssen HLA, Shen XZ, Zhu JM. microRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma. Biomed Pharmacother 2018; 105:1147-1154. [PMID: 30021351 DOI: 10.1016/j.biopha.2018.06.097] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023] Open
Abstract
microRNA-19a-3p (miR-19a-3p) has been reported to regulate cell proliferation in hepatocellular carcinoma (HCC), but its role in HCC metastasis remains unknown. In this study, miR-19a-3p was noted to be upregulated in HCC specimens and cell lines. Aberrant expression of miR-19a-3p stimulated HCC cell metastasis, and phosphatase and tensin homolog (PTEN) was shown to be a direct target of miR-19a-3p. miR-19a-3p-mediated HCC metastasis was reversed by restoration of PTEN or could be imitated by silencing of PTEN. Modulation of miR-19a-3p also altered expression of phosphorylated Akt, a downstream mediator of PTEN. Moreover, aberrant expression of miR-19a-3p induced sorafenib resistance by regulating the PTEN/Akt pathway. In conclusion, ectopic expression of miR-19a-3p contributes to HCC metastasis and chemoresistance by modulating PTEN expression and the PTEN-dependent pathways.
Collapse
Affiliation(s)
- Xue-Mei Jiang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiang-Nan Yu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hai-Rong Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xuan Shi
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | | | - Hong-Ying Guo
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Guang-Qi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Shu-Qiang Weng
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiao-Xi Huang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Harry L A Janssen
- Division of Gastroenterology, University of Toronto & University Health Network, Toronto, Canada
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Disease, Shanghai, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Li S, Yao J, Xie M, Liu Y, Zheng M. Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol 2018; 11:54. [PMID: 29642941 PMCID: PMC5896112 DOI: 10.1186/s13045-018-0579-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma remains the sixth most lethal malignancy in the world. While HCC is often diagnosed via current biomarkers at a late stage, early detection of HCC has proven to be very difficult. Recent studies have focused on using exosomal miRNAs in clinical diagnostics and therapeutics, because they have improved stability in exosomes than as free miRNAs themselves. Exosomal miRNAs act through novel mechanisms for inducing cellular responses in a variety of biological circumstances. Dysregulated expression of miRNAs in exosomes can also accelerate HCC progression, including cell proliferation and metastasis, via alteration of a network of genes. Growing evidence demonstrates that exosomal miRNAs can affect many aspects of physiological and pathological conditions in HCC and indicates that miRNAs in exosomes can not only serve as sensitive biomarkers for cancer diagnostics and recurrence but can also potentially be used as therapeutics to target HCC progression. In this review, we summarize the latest findings between exosomal miRNAs and HCC, in order to better comprehend the functions and applications in HCC. Moreover, we discuss critical issues to consider when developing anti-tumor exosomal miRNAs as a novel therapeutic strategy for treating HCC in the clinic.
Collapse
Affiliation(s)
- Shuangshuang Li
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiping Yao
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingjie Xie
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Zheng
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Xia L, Li D, Lin C, Ou S, Li X, Pan S. Comparative study of joint bioinformatics analysis of underlying potential of 'neurimmiR', miR-212-3P/miR-132-3P, being involved in epilepsy and its emerging role in human cancer. Oncotarget 2018; 8:40668-40682. [PMID: 28380454 PMCID: PMC5522300 DOI: 10.18632/oncotarget.16541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Considering the critical roles of miR-132/212 participated in central nervous system, many researches started to explored the contributions of miR-132/212 to epilepsy and achieve something worthwhile. Further illuminates all the genes targeted by miR-132/212 may be a valuable means for us to completely understand the working mechanism playing in epilepsy, by which it can influence diverse biological process. This study attempts to establish macrocontrol regulation system and knowledge that miR-212-3p/132-3p effected the epilepsy, for this literature search, miRbase, Vienna RNAfold webserver, Human miRNA tissue atlas, DIANA-TarBase, miRtarbase, STRING, TargetScanhuman, Cytoscape plugin ClueGO + Cluepedia+STRING, DAVID Bioinformatics Resources, Starbase, GeneCards suite and GEO database are comprehensive employed, miR-132-3p/212-3p and its target gene were found have highly expressed in brain and lots of molecular function and metabolic pathways associated with epilepsy may be intervened by it. Meanwhile, the emerging role of miR-132-3p/212-3p being involved in human cancer also been analyzed by several webtools for TCGA data integrative analysis, most remarkably and well worth exploring in our research conclusion that showed miR-132-3p/212-3p may be the core molecular underlying tumor-induced epileptogenesis.
