1
|
Ribeiro IT, Fioretto MN, Dos Santos SAA, Alvarez MVN, Portela LMF, Mattos R, Sebastian HB, Vitali PM, Seiva FRF, Barbisan LF, Lima CAH, Damasceno DC, Zambrano E, Justulin LA. Maternal protein restriction and postnatal sugar consumption increases inflammatory response and deregulates metabolic pathways in the liver of male offspring rats with aging. Mol Cell Endocrinol 2025; 599:112484. [PMID: 39900277 DOI: 10.1016/j.mce.2025.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
This study investigated the late effects of maternal protein restriction (MPR) and early postnatal sugar consumption on liver health in male Sprague-Dawley rat offspring, focusing on changes observed throughout the aging process. The animals were divided into the following groups: Control (CTR): Male offspring whose dams consumed a normal protein diet (NPD, 17% protein) and water ad libitum during gestation and lactation, and then fed a NPD and water until PND 540; Control + Sugar (CTR + SUG): The same treatment as CTR, but consuming a sugar solution (10% diluted in water) from postnatal day (PND) 21-90, and then fed a NPD and water until PND 540; Gestational and Lactational Low Protein (GLLP): Male offspring whose dams consumed a low-protein diet (LPD, 6% protein) during gestation and lactation and, then fed a NPD and water ad libitum until PND 540; Gestational and Lactational Low Protein + Sugar (GLLP + SUG): male offspring whose dams consumed a LPD during gestation and lactation, and then fed a NPD and a sugar solution (10% diluted in water) ad libitum from PND 21 to 90. On PND 540, the animals were anesthetized, weighed, and euthanized, and their livers were collected for morphological and molecular analyses. The GLLP and GLLP + SUG groups showed lower body weight and lower retroperitoneal fat weight compared to the CTR and CTR + SUG groups. Morphological analysis revealed inflammatory foci in the liver from the CTR + SUG, GLLP, and GLLP + SUG groups, compared to the CTR group. Hepatic activities of CAT, SOD, and GSH-Px were increased in the GLLP + SUG group and decreased in the GLLP group, compared to the CTR group. Immunohistochemistry showed a significant increase in occupied area per foci de hepatocytes positive for GSTpi (placental form) in the CTR + SUG, GLLP, and GLLP + SUG groups, compared to the CTR group. Proteomic analysis of the groups revealed significant changes in hepatic metabolic and inflammatory pathways. In the CTR + SUG group, upregulated pathways associated with non-alcoholic fatty liver disease (NAFLD) and downregulated pathways related to autophagy were observed. In the GLLP and GLLP + SUG groups, there was a significant impact on metabolic pathways, including glucose metabolism, gluconeogenesis, glycogenesis, and cellular stress responses. An upregulation of pathways associated with chemokine- and cytokine-mediated inflammatory processes was also identified, indicating activation of the immune system in the liver during aging. Therefore, MPR, with or without postnatal sugar consumption, resulted in hepatic changes in metabolism and the antioxidant defense in old male offspring.
Collapse
Affiliation(s)
- Isabelle Tenori Ribeiro
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil.
| | - Matheus Naia Fioretto
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Sérgio Alexandre Alcantara Dos Santos
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Luiz Marcos Frediani Portela
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Renato Mattos
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Hecttor Baptista Sebastian
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Pedro Menchini Vitali
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Clélia Akiko Hiruma Lima
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Department Reproductive Biology, Salvador Zubirán National Institute of Medical Sciences and Nutrition, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de, Mexico
| | - Luis Antonio Justulin
- UNESP- Sao Paulo State University, Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Zhang Y, Wang H, Xu C, Ye X, Nan Y, Hu X, Fan J, Wang X, Ju D. Rubicon siRNA-encapsulated liver-targeting nanoliposome is a promising therapeutic for non-alcoholic fatty liver disease. Int J Pharm 2025; 672:125291. [PMID: 39880145 DOI: 10.1016/j.ijpharm.2025.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/01/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic liver disorder worldwide, and effective therapeutic strategies for its treatment remains limited. In this article, we introduced Glipo-siRubi, a hepatocytes-targeting RNA interference (RNAi) nanoliposome for suppression of Rubicon expression, aiming to achieve precise regulation of autophagy in NAFLD. Autophagy activation induced by Rubicon suppression resulted in reduced endoplasmic reticulum stress and intracellular lipid accumulation in vitro. Moreover, Glipo-siRubi administration exhibited remarkable therapeutic efficacy, characterized by decreased liver lipid accumulation, ameliorated histopathology and improved insulin sensitivity in mice with western diet, indicating its notable potential against NAFLD. By inducing autophagy activation, the hepatocytes-targeting Glipo-siRubi provided a promising method for NAFLD treatment, addressing the limitations of current approaches. Our study highlighted the significance of Rubicon-specific suppression in NAFLD treatment, offering a specific, safe, and efficient approach to mitigate NAFLD.
Collapse
Affiliation(s)
- Yuting Zhang
- Minhang Hospital Fudan University Shanghai China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Hanqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Xiaomiao Ye
- Minhang Hospital Fudan University Shanghai China.
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China; Shanghai Hailu Biological Technology Co., Ltd, Shanghai 201200 China.
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Dianwen Ju
- Minhang Hospital Fudan University Shanghai China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics Fudan University School of Pharmacy Shanghai China.
