1
|
Vucur M, Ghallab A, Schneider AT, Adili A, Cheng M, Castoldi M, Singer MT, Büttner V, Keysberg LS, Küsgens L, Kohlhepp M, Görg B, Gallage S, Barragan Avila JE, Unger K, Kordes C, Leblond AL, Albrecht W, Loosen SH, Lohr C, Jördens MS, Babler A, Hayat S, Schumacher D, Koenen MT, Govaere O, Boekschoten MV, Jörs S, Villacorta-Martin C, Mazzaferro V, Llovet JM, Weiskirchen R, Kather JN, Starlinger P, Trauner M, Luedde M, Heij LR, Neumann UP, Keitel V, Bode JG, Schneider RK, Tacke F, Levkau B, Lammers T, Fluegen G, Alexandrov T, Collins AL, Nelson G, Oakley F, Mann DA, Roderburg C, Longerich T, Weber A, Villanueva A, Samson AL, Murphy JM, Kramann R, Geisler F, Costa IG, Hengstler JG, Heikenwalder M, Luedde T. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 2023; 56:1578-1595.e8. [PMID: 37329888 DOI: 10.1016/j.immuni.2023.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Arlind Adili
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Leonie S Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Lena Küsgens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Suchira Gallage
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Jose Efren Barragan Avila
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne-Laure Leblond
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Markus S Jördens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine, Rhein-Maas-Klinikum, Würselen, Germany
| | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Simone Jörs
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, University of Milan, Milan, Italy
| | - Josep M Llovet
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lara R Heij
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Dusseldorf, Heinrich Heine University, Dusseldorf, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Fluegen
- Department of Surgery (A), University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University, Dusseldorf, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Mathias Heikenwalder
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
2
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
3
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Gehrke N, Wörns MA, Mann A, Hövelmeyer N, Waisman A, Straub BK, Galle PR, Schattenberg JM. Hepatocyte Bcl-3 protects from death-receptor mediated apoptosis and subsequent acute liver failure. Cell Death Dis 2022; 13:510. [PMID: 35641486 PMCID: PMC9156769 DOI: 10.1038/s41419-022-04946-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Acute liver failure (ALF) is a rare entity but exhibits a high mortality. The mechanisms underlying ALF are not completely understood. The present study explored the role of the hepatic B cell leukemia-3 (Bcl-3), a transcriptional regulator of nuclear factor-kappa B (NF-κB), in two independent models of ALF. We employed a recently developed transgenic mouse model in a C57BL6/J background comparing wild-type (WT) and transgenic littermates with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) in the ALF model of d-galactosamine (d-GalN) and lipopolysaccharide (LPS). Additionally, the apoptosis-inducing CD95 (FAS/APO-1)-ligand was explored. Bcl-3Hep mice exhibited a significant protection from ALF with decreased serum transaminases, decreased activation of the apoptotic caspases 8, 9, and 3, lower rates of oxidative stress, B-cell lymphoma 2 like 1 (BCL2L1/BCL-XL) degradation and accompanying mitochondrial cytochrome c release, and ultimately a decreased mortality rate from d-GalN/LPS compared to WT mice. d-GalN/LPS treatment resulted in a marked inflammatory cytokine release and stimulated the activation of signal transducer and activator of transcription (STAT) 3, c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) signaling comparably in the hepatic compartment of Bcl-3Hep and WT mice. However, in contrast to the WT, Bcl-3Hep mice showed a diminished rate of IkappaB kinase-beta (IKK-β) degradation, persistent receptor interacting protein kinase (RIPK) 1 function and thus prolonged cytoprotective nuclear factor-kappa B (NF-κB) p65 signaling through increased p65 stability and enhanced transcription. Likewise, Bcl-3 overexpression in hepatocytes protected from ALF with massive hepatocyte apoptosis induced by the anti-FAS antibody Jo2. The protection was also linked to IKK-β stabilization. Overall, our study showed that Bcl-3 rendered hepatocytes more resistant to hepatotoxicity induced by d-GalN/LPS and FAS-ligand. Therefore, Bcl-3 appears to be a critical regulator of the dynamics in ALF through IKK-β.
Collapse
Affiliation(s)
- Nadine Gehrke
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus A Wörns
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Gastroenterology, Hematology, Oncology and Endocrinology, Klinikum Dortmund, Dortmund, Germany
| | - Amrit Mann
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jörn M Schattenberg
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
RIP1 post-translational modifications. Biochem J 2022; 479:929-951. [PMID: 35522161 DOI: 10.1042/bcj20210725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Receptor interacting protein 1 (RIP1) kinase is a critical regulator of inflammation and cell death signaling, and plays a crucial role in maintaining immune responses and proper tissue homeostasis. Mounting evidence argues for the importance of RIP1 post-translational modifications in control of its function. Ubiquitination by E3 ligases, such as inhibitors of apoptosis (IAP) proteins and LUBAC, as well as the reversal of these modifications by deubiquitinating enzymes, such as A20 and CYLD, can greatly influence RIP1 mediated signaling. In addition, cleavage by caspase-8, RIP1 autophosphorylation, and phosphorylation by a number of signaling kinases can greatly impact cellular fate. Disruption of the tightly regulated RIP1 modifications can lead to signaling disbalance in TNF and/or TLR controlled and other inflammatory pathways, and result in severe human pathologies. This review will focus on RIP1 and its many modifications with an emphasis on ubiquitination, phosphorylation, and cleavage, and their functional impact on the RIP1's role in signaling pathways.
Collapse
|
6
|
Xu W, Huang Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front Immunol 2022; 13:851169. [PMID: 35300338 PMCID: PMC8921259 DOI: 10.3389/fimmu.2022.851169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cell death is a necessary event in multi-cellular organisms to maintain homeostasis by eliminating unrequired or damaged cells. Currently, there are many forms of cell death, and several of them, such as necroptosis, pyroptosis and ferroptosis, even apoptosis trigger an inflammatory response by releasing damage-associated molecular patterns (DAMPs), which are involved in the pathogenesis of a variety of human inflammatory diseases, including autoimmunity disease, diabetes, Alzheimer’s disease and cancer. Therefore, the occurrence of inflammatory cell death must be strictly regulated. Recently, increasing studies suggest that phosphorylation plays a critical role in inflammatory cell death. In this review, we will summarize current knowledge of the regulatory role of phosphorylation in inflammatory cell death and also discuss the promising treatment strategy for inflammatory diseases by targeting related protein kinases that mediate phosphorylation or phosphatases that mediate dephosphorylation.