Collapse
Affiliation(s)
- Lu Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| | - Daojiang Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Changwei Lin
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.,Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuchun Ou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| | - Xiaorong Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.,Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Provinces, China
| |
Collapse
|
27
|
Huang S, Liu Y, Xu X, Ji M, Li Y, Song C, Duan S, Hu Y. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J Mater Chem B 2018; 6:2217-2229. [PMID: 32254562 DOI: 10.1039/c8tb00224j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A combination of different therapy strategies has great potential to efficaciously treat malignant tumors, by virtue of their synergetic effects. Herein, a co-delivery system based on gold nanocages (AuNCs) was designed to deliver both doxorubicin (DOX) and microRNA-122 mimic (miR-122) for an enhanced cancer therapy. DOX was loaded into the AuNCs and miR-122 was condensed onto the surface of the functionalized AuNCs by an electrostatic interaction. Polyethyleneglycol (PEG) and hyaluronic acid (HA) were also introduced to the co-delivery system for targeted drug delivery. We evaluated the cellular uptake, biodistribution and anti-tumor effect in vitro and in vivo. Our results demonstrated an effective delivery of DOX and miR-122 into tumor cells and the tumor tissue. Importantly, the triple therapy, namely the combination of chemotherapy, gene therapy and photothermal therapy, mediated by this multifunctional drug delivery system, exhibited better anti-tumor effect than any single therapy, both in vitro and in vivo. Additionally, this drug delivery system caused insignificant toxicity to the major organs and had no obvious effect on the body weight of the mice. It could be concluded that multifunctional AuNCs are promising as a co-delivery vector for an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Shengnan Huang
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tie Y, Chen C, Yang Y, Qian Z, Yuan H, Wang H, Tang H, Peng Y, Du X, Liu B. Upregulation of let-7f-5p promotes chemotherapeutic resistance in colorectal cancer by directly repressing several pro-apoptotic proteins. Oncol Lett 2018; 15:8695-8702. [PMID: 29805607 DOI: 10.3892/ol.2018.8410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring primary malignant tumors worldwide. Chemotherapeutic resistance is a major clinical problem in the treatment of CRC. Therefore, it is of great importance to investigate novel biomarkers that may predict chemoresistance and facilitate the development of individualized treatment for patients with CRC. The present study reported that let-7f-5p expression was elevated in chemotherapy-resistant CRC tissues compared with chemotherapy-sensitive tissues. Furthermore, upregulating let-7f-5p increased the expression levels of the anti-apoptotic proteins, B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL), and decreased the activity of caspase-3 and caspase-9 in CRC cells. By contrast, downregulating let-7f-5p yielded the opposite effect. Notably, the results indicated that let-7f-5p promoted chemotherapeutic resistance by directly repressing the expression of several pro-apoptotic proteins, including tumor protein p53, tumor protein p53-inducible nuclear protein 1, tumor protein p53-inducible nuclear protein 2 and caspase-3. Therefore, a novel mechanism by which let-7f-5p enhances the resistance of CRC cells to chemotherapeutics has been revealed, indicating that silencing let-7f-5p may become an effective therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Yateng Tie
- Department of Pathology, Lanzhou General Hospital of the People's Liberation Army, Lanzhou, Gansu 730050, P.R. China.,Department of Pathology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chong Chen
- Department of Neurosurgery, 451st Central Hospital of the People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Yanli Yang
- Department of Pathology, Lanzhou General Hospital of the People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Zhen Qian
- Department of Pathology, Lanzhou General Hospital of the People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Hang Yuan
- Department of Pathology, Lanzhou General Hospital of the People's Liberation Army, Lanzhou, Gansu 730050, P.R. China.,Department of Pathology, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Huan Wang
- Department of Pathology, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Haili Tang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xilin Du
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bin Liu
- Department of Pathology, Lanzhou General Hospital of the People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
29
|
MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:jcm7040064. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
|
30
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
31
|
Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15:137-151. [PMID: 29317776 DOI: 10.1038/nrgastro.2017.169] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading lethal malignancy worldwide. However, the molecular mechanisms underlying liver carcinogenesis remain poorly understood. Over the past two decades, overwhelming evidence has demonstrated the regulatory roles of different classes of non-coding RNAs (ncRNAs) in liver carcinogenesis related to a number of aetiologies, including HBV, HCV and NAFLD. Among the ncRNAs, microRNAs, which belong to a distinct class of small ncRNAs, have been proven to play a crucial role in the post-transcriptional regulation of gene expression. Deregulation of microRNAs has been broadly implicated in the inactivation of tumour-suppressor genes and activation of oncogenes in HCC. Modern high-throughput sequencing analyses have unprecedentedly identified a very large number of non-coding transcripts. Divergent groups of long ncRNAs have been implicated in liver carcinogenesis through interactions with DNA, RNA or proteins. Overall, ncRNAs represent a burgeoning field of cancer research, and we are only beginning to understand the importance and complicity of the ncRNAs in liver carcinogenesis. In this Review, we summarize the common deregulation of small and long ncRNAs in human HCC. We also comprehensively review the pathological roles of ncRNAs in liver carcinogenesis, epithelial-to-mesenchymal transition and HCC metastasis and discuss the potential applications of ncRNAs as diagnostic tools and therapeutic targets in human HCC.