| |
Collapse
|
3
|
Huang C, Luo Y, Liu Y, Liu J, Chen Y, Zeng B, Liao X, Liu Y, Wang X. DNA hypermethylation-induced suppression of ALKBH5 is required for folic acid to alleviate hepatic lipid deposition by enhancing autophagy in an ATG12-dependent manner. J Nutr Biochem 2025:109870. [PMID: 39993647 DOI: 10.1016/j.jnutbio.2025.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/08/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs when too much fat builds up in the liver. As a growing worldwide epidemic, NAFLD is strongly linked with multiple metabolic diseases including obesity, insulin resistance, and dyslipidemia. However, very few effective treatments are currently available. Folate, an essential B-group vitamin with important biological functions including DNA and RNA methylation regulation, has been shown to have a protective effect against NAFLD with its underlying mechanism remains largely unclear. Here, we show that administration of folic acid significantly improves glucose tolerance, insulin sensitivity, and dyslipidemia in high-fat diet (HFD) fed mice. Moreover, folic acid treatment significantly inhibits lipid deposition in hepatocytes both in vivo and in vitro. Mechanically, folic acid reduces the expression of m6A demethylase AlkB homolog 5 (ALKHB5) via promoter DNA hypermethylation. Decreased ALKBH5 causes increased m6A modification and increased expression of ATG12 in a demethylase activity-dependent manner, thereby promoting autophagy and preventing hepatic steatosis. Inhibition of ATG12 induced by overexpression of ALKBH5 could impair autophagy and the inhibitory effect of folic acid on lipid accumulation in hepatocytes. Together, these findings provide novel insights into understanding the protective role of folic acid in the treatment of NAFLD and suggest that folic acid may be a potential agent for combating NAFLD.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
4
|
Cruz LLD, Sinzato YK, Paula VG, Fioretto MN, Gallego FQ, Barco VS, Camargo ACL, Corrente JE, Justulin LA, Rodrigues T, Volpato GT, Damasceno DC. Maternal hyperglycemia and postnatal high-fat diet impair metabolic regulation and autophagy response in the liver of adult female rats. J Dev Orig Health Dis 2025; 16:e11. [PMID: 39973168 DOI: 10.1017/s204017442400045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This study aimed to investigate the mechanisms by which the association between maternal hyperglycemia and postnatal high-fat diet (HFD) exposure compromises metabolic parameters and hepatic autophagy in adult female pups. For this, Sprague Dawley rats, female pups from nondiabetic (control = FC) or diabetic (FD) mothers, were fed a standard diet (SD) or HFD from weaning until adulthood (n minimum = 5 rats/group): FC/SD, FC/HFD, FD/SD, and FD/HFD. In adulthood, these rats were tested with the oral glucose tolerance test, euthanized, and serum biochemistry parameters were analyzed. Liver samples were collected to evaluate cytokines, redox status, and protein expression autophagy and apoptosis markers. Histomorphometric analyses and an assessment of lipofuscin accumulation were also performed to reflect incomplete autolysosomal digestion. The FC/HFD, FD/SD, and FD/HFD groups showed glucose intolerance and an increased number of hepatocytes. Furthermore, FD/SD and FD/HFD rats showed hyperlipidemia and insulin resistance. Adaptations in hepatic redox pathways were observed in the FD/SD group with increased antioxidant defense marker activity. The FD/SD group also exhibited increased autophagy protein expression, such as p-AMPK, LC3-II/LC3-I, and p62/SQSTM1, lipofuscin accumulation, and caspase-3 activation. After exposure to HFD, the adult female pups of diabetic rats had a reduced p-AMPK and LC3-II/LC3-I ratio, the presence of steatosis, oxidative stress, and inflammation. The reduction of autophagy, stimulated by HFD, may be of vital importance for the susceptibility to metabolic dysfunction-associated fatty liver disease induced by maternal diabetes.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri Karen Sinzato
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Verônyca Gonçalves Paula
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Franciane Quintanilha Gallego
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinícius Soares Barco
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tiago Rodrigues
- Center of Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Gustavo Tadeu Volpato
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora Cristina Damasceno
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
6
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
7
|
Li YX, Li YL, Wang XP, Liu TW, Dong DJ, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone induces lipophagy via the brain-adipose tissue axis by promoting the adipokinetic hormone pathway. J Biol Chem 2025; 301:108179. [PMID: 39798879 PMCID: PMC11835591 DOI: 10.1016/j.jbc.2025.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR). Akh was highly expressed in the brain and Akhr was expressed in various tissues. The 20E upregulated the expression of Akh and Akhr by its nuclear receptor EcR during metamorphosis. AKH and AKHR increased glucose levels via gluconeogenesis and promoted lipophagy. The high glucose level induced acetylation of FOXO and nuclear localization to promote the expression of lipases and autophagy genes. Thus, the steroid hormone 20E induced lipophagy via the brain-adipose tissue axis by promoting the AKH pathway, which presented nutrients and energy to pupal and adult development during insect metamorphosis after feeding stops.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
8
|
Jaree P, Nantapojd T, Ongvarrasopone C. WSSV induces Rubicon expression to regulate innate immune response in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110033. [PMID: 39571631 DOI: 10.1016/j.fsi.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 12/06/2024]
Abstract
Rubicon, the RUN domain Beclin-1-interacting and cysteine-rich domain-containing protein plays an important role in facilitating viral replication. In this study, an involvement of P. vannamei Rubicon or PvRUBCN during white spot syndrome virus (WSSV) infection and its roles in regulation of apoptosis and innate immune response were investigated. The full-length coding sequence of PvRUBCN was 3708 bp encoding the protein of 1235 amino acids. PvRUBCN contained three conserved domains including the RUN, the PI3K-binding, and the Rubicon homology domains. PvRUBCN was grouped with the closely related RUBCN from the Penaeid species with more than 95 % identity. It was highly expressed in nerve followed by intestine, and gill. Its expression was induced upon WSSV challenge at 12 and 48 hpi. Suppression of PvRUBCN by dsRNA upon WSSV challenge resulted in more than 80 % reduction in PvRUBCN mRNA expression. Knockdown of PvRUBCN mRNA significantly decreased the WSSV copy number and prolonged the survival rate of WSSV-infected shrimp. In addition, the caspase3, a key regulator of the apoptosis pathway was significantly down-regulated. The interferon like genes including Vago4 was dramatically decreased at 72 hpi whereas Vago5 demonstrated slight reduction at 24 hpi and increase at 72 and 120 hpi, respectively. On the other hand, the expressions of the genes involved in the prophenoloxidase pathway including PPO1 and PPO2 were not changed. Taken together, PvRUBCN played important roles in the antiviral immunity in response to WSSV infection.
Collapse
Affiliation(s)
- Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Thaneeya Nantapojd
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Chalermporn Ongvarrasopone
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
9
|
Lv L, Qian J, Sang J, Li J, Liu T. Protective effects of PIK3CG knockdown against OGD/R-induced neuronal damage via inhibition of autophagy through the AMPK/mTOR pathway. Neuroscience 2025; 565:91-98. [PMID: 39603405 DOI: 10.1016/j.neuroscience.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Ischemic stroke represents an urgent need for more efficacious therapies owing to modest effectiveness of current treatment. METHODS Download data from stroke patients and collect blood samples from clinical patients to analyze phosphatidylinositol-3 kinase catalytic subunit γ (PIK3CG) expression. To establish a brain damage model, oxygen glucose deprivation/reperfusion (OGD/R) was applied to SH-SY5Y cells. Impact of PIK3CG on AMPK/mTOR autophagy pathway was verified treating cells with AMPK activator metformin. Proliferation and apoptosis were identified by CCK8 and flow cytometry. RESULTS Differential expression analysis and clinical testing show that PIK3CG is highly expressed in patients. Prolonged ODG/R exposure increased PIK3CG levels, supressed cell proliferation, and induced apoptosis. KEGG pathway analysis implicated PIK3CG in autophagy pathway. Knockdown of PIK3CG supressed OGD/R-induced reductions in cell proliferation and OGD/R-induced increases in apoptosis and expressions of Beclin 1 and LC3 II. Following OGD/R, AMPK phosphorylation was upregulated while mammalian target of rapamycin (mTOR) phosphorylation was downregulated, indicating AMPK/mTOR autophagy activation. Knockdown of PIK3CG opposed metformin-induced rises in Beclin 1, LC3 II and apoptosis along with decreases in proliferation. CONCLUSION PIK3CG knockdown protects neuronal cells by inhibiting AMPK/mTOR autophagy pathway and further inhibiting autophagy.