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Wang Y, Xiong J, Yuan Y, Peng C, Wu P, Wang Y, Lu J, Yin Y, Xu J, Chen S, Liu J. Suppression of RIP1 activity via S415 dephosphorylation ameliorates obesity-related hepatic insulin resistance. Obesity (Silver Spring) 2022; 30:680-693. [PMID: 35156314 DOI: 10.1002/oby.23361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Receptor-interacting serine/threonine-protein kinase 1 (RIP1) is a well-documented key regulator of TNFα-mediated inflammation, apoptosis, and necroptosis, which contribute to the development of obesity-related metabolic diseases such as nonalcoholic steatohepatitis. However, the mechanism regarding how RIP1 influences obesity-related insulin resistance remains elusive. METHODS Primary hepatocytes with necrostatin 1 treatment or RIP1 expression were exposed to palmitic acid (PA), prior to the examination of cellular insulin signaling. Phosphorylation sites of RIP1 were detected by liquid chromatography with tandem mass spectrometry, and RIP1 variants with mutated phosphorylation sites were overexpressed in hepatocytes to identify the specific residue that influenced the RIP1-mediated insulin resistance. Adenovirus expressing RIP1 (S415A) mutant were administered into diet-induced obese mice to assess the effects on insulin sensitivity. RESULTS This study uncovered an aberrant increase in RIP1 activity during the development of obesity-induced insulin resistance. Inhibition of RIP1 activity with necrostatin 1 ameliorated PA- or high-fat diet-caused hepatic insulin resistance. With liquid chromatography with tandem mass spectrometry analysis and mutagenesis screening, S415, a novel phosphorylation site of RIP1, was identified to be responsible for RIP1-mediated insulin resistance. Loss-of-function mutation of S415 efficiently blunted RIP1-evoked insulin resistance in PA-treated hepatocytes or diet-induced obese mice. CONCLUSIONS These findings highlight the diabetogenic role of RIP1 S415 and propose RIP1 as a promising therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Yanping Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmei Yuan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Peng
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Ping Wu
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Yibing Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yin
- School of Kinesiology, Shanghai University of Sports, Shanghai, China
| | - Junting Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang W, Gu X, Cheng Z, Lu X, Xie S, Liu X. IKKβ Alleviates Neuron Injury in Alzheimer's Disease via Regulating Autophagy and RIPK1-Mediated Necroptosis. Mol Neurobiol 2022; 59:2407-2423. [PMID: 35083662 DOI: 10.1007/s12035-021-02652-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD), featured with memory loss and multiple cognitive impairments, is a devastating neurodegenerative disease that affects millions of people in the world, especially the elder people. IKKβ plays important role in the development of neurodegenerative diseases. However, the molecular mechanism of IKKβ, especially related with autophagy and necroptosis, in AD, is still unclear. Here, we studied the function of IKKβ in regulating autophagy and RIPK1-induced necroptosis in SH-SY5Y cells and APP/PS1 mice. By silencing IKKβ in the SH-SY5Y cells, we found that inhibition of IKKβ could promote the RIPK1-induced necroptosis caused by Aβ accumulation as well as suppress the autophagy of SH-SY5Y cells. Furthermore, we discovered that autophagy was significantly enhanced, and RIPK1-induced necroptosis was inhibited when IKKβ was constitutively activated in SH-SY5Y cells. Then, using APP/PS1 mouse model, we demonstrated that silencing IKKβ could significantly enhance the accumulation of Aβ but have not impact on the mice behavior and cognitive ability. Even the controversial results about the role of IKKβ in AD is not fully understood, our results might provide an important potential therapeutic target for slowing AD. .
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China.,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xunhu Gu
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China.,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhijuan Cheng
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China.,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaoqing Lu
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China.,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuhua Xie
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China.,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xu Liu
- Department of Neurology, Jiangxi Province, The Second Affiliated Hospital of Nanchang University & Institute of Neuroscience, Nanchang University, No.1, Minde Road, Nanchang, 330006, People's Republic of China. .,Institute of Neuroscience, Jiangxi Province, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
9
|
Sun J, Xu H, Lei Z, Li Z, Zhu H, Deng Z, Yu X, Jin X, Yang Z. The lncRNA CASC2 Modulates Hepatocellular Carcinoma Cell Sensitivity and Resistance to TRAIL Through Apoptotic and Non-Apoptotic Signaling. Front Oncol 2022; 11:726622. [PMID: 35145900 PMCID: PMC8823509 DOI: 10.3389/fonc.2021.726622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been widely concerned as a tumor therapy because of its ability of selective triggering cancer cell apoptosis; nevertheless, hepatocellular carcinoma (HCC) exhibits acquired resistance to TRAIL-induced apoptosis. In the present study, tumor-suppressive lncRNA cancer susceptibility candidate 2 (CASC2) was downregulated in HCC tissues and cell lines; HCC patients with lower CASC2 expression predicted a shorter overall survival rate. In vitro, CASC2 overexpression dramatically repressed HCC cell proliferation and inhibited cell apoptosis; in vivo, CASC2 overexpression inhibited subcutaneous xenotransplant tumor growth. CASC2 affected the caspase cascades and NF-κB signaling in TRAIL-sensitive [Huh-7 (S) and HCCLM3 (S)] or TRAIL-resistant cell lines [Huh-7 (R) and HCCLM3 (R)] in different ways. In Huh-7 (S) and HCCLM3 (S) cells, CASC2 affected cell apoptosis through the miR-24/caspase-8 and miR-221/caspase-3 axes and the caspase cascades. miR-18a directly targeted CASC2 and RIPK1. In Huh-7 (R) and HCCLM3 (R) cells, CASC2 affected cell proliferation through the miR-18a/RIPK1 axis and the NF-κB signaling. RELA bound to CASC2 promoter region and inhibited CASC2 transcription. In conclusion, CASC2 affects cell growth mainly via the miR-24/caspase-8 and miR-221/caspase-3 axes in TRAIL-sensitive HCC cells; while in TRAIL-resistant HCC cells, CASC2 affects cell growth mainly via miR-18a/RIPK1 axis and the NF-κB signaling. These outcomes foreboded that CASC2 could be a novel therapeutic target for further study of HCC-related diseases.
Collapse
Affiliation(s)
- Jichun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Deng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Jin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoxin Jin, ; Zhi Yang,
| | - Zhi Yang
- Department of Colorectal & Anal Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoxin Jin, ; Zhi Yang,
| |
Collapse
|
10
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
11
|
Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proc Natl Acad Sci U S A 2021; 118:e2001602118. [PMID: 34887354 PMCID: PMC8685717 DOI: 10.1073/pnas.2001602118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.