Collapse
|
32
|
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, Gui X, Li T, Xiong W, Lu D. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 2018; 9:253. [PMID: 29449541 PMCID: PMC5833746 DOI: 10.1038/s41419-018-0305-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Maternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2. Therefore, MEG3 decreases the expression and nuclear location of PKM2 dependent on miR122. Furthermore, MEG3 also inhibits CyclinD1 and C-Myc via PKM2 in liver cancer cells. On the other hand, MEG3 promotes β-catenin degradation through ubiquitin-proteasome system dependent on PTEN. Strikingly, MEG3 inhibits β-catenin activity through PKM2 reduction and PTEN increase. Significantly, we also found that excessive β-catenin abrogated the effect of MEG3 in liver cancer. In conclusion, our study for the first time demonstrates that MEG3 acts as a tumor suppressor by negatively regulating the activity of the PKM2 and β-catenin signaling pathway in hepatocarcinogenesis and could provide potential therapeutic targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
33
|
Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer 2017; 117:409-420. [PMID: 28641312 PMCID: PMC5537499 DOI: 10.1038/bjc.2017.191] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative. Novel approaches for identification of therapeutic targets of CRPC are needed. METHODS Next-generation sequencing revealed 945-1248 miRNAs from each lethal mCRPC sample. We constructed miRNA expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these miRNAs in prostate cancer (PCa). RESULTS Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in patients with PCa. CONCLUSIONS Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasuo Ishida
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
34
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
35
|
Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis 2017; 8:e2805. [PMID: 28518148 PMCID: PMC5520697 DOI: 10.1038/cddis.2017.167] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
36
|
Wang T, Xu L, Jia R, Wei J. MiR-218 suppresses the metastasis and EMT of HCC cells via targeting SERBP1. Acta Biochim Biophys Sin (Shanghai) 2017; 49:383-391. [PMID: 28369267 DOI: 10.1093/abbs/gmx017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. Although many efforts for treating HCC have been made, the survival rate remains unsatisfied. Accumulating evidence indicates that microRNA-218 (miR-218) functions as a tumor suppressor and involves in many biological processes such as tumor initiation, development, and metastasis in certain types of human cancers. However, the potential function and underlying molecular mechanism of miR-218 in HCC still remains to be elucidated. Since HCC is a genetic disease, exploring the mechanisms of the pathogeny and integration are essential for the discovery of novel treatment targets for HCC. Therefore, the aim of the present study was to investigate the abnormal expression level of miR-218 in clinical HCC tissues and HCC cells, and to evaluate its function and underlying mechanisms in HCC. Our results revealed that miR-218 expression was significantly downregulated in HCC tissues and cell lines. Gain-of-function and loss-of-function assays indicated that forced expression of miR-218 in HCC cells inhibited cell migration/invasion and reversed epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET), while deletion of miR-218 promoted cell migration/invasion and contributed to the EMT phenotype formation. Bioinformatics analysis and luciferase reporter assay confirmed that serpine mRNA binding protein 1 (SERBP1) was a target gene of miR-218 and rescue assay further confirmed that SERBP1 involved in the function of miR-218 in HCC. All these results suggested that miR-218/SERBP1 signal pathway could inhibit the malignant phenotype formation and that targeting this pathway may be a potential novel way for HCC therapeutics.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Jue Wei
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
37
|
Sun Y, Sun Y, Zhao R. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J Biosci Bioeng 2017; 124:242-249. [PMID: 28442387 DOI: 10.1016/j.jbiosc.2017.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs have great therapeutic potential in cancer and other diseases. However, their instability and low in vivo delivery efficiency limits their application. Recombinant PP7 bacteriophage-based virus-like particles (VLPs) could protect microRNAs against rapid degradation by RNase by packaging specific exogenous pre-microRNAs using the pac site. Insertion of a cell-penetrating peptide (CPP) into the AB-loop of VLPs could significantly improve the delivery efficiency of microRNAs into mammalian cells. Unlike other microRNA delivery methods (viral or non-viral vectors), recombinant PP7 VLPs carrying a CPP and microRNA could be efficiently expressed in Escherichia coli using the one-plasmid double expression system. Here we showed that PP7 VLPs carrying a CPP penetrated hepatoma SK-HEP-1 cells and delivered the pre-microRNA-23b, which was processed into a mature product within 24 h; a concentration of 10 nM was sufficient for the inhibition of hepatoma cell migration via the downregulation of liver-intestine cadherin expression. Furthermore, PP7 VLPs carrying a CPP and a pre-microRNA were not infectious, replicative, or cytotoxic. Therefore, recombinant PP7 VLPs can be used for simultaneous and targeted delivery of both microRNAs and peptides because of their ability to package specific exogenous RNA using the pac site and to display peptides.