Collapse
Affiliation(s)
- Luting Lv
- Department of Neurology,The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Junzhi Sang
- Department of Magnetic Resonance, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jie Li
- Department of Neurology,The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
10
|
Vázquez Salgado AM, Cai C, Lee M, Yin D, Chrystostome ML, Gefre AF, He S, Kieckhaefer J, Wangensteen KJ. In Vivo CRISPR Activation Screening Reveals Chromosome 1q Genes VPS72, GBA1, and MRPL9 Drive Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025:101460. [PMID: 39761726 DOI: 10.1016/j.jcmgh.2025.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by using CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes. METHODS We used data from The Cancer Genome Atlas to identify that frequently copy number-amplified and up-regulated genes all reside on human chromosomes 1q and 8q. We generated CRISPRa screening transposons that contain oncogenic Myc to drive tumor formation. We conducted CRISPRa screens in vivo in the liver to identify tumor driver genes. We extensively validated the findings in separate mice and performed RNA sequencing analysis to explore mechanisms driving tumorigenesis. RESULTS We targeted genes that frequently undergo amplification in human HCC using an in vivo CRISPRa screening system in mice, which induced extensive liver tumorigenesis. Human chromosome 1q genes Zbtb7b, Vps72, Gba1, and Mrpl9 emerged as drivers of liver tumorigenesis. In human HCC there is a trend in correlation between levels of MRPL9, VPS72, or GBA1 and poor survival. In validation assays, activation of Vps72, Gba1, or Mrpl9 resulted in extensive liver tumorigenesis and decreased survival in mice. RNA sequencing revealed different mechanisms driving HCC, with Mrpl9 activation altering genes functionally related to mitochondrial function, Vps72 levels altering phospholipid metabolism, and Gba1 activation enhancing endosomal-lysosomal activity, all leading to promotion of cellular proliferation. Analysis of human tumor tissues with high levels of MRPL9, VPS72, or GBA1 revealed congruent results, indicating conserved mechanisms driving HCC. CONCLUSIONS This study reveals chromosome 1q genes Vps72, Gba1, and Mrpl9 as drivers of HCC. Future efforts to prevent or treat HCC can focus on these new driver genes.
Collapse
Affiliation(s)
- Alexandra M Vázquez Salgado
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Pharmacology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunmiao Cai
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Markcus Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dingzi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marie-Lise Chrystostome
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adrienne F Gefre
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shirui He
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
11
|
Luo S, Lu Z, Wang L, Li Y, Zeng Y, Lu H. Hepatocyte HIF-2α aggravates NAFLD by inducing ferroptosis through increasing extracellular iron. Am J Physiol Endocrinol Metab 2025; 328:E92-E104. [PMID: 39679942 DOI: 10.1152/ajpendo.00287.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Recent research has illuminated the pivotal role of the hypoxia-inducible factor-2α (HIF-2α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway in the progression of nonalcoholic fatty liver disease (NAFLD). Meanwhile, it has been reported that HIF-2α is involved in iron regulation, and that aberrant iron distribution leads to liver lipogenesis. Therefore, we hypothesize that HIF-2α exacerbates fatty liver by affecting iron distribution. To substantiate this hypothesis, we utilized liver-specific HIF-2α knockout mice and the LO2 cell line with overexpressed HIF-2α. HIF-2α overexpression (OE) was induced via lentiviral infection, followed by exposure to free fatty acids (FFAs) and deferoxamine (DFO). In animal experiments, hepatic HIF-2α knockout resulted in lower liver lipid levels, lower liver weight, and higher serum iron levels. Enrichment in autophagy, ferroptosis, and the PI3K-AKT pathway was demonstrated through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the liver of mice. In vitro experiments showed that HIF-2α increased supernatant iron. In the HIF-2α OE group, the addition of FFA led to decreased levels of reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4) protein, along with increased lipid peroxidation (LPO), cellular lipid droplets, and triglyceride content. Impressively, DFO intervention decreased supernatant iron, reversed these changes by increasing GSH and GPX4 levels, and simultaneously reduced LPO levels, cellular lipid droplets, and triglyceride content. In addition, the expression of proteins related to β-oxidation increased, and lipid deposition in hepatocytes improved, which may be associated with the PI3K/AKT pathway. In summary, our findings suggest that HIF-2α-mediated iron flux enhances NAFLD cell susceptibility to ferroptosis, thereby impacting lipid metabolism-related genes and contributing to lipid accumulation.NEW & NOTEWORTHY The experiment demonstrated that HIF-2α increased extracellular iron. In LO2 cells overexpressing HIF-2α, FFAs not only increased cellular lipid and triglyceride levels but also induced key features of ferroptosis, such as reduced GSH and GPX4 levels and increased LPO, despite the absence of cellular iron overload. These effects were reversed by lowering extracellular iron with DFO. Furthermore, DFO treatment increased β-oxidation protein expression and improved lipid deposition in hepatocytes, potentially through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lingling Wang
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
12
|
Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, Chang Q, Yan M. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. [PMID: 38295876 PMCID: PMC11725165 DOI: 10.1016/j.jare.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
13
|
Schütz F, Longo L, Keingeski MB, Filippi-Chiela E, Uribe-Cruz C, Álvares-da-Silva MR. Lipophagy and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease progression in an experimental model. World J Hepatol 2024; 16:1468-1479. [DOI: 10.4254/wjh.v16.i12.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Genetic and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis.
AIM To evaluate micro (mi)RNAs and lipophagy markers in an experimental model of metabolic dysfunction-associated steatohepatitis (MASH).
METHODS Adult male Sprague Dawley rats were randomized into two groups: Control group (n = 10) fed a standard diet; and intervention group (n = 10) fed a high-fat-choline-deficient diet for 16 weeks. Molecular evaluation of lipophagy markers in liver tissue [sirtuin-1, p62/sequestosome-1, transcription factor-EB, perilipin-2 (Plin2), Plin3, Plin5, lysosome-associated membrane proteins-2, rubicon, and Cd36], and serum miRNAs were performed.
RESULTS Animals in the intervention group developed MASH and showed a significant decrease in sirtuin-1 (P = 0.020) and p62/sequestosome-1 (P < 0.001); the opposite was reported for transcription factor-EB (P = 0.020), Plin2 (P = 0.003), Plin3 (P = 0.031), and Plin5 (P = 0.005) compared to the control group. There was no significant difference between groups for lysosome-associated membrane proteins-2 (P = 0.715), rubicon (P = 0.166), and Cd36 (P = 0.312). The intervention group showed a significant increase in miR-34a (P = 0.005) and miR-21 (P = 0.043) compared to the control. There was no significant difference between groups for miR-375 (P = 0.905), miR-26b (P = 0.698), and miR-155 (P = 0.688).
CONCLUSION Animals with MASH presented expression changes in markers related to lysosomal stress and autophagy as well as in miRNAs related to inflammation and fibrogenesis, processes that promote MASLD progression.