Collapse
Affiliation(s)
- Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
12
|
Wang L, Zhou L, Zhou Y, Liu L, Jiang W, Zhang H, Liu H. Necroptosis in Pulmonary Diseases: A New Therapeutic Target. Front Pharmacol 2021; 12:737129. [PMID: 34594225 PMCID: PMC8476758 DOI: 10.3389/fphar.2021.737129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
JNK signaling prevents biliary cyst formation through a CASPASE-8-dependent function of RIPK1 during aging. Proc Natl Acad Sci U S A 2021; 118:2007194118. [PMID: 33798093 PMCID: PMC8000530 DOI: 10.1073/pnas.2007194118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JNK signaling has been studied intensively in models of liver physiology and disease, but previous studies had focused on young mice. However, it had not been recognized that JNK plays a fundamental role in maintaining liver homeostasis and preventing the formation of biliary cysts in aging mice. These observations call for caution in all long-term pharmacological inhibition strategies targeting the JNK pathway. Finally, our results provide evidence of a molecular link between JNK and the cell-death mediator RIPK1. The specific overexpression of RIPK1 in cysts of a subset of patients with polycystic liver disease suggests that RIPK1 might be mechanistically involved in the pathogenesis of human biliary cysts. The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.
Collapse
|
14
|
Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, Yang Y, Wu B. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:253. [PMID: 34380537 PMCID: PMC8359590 DOI: 10.1186/s13046-021-02062-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) plays a vital role in hepatocellular carcinoma (HCC). β-arrestin1 (ARRB1) has been proved to enhance the activity of NF-κBp65, and our previous study indicated that ARRB1 promotes hepatocellular carcinogenesis and development of HCC. However, it remains unknown whether p65 is involved in hepatocellular carcinogenesis through the ARRB1-mediated pathway. METHODS The levels of NF-κBp65 and NF-κBp65 phosphorylation (p-p65) were assessed in including normal liver, primary HCC and paired paracancerous tissues. Liver-specific p65 knockout mice were used to examine the role of p65 and p-p65 in hepatocarcinogenesis. The mechanism of NF-κBp65 and p-p65 in hepatocarcinogenesis via ARRB1 was also studied both in vitro and in vivo. RESULTS Phosphorylation of NF-κBp65 was markedly upregulated in inflammation-related HCC patients and was significantly increased in mouse hepatic inflammation models, which were induced by tetrachloromethane (CCl4), diethylnitrosamine (DEN), TNF-α, as well as DEN-induced HCC. Hepatocyte-specific p65-deficient mice markedly decreased in the HCC incidence and size of tumours by the repressing of the proliferation of malignant cells in a DEN-induced HCC model. Furthermore, ARRB1 directly bounds p65 to promote the phosphorylation of NF-κBp65 at ser536, resulted in cell malignant proliferation through GSK3β/mTOR signalling. CONCLUSION The data demonstrated that phosphorylation of NF-κBp65 drives hepatocellular carcinogenesis in response to inflammation-mediated ARRB1, and that inhibition of the phosphorylation of NF-κBp65 restrains the hepatocellular carcinogenesis. The results indicate that phosphorylation of NF-κBp65 is a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Yiming Lei
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Haoxiong Zhou
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Jie Jiang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China
| | - Yidong Yang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China.
| | - Bin Wu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
15
|
Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, Kroh A, Duimel H, López-Iglesias C, Caro P, Heij LR, Schmeding M, Meierhofer D, Neumann UP, Cramer T. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol 2021; 255:270-284. [PMID: 34309874 DOI: 10.1002/path.5768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer. To this end, we established liver epithelial cell (LEC)-specific knockout (KO) of mTOR (mTORLEC ) mice. We used these mice to characterize the growth of colorectal liver metastases with or without partial hepatectomy to model different clinical settings. Although the LEC-specific loss of mTOR remained without effect on metastasis growth in intact liver, partial liver resection resulted in the formation of larger metastases in mTORLEC mice compared with wildtype controls. This was accompanied by significantly enhanced inflammatory activity in LEC-specific mTOR KO livers after partial liver resection. Analysis of NF-ĸB target gene expression and immunohistochemistry of p65 displayed a significant activation of NF-ĸB in mTORLEC mice, suggesting a functional importance of this pathway for the observed inflammatory phenotype. Taken together, we show an unexpected acceleration of liver metastases upon deletion of mTOR in LECs. Our results support the notion that non-malignant host cells can contribute to resistance against mTOR inhibitors and encourage testing whether anti-inflammatory drugs are able to improve the efficacy of mTOR inhibitors for cancer therapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Long Jiao
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Roman Eickhoff
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Antje Egners
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Sandra Jumpertz
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Johanna Roth
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Merve Erdem
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Andreas Kroh
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Hans Duimel
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Pilar Caro
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Lara R Heij
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,Pathology, RWTH University Hospital, Aachen, Germany
| | - Maximilian Schmeding
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | | | - Ulf P Neumann
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Thorsten Cramer
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Zhang L, Guo W, Yu J, Li C, Li M, Chai D, Wang W, Deng W. Receptor-interacting protein in malignant digestive neoplasms. J Cancer 2021; 12:4362-4371. [PMID: 34093836 PMCID: PMC8176420 DOI: 10.7150/jca.57076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
A deep and comprehensive understanding of factors that contribute to cancer initiation, progression, and evolution is of essential importance. Among them, the serine/threonine and tyrosine kinase-like kinases, also known as receptor interacting proteins (RIPs) or receptor interacting protein kinases (RIPKs), is emerging as important tumor-related proteins due to its complex regulation of cell survival, apoptosis, and necrosis. In this review, we mainly review the relevance of RIP to various malignant digestive neoplasms, including esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, gallbladder cancer, cholangiocarcinoma, and pancreatic cancer. Consecutive research on RIPs and its relationship with malignant digestive neoplasms is required, as it ultimately conduces to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| |
Collapse
|
17
|
Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis 2021; 12:474. [PMID: 33980818 PMCID: PMC8115181 DOI: 10.1038/s41419-021-03749-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.