Collapse
Affiliation(s)
- Yanli Sun
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China.
| | - Yanhua Sun
- Department of Hematology, Weifang People's Hospital, Weifang 261000, China
| | - Ronglan Zhao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
38
|
Ge X, Gong L. MiR-590-3p suppresses hepatocellular carcinoma growth by targeting TEAD1. Tumour Biol 2017; 39:1010428317695947. [PMID: 28349829 DOI: 10.1177/1010428317695947] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNA signature is altered in different disease states including cancer, and some microRNAs act as oncogenes or tumor suppressors. MiR-590-3p has been shown to be involved in human cancer progression. However, its role in hepatocellular carcinoma remains unknown. In this study, miR-590-3p level was measured, and clinicopathological features were determined in hepatocellular carcinoma tissues. The function of miR-590-3p was examined in vitro and in vivo. Real-time reverse transcription polymerase chain reaction analysis demonstrated downregulation of miR-590-3p in hepatocellular carcinoma tissues, and its downregulation was associated with a poor overall survival of hepatocellular carcinoma patients. Ectopic expression of miR-590-3p promoted growth of hepatocellular carcinoma cells, whereas its depletion inhibited cell growth. Transcriptional enhancer activator domain 1 was identified as a validated miR-590-3p target. Upregulation of transcriptional enhancer activator domain 1 was found in hepatocellular carcinoma tissues and inversely correlated with miR-590-3p. Our results indicate a tumor suppressor role of miR-590-3p in hepatocellular carcinoma through targeting transcriptional enhancer activator domain 1 and suggest its use in the diagnosis and prognosis of liver cancer.
Collapse
Affiliation(s)
- Xin Ge
- Xiangya Hospital Central South University, Changsha, China
| | - Liansheng Gong
- Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
39
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|
40
|
Pollutri D, Gramantieri L, Bolondi L, Fornari F. TP53/MicroRNA Interplay in Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:ijms17122029. [PMID: 27918441 PMCID: PMC5187829 DOI: 10.3390/ijms17122029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
The role of microRNAs as oncogenes and tumor suppressor genes has emerged in several cancers, including hepatocellular carcinoma (HCC). The pivotal tumor suppressive role of p53-axis is indicated by the presence of inactivating mutations in TP53 gene in nearly all cancers. A close interaction between these two players, as well as the establishment of complex p53/miRNAs loops demonstrated the strong contribution of p53-effector miRNAs in enhancing the p53-mediated tumor suppression program. On the other hand, the direct and indirect targeting of p53, as well as the regulation of its stability and activity by specific microRNAs, underlie the importance of the fine-tuning of p53 pathway, affecting the cell fate of damaged/transformed cells. The promising results of miRNAs-based therapeutic approaches in preclinical studies and their entrance in clinical trials demonstrate the feasibility of this strategy in several diseases, including cancer. Molecularly targeted drugs approved so far for HCC treatment show intrinsic or acquired resistances with disease progression in many cases, therefore the identification of effective and non-toxic agents for the treatment of HCC is actually an unmet clinical need. The knowledge of p53/miRNA inter-relations in HCC may provide useful elements for the identification of novel combined approaches in the context of the “personalized-medicine” era.
Collapse
Affiliation(s)
- Daniela Pollutri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Laura Gramantieri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| | - Luigi Bolondi
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy.
| | - Francesca Fornari
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy.
| |
Collapse
|
41
|
Giordano S. miRs*: Innocent bystanders only? Hepatology 2016; 64:1424-1426. [PMID: 27480463 DOI: 10.1002/hep.28749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 12/07/2022]
Affiliation(s)
- Silvia Giordano
- Department of Oncology, University of Torino, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|