Collapse
Affiliation(s)
- Felipe Schütz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas 3300, Misiones, Argentina
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasilia 71.605-001, Distrito Federal, Brazil
| |
Collapse
|
14
|
Liang X, Zhang T, Cheng X, Yuan H, Yang N, Yi Y, Li X, Zhang F, Sun J, Li Z, Wang X. Sesamin alleviates lipid accumulation induced by elaidic acid in L02 cells through TFEB regulated autophagy. Front Nutr 2024; 11:1511682. [PMID: 39758315 PMCID: PMC11695222 DOI: 10.3389/fnut.2024.1511682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1). Methods L02 cells, an important tool in scientific researches due to its high proliferation ability, preserved hepatocyte function, and specificity in response to exogenous factors, were incubated with 9-trans-C18:1 to establish an in vitro model of NAFLD in our study. The lipid accumulation in cells and the morphology of mitochondria and autolysosomes were observed by Oil Red O staining and transmission electron microscopy. The effects of sesamin on oxidative stress, apoptosis, mitochondrial function, autophagy as well as related protein levels in L02 cells were also investigated in the presence of 9-trans-C18:1. Results The results showed that sesamin significantly accelerated the autophagy flux of L02 cells induced by 9-trans-C18:1 as well as elevated protein levels of transcription factor EB (TFEB) and its downstream target lysosome-associated membrane protein 1(LAMP1), along with up-regulated levels of TFEB and LAMP1 in the nucleus indicated by Immunofluorescence. In addition, PTEN-induced putative kinase 1 and Parkin mediated mitophagy was activated by sesamin. The direct inhibitor Eltrombopag and indirect inhibitor MHY1485 of TFEB reversed the protective effect of sesamin, suggesting the involvement of autophagy in the lipid-lowering process of sesamin. Discussion This work suggests that sesamin regulates autophagy through TFEB to alleviate lipid accumulation in L02 cells induced by 9-trans-C18:1, providing a potential target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Ning Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanlei Yi
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xiaozhou Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xia Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
15
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
16
|
Katsaros I, Sotiropoulou M, Vailas M, Papachristou F, Papakyriakopoulou P, Grigoriou M, Kostomitsopoulos N, Giatromanolaki A, Valsami G, Tsaroucha A, Schizas D. The Effect of Quercetin on Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Beclin1, P62, and LC3: An Experimental Study. Nutrients 2024; 16:4282. [PMID: 39770904 PMCID: PMC11678826 DOI: 10.3390/nu16244282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression. Methods: Forty-seven male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD, followed by quercetin treatment for 4 weeks. Mice were divided into baseline, control, and two quercetin groups, receiving low (10 mg/kg) and high (50 mg/kg) doses. Liver histology was scored using the NAFLD Activity Score (NAS). Immunohistochemistry and immunoblotting were performed to analyze autophagy markers. Results: Quercetin-treated groups showed significant reductions in NAS compared to controls (p = 0.011), mainly in steatosis and steatohepatitis. Immunohistochemistry indicated increased expression of autophagy markers LCA and p62 in quercetin groups. Western blot analysis revealed significant elevations in LC3A in the treated groups, suggesting improved autophagic activity and lipid degradation. Conclusions: Quercetin effectively reduces NAFLD severity and modulates autophagy-related proteins. These findings suggest that quercetin enhances autophagic flux, supporting its therapeutic potential for NAFLD. Additional research is needed to clarify the molecular mechanisms of quercetin and to determine the optimal dosing for clinical application.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Paraskevi Papakyriakopoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Marirena Grigoriou
- Laboratory of Molecular Developmental Biology & Molecular Neurobiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
17
|
Yakubo S, Abe H, Li Y, Kudo M, Kimura A, Wakabayashi T, Watanabe Y, Kimura N, Setsu T, Yokoo T, Sakamaki A, Kamimura H, Tsuchiya A, Kamimura K, Terai S. Dasatinib and Quercetin as Senolytic Drugs Improve Fat Deposition and Exhibit Antifibrotic Effects in the Medaka Metabolic Dysfunction-Associated Steatotic Liver Disease Model. Diseases 2024; 12:317. [PMID: 39727647 PMCID: PMC11727104 DOI: 10.3390/diseases12120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) causes cellular senescence due to oxidative stress, endoplasmic reticulum stress, and ectopic fat deposition in the liver. Recently, dasatinib, an antitumor agent, and quercetin, a dietary supplement, were combined as a senolytic drug to eliminate senescent cells. Thus, this study aimed to examine the effects of dasatinib and quercetin administration on removing senescent cells and their therapeutic effects on MASLD in a medaka MASLD model. Dasatinib and quercetin were administered to a medaka MASLD model, which was fed a high-fat diet by dissolving them in aquarium water. The results revealed that senescent cells in the liver were increased in the HFD group but improved in the treatment group. Hematoxylin and eosin staining also showed that treatment improved fat deposition in hepatocytes. In addition, TGFβ1, a driver factor of fibrosis, was reduced in the treatment group. Dasatinib and quercetin eliminated senescent cells in MASLD, attenuated fat deposition, and suppressed fibrosis gene expression. The results indicate that dasatinib and quercetin as senolytic drugs are novel therapeutic agents that reduce MASLD.
Collapse
Affiliation(s)
- Shunta Yakubo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yawen Li
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Marina Kudo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takuya Wakabayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan;
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan; (S.Y.); (Y.L.); (M.K.); (A.K.); (T.W.); (Y.W.); (N.K.); (T.S.); (A.S.); (H.K.); (A.T.); (K.K.); (S.T.)
| |
Collapse
|
18
|
Katsaros I, Sotiropoulou M, Vailas M, Kapetanakis EI, Valsami G, Tsaroucha A, Schizas D. Quercetin's Potential in MASLD: Investigating the Role of Autophagy and Key Molecular Pathways in Liver Steatosis and Inflammation. Nutrients 2024; 16:3789. [PMID: 39599578 PMCID: PMC11597035 DOI: 10.3390/nu16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a widespread liver disorder characterized by excessive fat accumulation in the liver, commonly associated with metabolic syndrome components such as obesity, diabetes, and dyslipidemia. With a global prevalence of up to 30%, MASLD is projected to affect over 100 million people in the U.S. and 20 million in Europe by 2030. The disease ranges from Steatotic Lived Disease (SLD) to more severe forms like metabolic dysfunction-associated steatohepatitis (MASH), which can progress to cirrhosis and hepatocellular carcinoma. Autophagy, a cellular process crucial for lipid metabolism and homeostasis, is often impaired in MASLD, leading to increased hepatic lipid accumulation and inflammation. Key autophagy-related proteins, such as Beclin1, LC3A, SQSTM1 (p62), CD36, and Perilipin 3, play significant roles in regulating this process. Disruption in these proteins contributes to the pathogenesis of MASLD. Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-inflammatory properties, has promising results in mitigating MASLD. It may reduce hepatic lipid accumulation, improve mitochondrial function, and enhance autophagy. However, further research is needed to elucidate its mechanisms and validate its therapeutic potential in clinical settings. This underscores the need for continued investigation into autophagy and novel treatments for MASLD.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Emmanouil Ioannis Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens12462, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15774, Greece;
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis 68100, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
19
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Gwon HJ, Chung YH, Lim DS, Cho W, Choi SW, Abd El-Aty AM, Song JH, Shin YK, Jeong JH, Jung TW. Uvaol ameliorates lipid deposition in hyperlipidemic hepatocytes by suppressing protein-tyrosine phosphatase 1B/ER stress signaling. Biochem Biophys Res Commun 2024; 730:150387. [PMID: 39002201 DOI: 10.1016/j.bbrc.2024.150387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Uvaol (UV), a pentacyclic triterpene found in olives and virgin olive oil, is known for its anti-inflammatory and antioxidant effects in various disease models. While olive oil is reported to reduce obesity and insulin resistance, the specific impact of UV on liver lipid metabolism and its molecular mechanisms are not fully understood. In this study, hepatic lipid accumulation was measured using oil red O staining, and protein expression levels in liver cells were assessed via Western blot analysis. Apoptosis was evaluated through cell viability and caspase 3 activity assays. UV treatment reduced lipid accumulation, fatty acid uptake, apoptosis, and ER stress in palmitate-treated liver cells. Additionally, UV enhanced fatty acid oxidation. Mechanistically, increased SIRT6 expression and autophagy were observed in UV-treated cells. SIRT6-targeted siRNA or 3-methyladenine blocked the effects of UV in hyperlipidemic cells. In conclusion, UV improves SIRT6/autophagy signaling, reducing lipid deposition and apoptosis in liver cells under high lipid conditions. This in vitro study provides strong evidence for potential therapeutic strategies for hepatic steatosis.