Collapse
|
18
|
Gu L, Zhu Y, Lin X, Lu B, Zhou X, Zhou F, Zhao Q, Prochownik EV, Li Y. The IKKβ-USP30-ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology 2021; 73:160-174. [PMID: 32221968 DOI: 10.1002/hep.31249] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/24/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death that develops as a consequence of obesity, cirrhosis, and chronic hepatitis. However, the pathways along which these changes occur remain incompletely understood. APPROACH AND RESULTS In this study, we show that the deubiquitinase USP30 is abundant in HCCs that arise in mice maintained on high-fat diets. IKKβ phosphorylated and stabilized USP30, which promoted USP30 to deubiquitinate ATP citrate lyase (ACLY) and fatty acid synthase (FASN). IKKβ also directly phosphorylated ACLY and facilitated the interaction between USP30 and ACLY and the latter's deubiquitination. In HCCs arising in DEN/CCl4 -treated mice, USP30 deletion attenuated lipogenesis, inflammation, and tumorigenesis regardless of diet. The combination of ACLY inhibitor and programmed death ligand 1 antibody largely suppressed chemical-induced hepatocarcinogenesis. The IKKβ-USP30-ACLY axis was also found to be up-regulated in human HCCs. CONCLUSIONS This study identifies an IKKβ-USP30-ACLY axis that plays an essential and wide-spread role in tumor metabolism and may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xinyi Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, China.,Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan, China.,Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Wu W, Stork B. The phospho-barcode of RIPK1: complementarity or redundancy? Mol Cell Oncol 2020; 7:1776085. [PMID: 32944633 PMCID: PMC7469506 DOI: 10.1080/23723556.2020.1776085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Receptor interacting serine/threonine kinase 1 (RIPK1) is the central mediator of tumor necrosis factor (TNF) signaling. It regulates both pro-survival/pro-inflammatory and cell death pathways. In order to fulfill this complex regulation, RIPK1 is regulated by several post-translational modifications, including ubiquitination, acetylation, and phosphorylation. In our recent work, we show that the unc-51-like autophagy activating kinase 1 (ULK1) phosphorylates RIPK1 at Ser357 and thus blocks TNF-induced cell death.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
21
|
Li X, Liu X, Zhang Y, Zhang Y, Liu S, Zhang N, Li Y, Wang D. Protective effect of Gloeostereum incarnatum on ulcerative colitis via modulation of Nrf2/NF‑κB signaling in C57BL/6 mice. Mol Med Rep 2020; 22:3418-3428. [PMID: 32945507 PMCID: PMC7453623 DOI: 10.3892/mmr.2020.11420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic non-specific inflammatory cell infiltration of the colon is generally considered to be the cause of ulcerative colitis (UC). Gloeostereum incarnatum (GI), a fungus rich in amino acids and fatty acids, exhibits a variety of biological functions. In the present study, GI was identified to contain 15 fatty acids, 17 amino acids and 11 metallic elements. The protective effect of GI against UC was investigated in C57BL/6 mice with UC induced by free drinking 3.5% dextran sulfate sodium (DSS). After a 21-day oral administration, GI prevented weight loss, enhancement of the disease activity index and colonic pathological alterations in mice with UC. GI reduced the levels of pro-inflammatory factors including interleukin (IL)-1β, IL-2, IL-6 and IL-12, tumor necrosis factor α and -β, interferon α and -γ, and pro-oxidative factors including reactive oxygen species and nitric oxide. In addition, it enhanced the levels of immunological factors including immunoglobulin (Ig)A, IgM and IgG, and antioxidative factors including superoxide dismutase and catalase in the serum and/or colon tissues. GI enhanced the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins and suppressed the phosphorylation of NF-κB signaling in colon tissues. Together, GI was shown to alleviate the physiological and pathological state of DSS-induced UC in mice via its antioxidant and anti-inflammatory functions, which may be associated with its modulation of the activation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Xiao Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Nan Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
22
|
Sarcognato S, de Jong IEM, Fabris L, Cadamuro M, Guido M. Necroptosis in Cholangiocarcinoma. Cells 2020; 9:cells9040982. [PMID: 32326539 PMCID: PMC7226990 DOI: 10.3390/cells9040982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.
Collapse
Affiliation(s)
- Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Iris E. M. de Jong
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands
| | - Luca Fabris
- Department of Molecular Medicine—DMM, University of Padova, 35121 Padova, Italy
| | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine—DIMED, University of Padova, 35121 Padova, Italy
- Correspondence: ; Tel.: +39-0422-322750
| |
Collapse
|
23
|
Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 2020; 11:210. [PMID: 32231206 PMCID: PMC7105474 DOI: 10.1038/s41419-020-2399-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.
Collapse
|
24
|
Xu X, Kalac M, Markson M, Chan M, Brody JD, Bhagat G, Ang RL, Legarda D, Justus SJ, Liu F, Li Q, Xiong H, Ting AT. Reversal of CYLD phosphorylation as a novel therapeutic approach for adult T-cell leukemia/lymphoma (ATLL). Cell Death Dis 2020; 11:94. [PMID: 32024820 PMCID: PMC7002447 DOI: 10.1038/s41419-020-2294-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/08/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a malignancy of mature T cells associated with chronic infection by human T-cell lymphotropic virus type-1 (HTLV-1). ATLL patients with aggressive subtypes have dismal outcomes. We demonstrate that ATLL cells co-opt an early checkpoint within the tumor necrosis factor receptor 1 (TNFR1) pathway, resulting in survival advantage. This early checkpoint revolves around an interaction between the deubiquitinase CYLD and its target RIPK1. The status of RIPK1 K63-ubiquitination determines cell fate by creating either a prosurvival signal (ubiquitinated RIPK1) or a death signal (deubiquitinated RIPK1). In primary ATLL samples and in cell line models, an increased baseline level of CYLD phosphorylation was observed. We therefore tested the hypothesis that this modification of CYLD, which has been reported to inhibit its deubiquitinating function, leads to increased RIPK1 ubiquitination and thus provides a prosurvival signal to ATLL cells. CYLD phosphorylation can be pharmacologically reversed by IKK inhibitors, specifically by TBK1/IKKε and IKKβ inhibitors (MRT67307 and TPCA). Both of the IKK sub-families can phosphorylate CYLD, and the combination of MRT67307 and TPCA have a marked effect in reducing CYLD phosphorylation and triggering cell death. ATLL cells overexpressing a kinase-inactive TBK1 (TBK1-K38A) demonstrate lower CYLD phosphorylation and subsequently reduced proliferation. IKK blockade reactivates CYLD, as evidenced by the reduction in RIPK1 ubiquitination, which leads to the association of RIPK1 with the death-inducing signaling complex (DISC) to trigger cell death. In the absence of CYLD, RIPK1 ubiquitination remains elevated following IKK blockade and it does not associate with the DISC. SMAC mimetics can similarly disrupt CYLD phosphorylation and lead to ATLL cell death through reduction of RIPK1 ubiquitination, which is CYLD dependent. These results identify CYLD as a crucial regulator of ATLL survival and point to its role as a potential novel target for pharmacologic modification in this disease.
Collapse
Affiliation(s)
- Xin Xu
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, GuangDong, 510180, People's Republic of China
| | - Matko Kalac
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Markson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joshua D Brody
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Justus
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Liu
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, GuangDong, 510180, People's Republic of China
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, GuangDong, 510180, People's Republic of China
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Delanghe T, Dondelinger Y, Bertrand MJM. RIPK1 Kinase-Dependent Death: A Symphony of Phosphorylation Events. Trends Cell Biol 2020; 30:189-200. [PMID: 31959328 DOI: 10.1016/j.tcb.2019.12.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
The serine/threonine kinase RIPK1 has emerged as a crucial component of the inflammatory response activated downstream of several immune receptors, where it paradoxically functions as a scaffold to protect the cell from death or instead as an active kinase to promote the killing of the cell. While RIPK1 kinase-dependent cell death has revealed its physiological importance in the context of microbial infection, aberrant activation of RIPK1 is also demonstrated to promote cell death-driven inflammatory pathologies, highlighting the importance of fundamentally understanding proper RIPK1 regulation. Recent advances in the field demonstrated the crucial role of phosphorylation in the fine-tuning of RIPK1 activation and, additionally, question the exact mechanism by which RIPK1 enzymatic activity transmits the death signal.
Collapse
Affiliation(s)
- Tom Delanghe
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Yves Dondelinger
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
26
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
27
|
An IKK/NF-κB Activation/p53 Deletion Sequence Drives Liver Carcinogenesis and Tumor Differentiation. Cancers (Basel) 2019; 11:cancers11101410. [PMID: 31546614 PMCID: PMC6827060 DOI: 10.3390/cancers11101410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Most liver tumors arise on the basis of chronic liver diseases that trigger inflammatory responses. Besides inflammation, subsequent defects in the p53-signaling pathway frequently occurs in liver cancer. In this study, we analyzed the consequences of inflammation and p53 loss in liver carcinogenesis. Methods: We used inducible liver-specific transgenic mouse strains to analyze the consequences of NF-κB/p65 activation mimicking chronic inflammation and subsequent p53 loss. Results: Ikk2ca driven NF-κB/p65 activation in mice results in liver fibrosis, the formation of ectopic lymphoid structures and carcinogenesis independent of p53 expression. Subsequent deletion of Trp53 led to an increased tumor formation, metastasis and a shift in tumor differentiation towards intrahepatic cholangiocarcinoma. In addition, loss of Trp53 in an inflammatory liver resulted in elevated chromosomal instability and indicated a distinct aberration pattern. Conclusions: In conclusion, activation of NF-κB/p65 mimicking chronic inflammation provokes the formation of liver carcinoma. Collateral disruption of Trp53 supports tumor progression and influences tumor differentiation and heterogeneity.
Collapse
|
28
|
An NF-kappaB- and IKK-Independent Function of NEMO Prevents Hepatocarcinogenesis by Suppressing Compensatory Liver Regeneration. Cancers (Basel) 2019; 11:cancers11070999. [PMID: 31319593 PMCID: PMC6678501 DOI: 10.3390/cancers11070999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The I-κB-Kinase (IKK) complex represents a central signaling nexus in the TNF-dependent activation of the pro-inflammatory NF-κB pathway. However, recent studies suggested that the distinct IKK subunits (IKKα, IKKβ, and NEMO) might withhold additional NF-κB-independent functions in inflammation and cancer. Here, we generated mice lacking all three IKK subunits in liver parenchymal cells (LPC) (IKKα/β/NEMOLPC-KO) and compared their phenotype with mice lacking both catalytic subunits (IKKα/βLPC-KO), allowing to functionally dissect putative I-κB-Kinase-independent functions of the regulatory subunit NEMO. We show that the additional deletion of NEMO rescues IKKα/βLPC-KO mice from lethal cholestasis and biliary ductopenia by triggering LPC apoptosis and inducing a strong compensatory proliferation of LPC including cholangiocytes. Beyond this beneficial effect, we show that increased hepatocyte cell-death and compensatory proliferation inhibit the activation of LPC-necroptosis but trigger spontaneous hepatocarcinogenesis in IKKα/β/NEMOLPC-KO mice. Collectively, our data show that free NEMO molecules unbound to the catalytic IKK subunits control LPC programmed cell death pathways and proliferation, cholestasis and hepatocarcinogenesis independently of an IKK-related function. These findings support the idea of different functional levels at which NEMO controls inflammation and cancer in the liver.
Collapse
|
29
|
Shi S, Verstegen MMA, Mezzanotte L, de Jonge J, Löwik CWGM, van der Laan LJW. Necroptotic Cell Death in Liver Transplantation and Underlying Diseases: Mechanisms and Clinical Perspective. Liver Transpl 2019; 25:1091-1104. [PMID: 31077562 PMCID: PMC6617733 DOI: 10.1002/lt.25488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cell death is a natural process for the turnover of aged cells, but it can also arise as a result of pathological conditions. Cell death is recognized as a key feature in both acute and chronic hepatobiliary diseases caused by drug, alcohol, and fat uptake; by viral infection; or after surgical intervention. In the case of chronic disease, cell death can lead to (chronic) secondary inflammation, cirrhosis, and the progression to liver cancer. In liver transplantation, graft preservation and ischemia/reperfusion injury are associated with acute cell death. In both cases, so-called programmed cell death modalities are involved. Several distinct types of programmed cell death have been described of which apoptosis and necroptosis are the most well known. Parenchymal liver cells, including hepatocytes and cholangiocytes, are susceptible to both apoptosis and necroptosis, which are triggered by distinct signal transduction pathways. Apoptosis is dependent on a proteolytic cascade of caspase enzymes, whereas necroptosis induction is caspase-independent. Moreover, different from the "silent" apoptotic cell death, necroptosis can cause a secondary inflammatory cascade, so-called necroinflammation, triggered by the release of various damage-associated molecular patterns (DAMPs). These DAMPs activate the innate immune system, leading to both local and systemic inflammatory responses, which can even cause remote organ failure. Therapeutic targeting of necroptosis by pharmacological inhibitors, such as necrostatin-1, shows variable effects in different disease models.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | - Laura Mezzanotte
- Department of RadiologyErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | - Jeroen de Jonge
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | | |
Collapse
|
30
|
Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat Commun 2019; 10:1729. [PMID: 30988283 PMCID: PMC6465317 DOI: 10.1038/s41467-019-09690-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.