Collapse
Affiliation(s)
- Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Takeuchi K, Yamaguchi K, Takahashi Y, Yano K, Okishio S, Ishiba H, Tochiki N, Kataoka S, Fujii H, Iwai N, Seko Y, Umemura A, Moriguchi M, Okanoue T, Itoh Y. Hepatocyte-specific GDF15 overexpression improves high-fat diet-induced obesity and hepatic steatosis in mice via hepatic FGF21 induction. Sci Rep 2024; 14:23993. [PMID: 39402176 PMCID: PMC11473698 DOI: 10.1038/s41598-024-75107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
GDF15 and FGF21, stress-responsive cytokines primarily secreted from the liver, are promising therapeutic targets for metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interaction between GDF15 and FGF21 remains unclear. We examined the effects of hepatocyte-specific GDF15 or FGF21 overexpression in high-fat diet (HFD)-fed mice for 8 weeks. Hydrodynamic injection of GDF15 or FGF21 sustained high circulating levels of GDF15 or FGF21, respectively, resulting in marked reductions in body weight, epididymal fat mass, insulin resistance, and hepatic steatosis. In addition, GDF15 treatment led to early reduction in body weight despite no change in food intake, indicating the role of GDF15 other than appetite loss. GDF15 treatment increased liver-derived serum FGF21 levels, whereas FGF21 treatment did not affect GDF15 expression. GDF15 promoted eIF2α phosphorylation and XBP1 splicing, leading to FGF21 induction. In murine AML12 hepatocytes treated with free fatty acids (FFAs), GDF15 overexpression upregulated Fgf21 mRNA levels and promoted eIF2α phosphorylation and XBP1 splicing. Overall, continuous exposure to excess FFAs resulted in a gradual increase of β-oxidation-derived reactive oxygen species and endoplasmic reticulum stress, suggesting that GDF15 enhanced this pathway and induced FGF21 expression. GDF15- and FGF21-related crosstalk is an important pathway for the treatment of MASLD.
Collapse
Affiliation(s)
- Kento Takeuchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan.
| | - Yusuke Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Ishiba
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Nozomi Tochiki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Hideki Fujii
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Naoto Iwai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
22
|
Lin J, Huang C, Zhao J, Li L, Wu Z, Zhang T, Li Y, Li W, Guo B, Liu Z, Diao A. The novel TFEB agonist desloratadine ameliorates hepatic steatosis by activating the autophagy-lysosome pathway. Front Pharmacol 2024; 15:1449178. [PMID: 39359254 PMCID: PMC11445182 DOI: 10.3389/fphar.2024.1449178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
The autophagy-lysosome pathway plays an essential role in promoting lipid catabolism and preventing hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). Transcription factor EB (TFEB) enhances the autophagy-lysosome pathway by regulating the expression of genes related to autophagy and lysosome biogenesis. Therefore, targeting TFEB provides a novel strategy for the treatment of lipid metabolic diseases. In this study, the antiallergic drug desloratadine was screened and identified as a novel TFEB agonist. Desloratadine effectively induced translocation of TFEB to the nucleus and promoted autophagy and lysosome biogenesis. Desloratadine-induced TFEB activation was dependent on AMPK rather than mTORC1. Moreover, desloratadine treatment enhanced clearance of lipid droplets in cells induced by fatty acids oleate and palmitate. Furthermore, high-fat diet (HFD) induced obesity mouse model experiments indicated treatment with desloratadine markedly reduced the body weight of HFD-fed mice, as well as the levels of hepatic triglycerides and total cholesterol, serum glutamic pyruvic transaminase and glutamic-oxaloacetic transaminase. Oil red O staining showed the liver fat was significantly reduced after desloratadine treatment, and H&E staining analysis demonstrated hepatocellular ballooning was improved. In addition, autophagy and lysosomal biogenesis was stimulated in the liver of desloratadine treated mice. Altogether, these findings demonstrate desloratadine ameliorates hepatic steatosis through activating the TFEB-mediated autophagy-lysosome pathway, thus desloratadine has an exciting potential to be used to treat fatty liver disease.
Collapse
Affiliation(s)
- Jieru Lin
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chunhuan Huang
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jingye Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenwei Wu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingyu Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Li
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Baoqiang Guo
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:19. [PMID: 39100919 PMCID: PMC11296953 DOI: 10.1038/s44324-024-00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
24
|
Nguyen AT, Masuda M, Mori Y, Adachi Y, Fukuda T, Furuichi A, Takikawa M, Tsuda Y, Hamada Y, Maruyama Y, Ohminami H, Ohnishi K, Taketani Y. All-trans retinoic acid induces lipophagy by reducing Rubicon in Hepa1c1c7 cells. J Lipid Res 2024; 65:100598. [PMID: 39032560 PMCID: PMC11381443 DOI: 10.1016/j.jlr.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
All-trans retinoic acid (atRA), a metabolite of vitamin A, reduces hepatic lipid accumulation in liver steatosis model animals. Lipophagy, a new lipolysis pathway, degrades a lipid droplet (LD) via autophagy in adipose tissue and the liver. We recently found that atRA induces lipophagy in adipocytes. However, it remains unclear whether atRA induces lipophagy in hepatocytes. In this study, we investigated the effects of atRA on lipophagy in Hepa1c1c7 cells and the liver of mice fed a high-fat diet (HFD). First, we confirmed that atRA induced autophagy in Hepa1c1c7 cells by Western blotting and the GFP-LC3-mCherry probe. Next, we evaluated the lipolysis in fatty Hepa1c1c7 cells treated with the knockdown of Atg5, an essential gene in autophagy induction. Atg5-knockdown partly suppressed the atRA-induced lipolysis in fatty Hepa1c1c7 cells. We also found that atRA reduced the protein, but not mRNA, expression of Rubicon, a negative regulator of autophagy, in Hepa1c1c7 cells and the liver of HFD-fed mice. Rubicon-knockdown partly inhibited the atRA-induced lipolysis in fatty Hepa1c1c7 cells. In addition, atRA reduced hepatic Rubicon expression in young mice, but the effect of atRA on it diminished in aged mice. Finally, we investigated the mechanism underlying reduced Rubicon protein expression by atRA in hepatocytes. A protein synthesis inhibitor, but not proteasome or lysosomal inhibitors, significantly blocked the reduction of Rubicon protein expression by atRA in Hepa1c1c7 cells. These results suggest that atRA may promote lipophagy in fatty hepatocytes by reducing hepatic Rubicon expression via inhibiting protein synthesis.
Collapse
Affiliation(s)
- Anh The Nguyen
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan.
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Teppei Fukuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Airi Furuichi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Masaki Takikawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuki Tsuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yuki Hamada
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yusuke Maruyama
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushma, Tokushima, Japan
| |
Collapse
|
25
|
Bai Y, Nan Y, Wu T, Zhu A, Xie X, Sun Y, Deng Y, Dou Z, Hu X, Zhou R, Xu S, Zhang Y, Fan J, Ju D. Lipid Nanoparticle-Mediated Delivery of CRISPR-Cas9 Against Rubicon Ameliorates NAFLD by Modulating CD36 Along with Glycerophospholipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400493. [PMID: 38894572 PMCID: PMC11336963 DOI: 10.1002/advs.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of various chronic metabolic hepatic diseases with limited therapeutics. Rubicon, an essential regulator in lysosomal degradation, is reported to exacerbate hepatic steatosis in NAFLD mice and patients, indicating its probability of being a therapeutic target for NAFLD treatment. In this study, the therapeutic potential of Rubicon blockage is investigated. Lipid nanoparticles carrying Rubicon-specific CRISPR-Cas9 components exhibited liver accumulation, cell internalization, and Rubicon knockdown. A single administration of the nanoparticles results in attenuated lipid deposition and hepatic steatosis, with lower circulating lipid levels and decreased adipocyte size in NAFLD mice. Furthermore, the increase of phosphatidylcholine and phosphatidylethanolamine levels can be observed in the NAFLD mice livers after Rubicon silencing, along with regulatory effects on metabolism-related genes such as CD36, Gpcpd1, Chka, and Lpin2. The results indicate that knockdown of Rubicon improves glycerophospholipid metabolism and thereby ameliorates the NAFLD progression, which provides a potential strategy for NAFLD therapy via the restoration of Rubicon.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xinlei Xie
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yun Sun
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Yong Deng
- Department of Research and DevelopmentShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai201321P. R. China
| | - Zihan Dou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Rongrui Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Shuwen Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Yuanzhen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
- Shanghai Hailu Biological Technology Co., Ltd.Shanghai201200P. R. China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiP. R. China
- Fudan Zhangjiang InstituteShanghai201203P. R. China
| |
Collapse
|
26
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
27
|
Yang P, Liu Y, Tong ZW, Huang QH, Xie XH, Mao SY, Ding JH, Lu M, Tan RX, Hu G. The marine-derived compound TAG alleviates Parkinson's disease by restoring RUBCN-mediated lipid metabolism homeostasis. Acta Pharmacol Sin 2024; 45:1366-1380. [PMID: 38538717 PMCID: PMC11192910 DOI: 10.1038/s41401-024-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/29/2024] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is increasing. Currently, no effective therapies for PD exist. Marine-derived natural compounds are considered important resources for the discovery of new drugs due to their distinctive structures and diverse activities. In this study, tetrahydroauroglaucin (TAG), a polyketide isolated from a marine sponge, was found to have notable neuroprotective effects on MPTP/MPP+-induced neurotoxicity. RNA sequencing analysis and metabolomics revealed that TAG significantly improved lipid metabolism disorder in PD models. Further investigation indicated that TAG markedly decreased the accumulation of lipid droplets (LDs), downregulated the expression of RUBCN, and promoted autophagic flux. Moreover, conditional knockdown of Rubcn notably attenuated PD-like symptoms and the accumulation of LDs, accompanied by blockade of the neuroprotective effect of TAG. Collectively, our results first indicated that TAG, a promising PD therapeutic candidate, could suppress the accumulation of LDs through the RUBCN-autophagy pathway, which highlighted a novel and effective strategy for PD treatment.
Collapse
Affiliation(s)
- Pei Yang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Wu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qian-Hui Huang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xia-Hong Xie
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Yu Mao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| | - Ren-Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
28
|
Tudorica DA, Basak B, Puerta Cordova AS, Khuu G, Rose K, Lazarou M, Holzbaur EL, Hurley JH. A RAB7A phosphoswitch coordinates Rubicon Homology protein regulation of Parkin-dependent mitophagy. J Cell Biol 2024; 223:e202309015. [PMID: 38728007 PMCID: PMC11090050 DOI: 10.1083/jcb.202309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024] Open
Abstract
Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Collapse
Affiliation(s)
- Dan A. Tudorica
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Bishal Basak
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexia S. Puerta Cordova
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Grace Khuu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kevin Rose
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Erika L.F. Holzbaur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James H. Hurley
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
30
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
31
|
Nishiyama M, Ishizawa S, Nishi A, Taketomi A, Kono T. Bofutsushosan (Fangfengtongshengsan) improves early stages of NASH via the gut–liver axis in diabetes-induced NASH model mice. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 11:100440. [DOI: 10.1016/j.prmcm.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Maeda S, Sakai S, Takabatake Y, Yamamoto T, Minami S, Nakamura J, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Matsui S, Imai A, Edahiro R, Yamamoto-Imoto H, Matsui I, Takashima S, Imamura R, Nonomura N, Yanagita M, Okada Y, Ballabio A, Nakamura S, Yoshimori T, Isaka Y. MondoA and AKI and AKI-to-CKD Transition. J Am Soc Nephrol 2024; 35:00001751-990000000-00338. [PMID: 38819935 PMCID: PMC11387036 DOI: 10.1681/asn.0000000000000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Key Points
The expression of MondoA was decreased in the renal tubules of patients with CKD.Genetic ablation of MondoA in proximal tubules inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon.MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the transcription factor EB-peroxisome proliferator-activated receptor-γ coactivator-1α axis.
Background
Elderly individuals and patients with CKD are at a higher risk of AKI. The transcription factor MondoA is downregulated in the kidneys of aged individuals or patients with AKI; however, its roles in AKI development and the AKI-to-CKD transition remain unknown.
Methods
We investigated the expression of MondoA in human kidney biopsy samples, ischemia-reperfusion–injured (IRI) mouse kidneys, and cultured proximal tubular epithelial cells under hypoxia/reoxygenation. The role of MondoA during the initial and recovery phases after IRI was evaluated using proximal tubule–specific MondoA knockout mice and MondoA-deficient proximal tubular epithelial cells. Furthermore, we explored the involvement of Rubicon and transcription factor EB (TFEB), both of which are downstream factors of MondoA.
Results
MONDOA expression was decreased in the renal tubules of patients with CKD. In mouse kidneys, MondoA expression was decreased under ischemia, whereas its expression was increased during reperfusion. Genetic ablation of MondoA in proximal tubular epithelial cells inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon. Ablation of Rubicon in MondoA-deficient IRI kidneys activated autophagy and protected mitochondrial function. MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the TFEB-peroxisome proliferator-activated receptor-γ coactivator-1α axis. Pharmacological upregulation of TFEB contributed to maintaining mitochondrial biogenesis and increased peroxisome proliferator-activated receptor-γ coactivator-1α transcription.
Conclusions
Our findings demonstrate that MondoA protected against vulnerability to AKI by maintaining autophagy and subsequently supporting mitochondrial function to prevent progression to CKD.
Collapse
Grants
- JP22gm1410014 AMED
- 21K08276 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22K16240 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21H02935 a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology in Japan
- None Novo Nordisk Pharma
- None Manpei Suzuki Diabetes Foundation
Collapse
Affiliation(s)
- Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Nara, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
33
|
Dong M, Zhang T, Liang X, Cheng X, Shi F, Yuan H, Zhang F, Jiang Q, Wang X. Sesamin alleviates lipid accumulation induced by oleic acid via PINK1/Parkin-mediated mitophagy in HepG2 cells. Biochem Biophys Res Commun 2024; 708:149815. [PMID: 38531220 DOI: 10.1016/j.bbrc.2024.149815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.