Collapse
|
31
|
Krishna-Subramanian S, Singer S, Armaka M, Banales JM, Holzer K, Schirmacher P, Walczak H, Kollias G, Pasparakis M, Kondylis V. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ 2019; 26:2710-2726. [PMID: 30988397 DOI: 10.1038/s41418-019-0330-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte apoptosis is intrinsically linked to chronic liver disease and hepatocarcinogenesis. Conversely, necroptosis of hepatocytes and other liver cell types and its relevance for liver disease is debated. Using liver parenchymal cell (LPC)-specific TGF-beta-activated kinase 1 (TAK1)-deficient (TAK1LPC-KO) mice, which exhibit spontaneous hepatocellular and biliary damage, hepatitis, and early hepatocarcinogenesis, we have investigated the contribution of apoptosis and necroptosis in hepatocyte and cholangiocyte death and their impact on liver disease progression. Here, we provide in vivo evidence showing that TAK1-deficient cholangiocytes undergo spontaneous necroptosis induced primarily by TNFR1 and dependent on RIPK1 kinase activity, RIPK3, and NEMO. In contrast, TAK1-deficient hepatocytes die by FADD-dependent apoptosis, which is not significantly inhibited by LPC-specific RIPK1 deficiency, inhibition of RIPK1 kinase activity, RIPK3 deficiency or combined LPC-specific deletion of TNFR1, TRAILR, and Fas. Accordingly, normal mouse cholangiocytes can undergo necroptosis, while primary hepatocytes are resistant to it and die exclusively by apoptosis upon treatment with cell death-inducing stimuli in vitro, likely due to the differential expression of RIPK3. Interestingly, the genetic modifications that conferred protection from biliary damage also prevented the spontaneous lethality that was often observed in TAK1LPC-KO mice. In the presence of chronic hepatocyte apoptosis, preventing biliary damage delayed but did not avert hepatocarcinogenesis. On the contrary, inhibition of hepatocyte apoptosis fully prevented liver tumorigenesis even in mice with extensive biliary damage. Altogether, our results suggest that using RIPK1 kinase activity inhibitors could be therapeutically useful for cholestatic liver disease patients.
Collapse
Affiliation(s)
- Santosh Krishna-Subramanian
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Marietta Armaka
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Kerstin Holzer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Vangelis Kondylis
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
32
|
Elßner C, Goeppert B, Longerich T, Scherr AL, Stindt J, Nanduri LK, Rupp C, Kather JN, Schmitt N, Kautz N, Breuhahn K, Ismail L, Heide D, Hetzer J, García-Beccaria M, Hövelmeyer N, Waisman A, Urbanik T, Mueller S, Gdynia G, Banales JM, Roessler S, Schirmacher P, Jäger D, Schölch S, Keitel V, Heikenwalder M, Schulze-Bergkamen H, Köhler BC. Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice. Gastroenterology 2019; 156:1190-1205.e14. [PMID: 30445013 DOI: 10.1053/j.gastro.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Cholangiocyte proliferation and ductular reaction contribute to the onset and progression of liver diseases. Little is known about the role of the transcription factor nuclear factor-κB (NF-κB) in this process. We investigated the activities of the RELB proto-oncogene NF-κB subunit in human cholangiocytes and in mouse models of liver disease characterized by a ductular reaction. METHODS We obtained liver tissue samples from patients with primary sclerosing cholangitis, primary biliary cholangitis, hepatitis B or C virus infection, autoimmune hepatitis, alcoholic liver disease, or without these diseases (controls) from a tissue bank in Germany. Tissues were analyzed by immunohistochemistry for levels of RELB and lymphotoxin β (LTB). We studied mice with liver parenchymal cell (LPC)-specific disruption of the cylindromatosis (CYLD) lysine 63 deubiquitinase gene (Cyld), with or without disruption of Relb (CyldΔLPC mice and Cyld/RelbΔLPC mice) and compared them with C57BL/6 mice (controls). Mice were fed 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or standard chow diets to induce biliary injury or were given injections of CCl4 to induce non-cholestatic liver fibrosis. Liver tissues were analyzed by histology, immunohistochemistry, immunoblots, in situ hybridization, and quantitative real-time polymerase chain reaction. Cholangiocytes were isolated from normal human liver, incubated with LTB receptor agonist, and transfected with small interfering RNAs to knock down RELB. RESULTS In liver tissues from patients with primary sclerosing cholangitis, primary biliary cholangitis, chronic infection with hepatitis B or C virus, autoimmune hepatitis, or alcoholic liver disease, we detected increased nuclear translocation of RELB and increased levels of LTB in cholangiocytes that formed reactive bile ducts compared with control liver tissues. Human cholangiocytes, but not those with RELB knockdown, proliferated with exposure to LTB. The phenotype of CyldΔLPC mice, which included ductular reaction, oval cell activation, and biliary fibrosis, was completely lost from Cyld/RelbΔLPC mice. Compared with livers from control mice, livers from CyldΔLPC mice (but not Cyld/RelbΔLPC mice) had increased levels of mRNAs encoding cytokines (LTB; CD40; and tumor necrosis factor superfamily [TNFSF] members TNFSF11 [RANKL], TNFSF13B [BAFF], and TNFSF14 [LIGHT]) produced by reactive cholangiocytes. However, these strains of mice developed similar levels of liver fibrosis in response to CCl4 exposure. CyldΔLPC mice and Cyld/RelbΔLPC mice had improved liver function on the DDC diet compared with control mice fed the DDC diet. CONCLUSION Reactive bile ducts in patients with chronic liver diseases have increased levels of LTB and nuclear translocation of RELB. RELB is required for the ductular reaction and development of biliary fibrosis in CyldΔLPC mice. Deletion of RELB and CYLD from LPCs protects mice from DDC-induced cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Christin Elßner
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lahiri Kanth Nanduri
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Christian Rupp
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Jakob Nikolas Kather
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kautz
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Ismail
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Toni Urbanik
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Georg Gdynia
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV-EHU) CIBERehd, IKERBASQUE, San Sebastian, Spain
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Schölch
- German Cancer Consortium (DKTK) and Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technical University Dresden, Dresden, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Bruno Christian Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
33
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
34
|
Kondylis V, Pasparakis M. RIP Kinases in Liver Cell Death, Inflammation and Cancer. Trends Mol Med 2018; 25:47-63. [PMID: 30455045 DOI: 10.1016/j.molmed.2018.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Cell death is intrinsically linked to inflammatory liver disease and cancer development. Recent genetic studies have suggested that receptor-interacting protein kinase (RIPK)1 is implicated in liver disease pathogenesis by regulating caspase-dependent hepatocyte apoptosis induced by tumor necrosis factor (TNF) or other stimuli. In contrast, the contribution of caspase-independent RIPK3/mixed lineage kinase like (MLKL)-mediated hepatocyte necroptosis remains debatable. Hepatocyte apoptosis depends on the balance between RIPK1 prosurvival scaffolding functions and its kinase-activity-mediated proapoptotic function. Several regulatory steps promote the prosurvival role of RIPK1, including phosphorylation and ubiquitination of RIPK1 itself and other molecules involved in RIPK1 signaling. Pharmacological inhibition of liver damage by targeting RIPK1 signaling emerges as a potential therapeutic strategy to prevent chronic liver inflammation and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, D-50931, Cologne, Germany.