Collapse
Affiliation(s)
- Mengyun Dong
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Fuyan Shi
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Qiqi Jiang
- Department of Gastroenterology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| | - Xia Wang
- Department of Gastroenterology, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China.
| |
Collapse
|
34
|
Sedik AA, Elgohary R, Khalifa E, Khalil WKB, I Shafey H, B Shalaby M, S O Gouida M, M Tag Y. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol Mech Methods 2024; 34:454-467. [PMID: 38166588 DOI: 10.1080/15376516.2023.2301344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1β, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Eman Khalifa
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | | | - Heba I Shafey
- Cell Biology Department, National Research Centre, Giza, Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organisation of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP), Cairo, Egypt
| | - Mona S O Gouida
- Genetics Unit, Faculty of Medicine, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Yasmin M Tag
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| |
Collapse
|
35
|
Wei Y, Jin M, Yu H, Hou X, Zhao L, Ding L, Cheng J, Qiu J, Feng H. The Glycyrrhiza glabra L. crude extract alleviates lipid accumulation in NAFLD by activating Nrf2 and promoting autophagy. J Funct Foods 2024; 116:106143. [DOI: 10.1016/j.jff.2024.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
36
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
37
|
Tang Y, Yuan Z, Lu X, Song Y, Zhu S, Qiu C, zhang Q, Fu B, Jia C, Li H. RAMP1 Protects Hepatocytes against Ischemia-reperfusion Injury by Inhibiting the ERK/YAP Pathway. J Clin Transl Hepatol 2024; 12:357-370. [PMID: 38638379 PMCID: PMC11022058 DOI: 10.14218/jcth.2023.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 04/20/2024] Open
Abstract
Background and Aims Hepatic ischemia-reperfusion injury (HIRI) is a prevalent complication of liver transplantation, partial hepatectomy, and severe infection, necessitating the development of more effective clinical strategies. Receptor activity-modifying protein 1 (RAMP1), a member of the G protein-coupled receptor adapter family, has been implicated in numerous physiological and pathological processes. The study aimed to investigate the pathogenesis of RAMP1 in HIRI. Methods We established a 70% liver ischemia-reperfusion model in RAMP1 knockout (KO) and wild-type mice. Liver and blood samples were collected after 0, 6, and 24 h of hypoxia/reperfusion. Liver histological and serological analyses were performed to evaluate liver damage. We also conducted in-vitro and in-vivo experiments to explore the molecular mechanism underlying RAMP1 function. Results Liver injury was exacerbated in RAMP1-KO mice compared with the sham group, as evidenced by increased cell death and elevated serum transaminase and inflammation levels. HIRI was promoted in RAMP1-KO mice via the induction of hepatocyte apoptosis and inhibition of proliferation. The absence of RAMP1 led to increased activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and yes-associated protein (YAP) phosphorylation, ultimately promoting apoptosis. SCH772984, an ERK/MAPK phosphorylation inhibitor, and PY-60, a YAP phosphorylation inhibitor, reduced apoptosis in in-vitro and in-vivo experiments. Conclusions Our findings suggest that RAMP1 protects against HIRI by inhibiting ERK and YAP phosphorylation signal transduction, highlighting its potential as a therapeutic target for HIRI and providing a new avenue for intervention.
Collapse
Affiliation(s)
- Yongsheng Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zenan Yuan
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Lu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi zhang
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Binsheng Fu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changchang Jia
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Li
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Mori Y, Masuda M, Yoshida-Shimizu R, Aoyagi S, Adachi Y, Nguyen AT, Maruyama Y, Okumura Y, Kamei Y, Sakai M, Ohnishi K, Ohminami H, Taketani Y. All-trans retinoic acid induces lipophagy through the activation of the AMPK-Beclin1 signaling pathway and reduces Rubicon expression in adipocytes. J Nutr Biochem 2024; 126:109589. [PMID: 38295886 DOI: 10.1016/j.jnutbio.2024.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Lipophagy is defined as a lipolysis pathway that degrades lipid droplet (LD) via autophagy. All-trans retinoic acid (atRA), a metabolite of vitamin A, stimulates lipolysis through hormone-sensitive lipase and β-oxidation. However, the regulation of lipolysis by atRA-induced autophagy in adipocytes remains unclear. In this study, we investigated the effect of atRA on autophagy in epididymal fat of mice and the molecular mechanisms of autophagy in 3T3-L1 adipocytes. Western blotting showed that atRA decreased the expression of p62, a cargo receptor for autophagic degradation, and increased the expression of the lipidated LC3B (LC3B-II), an autophagy marker, in epididymal fat. Next, we confirmed that atRA increased autophagic flux in differentiated 3T3-L1 cells using the GFP-LC3-RFP-LC3ΔG probe. Immunofluorescent staining revealed that the colocalization of LC3B with perilipin increased in differentiated 3T3-L1 cells treated with atRA. The knockdown of Atg5, an essential gene in autophagy induction, partly suppressed the atRA-induced release of non-esterified fatty acid (NEFA) from LDs in differentiated 3T3-L1 cells. atRA time-dependently elicited the phosphorylation of AMPK and Beclin1, autophagy-inducing factors, in mature 3T3-L1 adipocytes. Inversely, atRA decreased the protein expression of Rubicon, an autophagy repressor, in differentiated 3T3-L1 cells and epididymal fat. Interestingly, the expression of ALDH1A1, atRA-synthesizing enzymes, increased in epididymal fat with decreased protein expression of Rubicon in aged mice. These results suggest that atRA may partially induce lipolysis through lipophagy by activating the AMPK-Beclin1 signaling pathway in the adipocytes and increased atRA levels may contribute to decreased Rubicon expression in the epididymal fat of aged mice. (248/250 words).
Collapse
Affiliation(s)
- Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan.