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, D-50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|
35
|
Abstract
This review by Shan et al. discusses necroptosis, a form of regulated necrotic cell death mediated by RIPK1 kinase activity, RIPK3, and MLKL, which can be activated under apoptosis-deficient conditions. Both necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of defective embryos and during human inflammatory and neurodegenerative pathologies. Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.
Collapse
Affiliation(s)
- Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Slotta C, Storm J, Pfisterer N, Henkel E, Kleinwächter S, Pieper M, Ruiz-Perera LM, Greiner JFW, Kaltschmidt B, Kaltschmidt C. IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1025-1033. [PMID: 29630899 DOI: 10.1016/j.bbamcr.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023]
Abstract
TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2-/- cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.
Collapse
Affiliation(s)
- Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Nina Pfisterer
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Elena Henkel
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Svenja Kleinwächter
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Maren Pieper
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Lucia M Ruiz-Perera
- Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany; Molecular Neurobiology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitaetsstr. 25, 33501 Bielefeld, Germany.
| |
Collapse
|
37
|
Danescu S, Has C, Baican C, Müller T, Baican A. A novel IKBKG mutation in a patient with incontinentia pigmenti and features of hepatic ciliopathy. Australas J Dermatol 2018. [PMID: 29520766 DOI: 10.1111/ajd.12805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a new mutation in exon 4 of IKBKG, encoding nuclear factor-kappa B in a patient with incontinentia pigmenti. The patient had a severe cholestatic liver disease with features of a ciliopathy and underwent liver transplantation. We cannot establish a link between incontinentia pigmenti, a very rare disease, and hepatic ciliopathy, but we suggest that hepatic evaluation should be considered in patients with incontinentia pigmenti.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Has
- Department of Dermatology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Corina Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Thomas Müller
- Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria
| | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
39
|
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF. Immunol Lett 2018; 196:113-118. [PMID: 29378215 DOI: 10.1016/j.imlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education, Ministry of China, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
40
|
Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev 2018; 277:113-127. [PMID: 28462531 DOI: 10.1111/imr.12550] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated cell death pathways have important functions in host defense and tissue homeostasis. Studies in genetic mouse models provided evidence that cell death could cause inflammation in different tissues. Inhibition of RIPK3-MLKL-dependent necroptosis by FADD and caspase-8 was identified as a key mechanism preventing inflammation in epithelial barriers. Moreover, the interplay between IKK/NF-κB and RIPK1 signaling was recognized as a critical determinant of tissue homeostasis and inflammation. NEMO was shown to regulate RIPK1 kinase activity-mediated apoptosis by NF-κB-dependent and -independent functions, which are critical for averting chronic tissue injury and inflammation in the intestine and the liver. In addition, RIPK1 was shown to exhibit kinase activity-independent functions that are essential for preventing cell death, maintaining tissue architecture and inhibiting inflammation. In the intestine, RIPK1 acts as a scaffold to prevent epithelial cell apoptosis and preserve tissue integrity. In the skin, RIPK1 functions via its RHIM to counteract ZBP1/DAI-dependent activation of RIPK3-MLKL-dependent necroptosis and inflammation. Collectively, these studies provided evidence that the regulation of cell death signaling plays an important role in the maintenance of tissue homeostasis, and suggested that cell death could be causally involved in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Snehlata Kumari
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Katerina Vlantis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Abstract
The receptor interacting serine/threonine kinase1 and 3 (RIPK1, RIPK3) are regulators of cell death and survival. RIPK1 kinase activity is required for necroptosis and apoptosis, while its scaffolding function is necessary for survival. Although both proteins can mediate apoptosis, RIPK1 and RIPK3 are most well-known for their role in the execution of necroptosis via the mixed lineage domain like pseudokinase. Necroptosis is a caspase-independent regulated cell death program which was first described in cultured cells with unknown physiologic relevance in the liver. Many recent reports have suggested that RIPK1 and/or RIPK3 participate in liver disease pathogenesis and cell death. Notably, both proteins have been shown to mediate inflammation independent of cell death. Whether necroptosis occurs in hepatocytes, and how it is executed in the presence of an intact caspase machinery is controversial. In spite of this controversy, it is evident that RIPK1 and RIPK3 participate in many experimental liver disease models. Therefore, in addition to cell death signaling, their necroptosis-independent role warrants further examination.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles California,Division of GI/Liver, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles California
| |
Collapse
|
42
|
MK2 puts an additional brake on RIPK1 cytotoxic potential. Cell Death Differ 2018; 25:457-459. [PMID: 29317761 DOI: 10.1038/s41418-017-0009-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 11/08/2022] Open
|
43
|
MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol 2017; 19:1237-1247. [PMID: 28920952 DOI: 10.1038/ncb3608] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders can, in certain conditions, be attributed to RIPK1 kinase-dependent cell death. Survival, however, is the default response of most cells to TNF stimulation, indicating that cell demise is normally actively repressed and that specific checkpoints must be turned off for cell death to proceed. We identified RIPK1 as a direct substrate of MK2 in the TNFR1 signalling pathway. Phosphorylation of RIPK1 by MK2 limits cytosolic activation of RIPK1 and the subsequent assembly of the death complex that drives RIPK1 kinase-dependent apoptosis and necroptosis. In line with these in vitro findings, MK2 inactivation greatly sensitizes mice to the cytotoxic effects of TNF in an acute model of sterile shock caused by RIPK1-dependent cell death. In conclusion, we identified MK2-mediated RIPK1 phosphorylation as an important molecular mechanism limiting the sensitivity of the cells to the cytotoxic effects of TNF.
Collapse
|
44
|
p38 MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat Cell Biol 2017; 19:1248-1259. [PMID: 28920954 DOI: 10.1038/ncb3614] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Receptor-interacting protein kinase-1 (RIPK1), a master regulator of cell fate decisions, was identified as a direct substrate of MAPKAP kinase-2 (MK2) by phosphoproteomic screens using LPS-treated macrophages and stress-stimulated embryonic fibroblasts. p38MAPK/MK2 interact with RIPK1 in a cytoplasmic complex and MK2 phosphorylates mouse RIPK1 at Ser321/336 in response to pro-inflammatory stimuli, such as TNF and LPS, and infection with the pathogen Yersinia enterocolitica. MK2 phosphorylation inhibits RIPK1 autophosphorylation, curtails RIPK1 integration into cytoplasmic cytotoxic complexes, and suppresses RIPK1-dependent apoptosis and necroptosis. In Yersinia-infected macrophages, RIPK1 phosphorylation by MK2 protects against infection-induced apoptosis, a process targeted by Yersinia outer protein P (YopP). YopP suppresses p38MAPK/MK2 activation to increase Yersinia-driven apoptosis. Hence, MK2 phosphorylation of RIPK1 is a crucial checkpoint for cell fate in inflammation and infection that determines the outcome of bacteria-host cell interaction.
Collapse
|
45
|
Van TM, Polykratis A, Straub BK, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest 2017. [PMID: 28628031 DOI: 10.1172/jci92508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF receptor 1 (TNFR1) signaling. In contrast, mice with LPC-specific knockout of Ripk1 showed reduced diethylnitrosamine-induced (DEN-induced) liver tumorigenesis that correlated with increased DEN-induced hepatocyte apoptosis. Lack of RIPK1 kinase activity did not inhibit DEN-induced liver tumor formation, showing that kinase-independent functions of RIPK1 promote DEN-induced hepatocarcinogenesis. Moreover, mice lacking both RIPK1 and TNFR1 in LPCs displayed normal tumor formation in response to DEN, demonstrating that RIPK1 deficiency decreases DEN-induced liver tumor formation in a TNFR1-dependent manner. Therefore, these findings indicate that RIPK1 cooperates with NF-κB signaling to prevent TNFR1-independent hepatocyte apoptosis and the development of chronic liver disease and cancer, but acts downstream of TNFR1 signaling to promote DEN-induced liver tumorigenesis.
Collapse
Affiliation(s)
- Trieu-My Van
- Institute for Genetics.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Apostolos Polykratis
- Institute for Genetics.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | - Vangelis Kondylis
- Institute for Genetics.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | - Manolis Pasparakis
- Institute for Genetics.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
RIPK1, a key survival factor for hepatocytes. J Hepatol 2017; 66:1118-1119. [PMID: 28215597 DOI: 10.1016/j.jhep.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/04/2022]
|
47
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
48
|
Vucur M, Schneider AT, Gautheron J, Luedde T. The enigma of RIPK1 in the liver: More than just a kinase. Mol Cell Oncol 2017; 4:e1304191. [PMID: 28616581 PMCID: PMC5462506 DOI: 10.1080/23723556.2017.1304191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
Receptor interacting protein kinase 1 (RIPK1) represents a key molecule in cell death. Here, we discuss our recent data on RIPK1 in liver injury and hepatocellular carcinoma development and put these into relation to previous experimental findings to underpin that it exerts opposing kinase-dependent and kinase independent functions in liver cells.
Collapse
Affiliation(s)
- Mihael Vucur
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| | - Anne T. Schneider
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| | - Jérémie Gautheron
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
49
|
Inflammation and the Metabolic Syndrome: The Tissue-Specific Functions of NF-κB. Trends Cell Biol 2017; 27:417-429. [PMID: 28237661 DOI: 10.1016/j.tcb.2017.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
Obesity is becoming a major health concern in Western society, and medical conditions associated with obesity are grouped in the metabolic syndrome. Overnutrition activates several proinflammatory signaling pathways, leading to a condition of chronic low-grade inflammation in several metabolic tissues affecting their proper function. Nuclear factor kappa B (NF-κB) signaling is a crucial pathway in this process and has been studied extensively in the context of obesity and the metabolic syndrome. Here we give an overview of the molecular mechanisms behind the inflammatory function of NF-κB in response to overnutrition and the effect this has on several metabolic tissues.
Collapse
|
50
|
Schneider AT, Gautheron J, Feoktistova M, Roderburg C, Loosen SH, Roy S, Benz F, Schemmer P, Büchler MW, Nachbur U, Neumann UP, Tolba R, Luedde M, Zucman-Rossi J, Panayotova-Dimitrova D, Leverkus M, Preisinger C, Tacke F, Trautwein C, Longerich T, Vucur M, Luedde T. RIPK1 Suppresses a TRAF2-Dependent Pathway to Liver Cancer. Cancer Cell 2017; 31:94-109. [PMID: 28017612 DOI: 10.1016/j.ccell.2016.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) represents an essential signaling node in cell death and inflammation. Ablation of Ripk1 in liver parenchymal cells (LPC) did not cause a spontaneous phenotype, but led to tumor necrosis factor (TNF)-dependent hepatocyte apoptosis and liver injury without affecting inducible nuclear factor κB (NF-κB) activation. Loss of Ripk1 induced the TNF-dependent proteasomal degradation of the E3-ligase, TNF receptor-associated factor 2 (TRAF2), in a kinase-independent manner, thereby activating caspase-8. Moreover, loss of both Ripk1 and Traf2 in LPC not only resulted in caspase-8 hyperactivation but also impaired NF-κB activation, promoting the spontaneous development of hepatocellular carcinoma. In line, low RIPK1 and TRAF2 expression in human HCCs was associated with an unfavorable prognosis, suggesting that RIPK1 collaborates with TRAF2 to inhibit murine and human hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anne T Schneider
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany; Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, RWTH Aachen University, 52074 Aachen, Germany
| | - Jérémie Gautheron
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany; Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, RWTH Aachen University, 52074 Aachen, Germany
| | - Maria Feoktistova
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Sven H Loosen
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Sanchari Roy
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Fabian Benz
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Schemmer
- Department of Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus W Büchler
- Department of Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ueli Nachbur
- Department of Medical Biology, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Parkville, VIC 3050/3052, Australia
| | - Ulf P Neumann
- Department of Visceral and Transplantation Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Rene Tolba
- Department of Laboratory Animal Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Mark Luedde
- Department of Cardiology, University Hospital, 24105 Kiel, Germany
| | | | | | - Martin Leverkus
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Frank Tacke
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Thomas Longerich
- Department of Pathology, RWTH Aachen University, 52074 Aachen, Germany
| | - Mihael Vucur
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany; Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Tom Luedde
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany; Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|