| | - Risa Yoshida-Shimizu
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Saki Aoyagi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Anh The Nguyen
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yusuke Maruyama
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yuki Kamei
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Maiko Sakai
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
39
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
40
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
41
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
42
|
Hao Y, Feng D, Ye H, Liao W. Nobiletin Alleviated Epithelial-Mesenchymal Transition of Hepatocytes in Liver Fibrosis Based on Autophagy-Hippo/YAP Pathway. Mol Nutr Food Res 2024; 68:e2300529. [PMID: 38044268 DOI: 10.1002/mnfr.202300529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 12/05/2023]
Abstract
SCOPE The current researches indicated that the epithelial-mesenchymal transition (EMT) of hepatocytes plays a crucial role in the development of liver fibrosis. To date, there is a paucity of literature regarding the impact of nobiletin (NOB) on liver fibrosis. This study investigates the inhibitory effect of NOB on EMT in hepatocytes during the progression of liver fibrosis and its underlying mechanism. METHODS AND RESULTS The findings demonstrated that NOB significantly suppresses liver fibrosis in carbon tetrachloride (CCl4 )-induced mice by reducing inflammation and fiber deposition in the liver. Moreover, NOB mitigates EMT in hepatocytes, concurrently alleviating inflammatory status and reducing the production of reactive oxygen species (ROS) generation. The comprehensive investigation reveals that the hepatoprotective effect of NOB in liver fibrosis is attributed to autophagy activation, as evidenced by a significant increase in LC3 II expression and p62 degradation upon NOB treatment. Additionally, NOB activates the Hippo/YAP pathway by downregulating YAP and its downstream targets in liver fibrosis, which is regulated by autophagy based on experiments with chloroquine (CQ), 3-methyladenine (3-MA), and siYAP intervention. CONCLUSION Therefore, this study provides evidences that NOB can protect hepatocytes from undergoing EMT during liver fibrosis by inducing autophagy and subsequently modulating the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huarui Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
43
|
Bu KB, Kim M, Shin MK, Lee SH, Sung JS. Regulation of Benzo[a]pyrene-Induced Hepatic Lipid Accumulation through CYP1B1-Induced mTOR-Mediated Lipophagy. Int J Mol Sci 2024; 25:1324. [PMID: 38279324 PMCID: PMC10816991 DOI: 10.3390/ijms25021324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is caused by lipid accumulation within the liver. The pathogenesis underlying its development is poorly understood. Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and a group 1 carcinogen. The aryl hydrocarbon receptor activation by B[a]P induces cytochrome P450 (CYP) enzymes, contributing to hepatic lipid accumulation. However, the molecular mechanism through which the B[a]P-mediated induction of CYP enzymes causes hepatic lipid accumulation is unknown. This research was conducted to elucidate the role of CYP1B1 in regulating B[a]P-induced lipid accumulation within hepatocytes. B[a]P increased hepatic lipid accumulation, which was mitigated by CYP1B1 knockdown. An increase in the mammalian target of rapamycin (mTOR) by B[a]P was specifically reduced by CYP1B1 knockdown. The reduction of mTOR increased the expression of autophagic flux-related genes and promoted phagolysosome formation. Both the expression and translocation of TFE3, a central regulator of lipophagy, were induced, along with the expression of lipophagy-related genes. Conversely, enhanced mTOR activity reduced TFE3 expression and translocation, which reduced the expression of lipophagy-related genes, diminished phagolysosome production, and increased lipid accumulation. Our results indicate that B[a]P-induced hepatic lipid accumulation is caused by CYP1B1-induced mTOR and the reduction of lipophagy, thereby introducing novel targets and mechanisms to provide insights for understanding B[a]P-induced MASLD.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (K.-B.B.); (M.K.); (M.K.S.); (S.-H.L.)
| |
Collapse
|
44
|
Wang Y, Bian X, Wan M, Dong W, Gao W, Yao Z, Guo C. Effects of riboflavin deficiency and high dietary fat on hepatic lipid accumulation: a synergetic action in the development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2024; 21:1. [PMID: 38169398 PMCID: PMC10763341 DOI: 10.1186/s12986-023-00775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Riboflavin, one of water soluble vitamins, plays a role in lipid metabolism and antioxidant function. However, the effects of riboflavin deficiency on NAFLD development have not yet to be fully explored. METHODS In the present study, an animal model of NAFLD was induced by high fat diet feeding in mice and a cellular model of NAFLD was developed in HepG2 cells by palmitic acid (PA) exposure. The effects of riboflavin deficiency on lipid metabolism and antioxidant function were investigated both in vivo and in vitro. In addition, the possible role of peroxisome proliferator-activated receptor gamma (PPARγ) was studied in HepG2 cells using gene silencing technique. RESULTS The results showed that riboflavin deficiency led to hepatic lipid accumulation in mice fed high fat diet. The expressions of fatty acid synthase (FAS) and carnitine palmitoyltransferase 1 (CPT1) were up-regulated, whereas that of adipose triglyceride lipase (ATGL) down-regulated. Similar changes in response to riboflavin deficiency were demonstrated in HepG2 cells treated with PA. Factorial analysis revealed a significant interaction between riboflavin deficiency and high dietary fat or PA load in the development of NAFLD. Hepatic PPARγ expression was significantly upregulated in mice fed riboflavin deficient and high fat diet or in HepG2 cells treated with riboflavin deficiency and PA load. Knockdown of PPARγ gene resulted in a significant reduction of lipid accumulation in HepG2 cells exposed to riboflavin deficiency and PA load. CONCLUSIONS There is a synergetic action between riboflavin deficiency and high dietary fat on the development of NAFLD, in which PPARγ may play an important role.
Collapse
Affiliation(s)
- Yanxian Wang
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Min Wan
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weiyun Dong
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
45
|
Nie T, Wang X, Li A, Shan A, Ma J. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Funct 2024; 15:372-386. [PMID: 38099440 DOI: 10.1039/d3fo04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid β-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid β oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid β-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid β-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid β-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, P.R. China
| |
Collapse
|
46
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
47
|
Cui H, Wang Y, Zhou T, Qu L, Zhang X, Wang Y, Han M, Yang S, Ren X, Wang G, Gang X. Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress. Oncogene 2024; 43:136-150. [PMID: 37973951 DOI: 10.1038/s41388-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.
Collapse
Affiliation(s)
- Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, 130021, Jilin Province, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yingdi Wang
- Department of Urology, Jilin Oncological Hospital, Changchun, 130021, Jilin Province, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shuo Yang
- Department of Clinical Nutrition, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
48
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
49
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
Sugita K, Yano K, Matsukubo M, Iwamoto Y, Ogata M, Takada L, Kedoin C, Murakami M, Harumatsu T, Onishi S, Kawano T, Muto M, Kumagai K, Ido A, Kaji T, Ieiri S. Potential mechanisms underlying the effect of hepatocyte growth factor on liver injury in short bowel syndrome model rats. Pediatr Surg Int 2023; 40:8. [PMID: 37999791 DOI: 10.1007/s00383-023-05593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE The purpose of this study was to investigate the autophagy associated with apoptosis in hepatic damage in the short bowel syndrome rat model. METHODS SD rats underwent jugular vein catheterization for continuous total parenteral nutrition (TPN) and 90% small bowel resection. Animals were divided into two groups: TPN plus SBS (Control group) or TPN plus SBS plus intravenous administration of HGF (HGF group). On day 7, the rats were harvested, and hepatocellular injury was evaluated. RESULTS In an SBS rat model, hepatic steatosis and lobular inflammation were histologically suppressed in the HGF group (p < 0.01). The expression of tumor necrosis factor-α in the HGF group tend to be higher than that in the control group (p = 0.13). The gene expression of transforming Growth Factor-β in the HGF group was suppressed compared to the control group (p < 0.01). HGF treatment may have an antiapoptotic effect via the intrinsic pathway by caspase 9. Protein expressions of Rubicon (p = 0.03) and p62 (p < 0.01) in the HGF group were found to have increased compared to those in the control group. CONCLUSION The inhibitory effect of HGF on hepatic steatosis remains unclear, and further studies focusing on the mechanisms of fat accumulation are needed.
Collapse
Affiliation(s)
- Koshiro Sugita
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Makoto Matsukubo
- Department of Pediatric Surgery, Kagoshima City Hospital, Kagoshima, Japan
| | - Yumiko Iwamoto
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Masato Ogata
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Lynne Takada
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Chihiro Kedoin
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Masakazu Murakami
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Toshio Harumatsu
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Shun Onishi
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Mitsuru Muto
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima City, 890-8520, Japan.
| |
Collapse
|