1
|
Jiao J, Zhao Y, Li Q, Jin S, Liu Z. LncRNAs in tumor metabolic reprogramming and tumor microenvironment remodeling. Front Immunol 2024; 15:1467151. [PMID: 39539540 PMCID: PMC11557318 DOI: 10.3389/fimmu.2024.1467151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem composed of tumor cells, immune cells, supporting cells, and the extracellular matrix. Typically, the TME is characterized by an immunosuppressive state. To meet the demands of rapid proliferation, cancer cells undergo metabolic reprogramming, which enhances their biosynthesis and bioenergy supply. Immune cells require similar nutrients for activation and proliferation, leading to competition and immunosuppression within the TME. Additionally, tumor metabolites inhibit immune cell activation and function. Consequently, an immunosuppressed and immune-tolerant TME promotes cancer cell proliferation and metastasis. Long non-coding RNAs (lncRNAs), a category of non-coding RNA longer than 200 nucleotides, regulate tumor metabolic reprogramming by interacting with key enzymes, transporters, and related signaling pathways involved in tumor metabolism. Furthermore, lncRNAs can interact with both cellular and non-cellular components in the TME, thereby facilitating tumor growth, metastasis, drug resistance, and inducing immunosuppression. Recent studies have demonstrated that lncRNAs play a crucial role in reshaping the TME by regulating tumor metabolic reprogramming. In this discussion, we explore the potential mechanisms through which lncRNAs regulate tumor metabolic reprogramming to remodel the TME. Additionally, we examine the prospects of lncRNAs as targets for anti-tumor therapy and as biomarkers for tumor prognosis.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qimei Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Zhongshan Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhan M, Xu H, Yu G, Chen Q, Yang R, Chen Y, Ge J, Wang Z, Yang R, Xu B. Androgen receptor deficiency-induced TUG1 in suppressing ferroptosis to promote benign prostatic hyperplasia through the miR-188-3p/GPX4 signal pathway. Redox Biol 2024; 75:103298. [PMID: 39121689 PMCID: PMC11364272 DOI: 10.1016/j.redox.2024.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Benign prostatic hyperplasia (BPH), characterized by the non-malignant enlargement of the prostate, exhibits a pronounced association with inflammation resulting from androgen receptor (AR) deficiency. Ferroptosis, a cell death mechanism triggered by iron-dependent lipid peroxidation and closely linked to inflammation, has yet to be fully understood in the context of BPH. Using RNA sequencing, we observed a significant elevation of taurine-upregulated gene 1 (TUG1) long noncoding RNA (lncRNA) in BPH tissues compared to normal prostate tissue. High levels of TUG1 exhibited a discernible correlation with both prostate volume and the extent of inflammatory infiltration in BPH patients. The suppression of TUG1 not only led to a reduction in prostate size but also ameliorated AR-deficiency-induced prostatic hyperplasia. Mechanistically, a decrease in AR in prostate luminal cells prompted macrophage aggregation and the release of IL-1β, subsequently fostering the transcription of TUG1 via MYC. Induced TUG1, through competitive binding with miR-188-3p, facilitated the expression of GPX4, thereby diminishing intracellular ROS levels and impeding ferroptosis in prostate luminal cells. Notably, the ferroptosis inducer JKE-1674 alleviated inflammation-induced prostatic hyperplasia in vivo. Together, these findings suggest that AR deficiency crucially inhibits ferroptosis, promoting BPH via the TUG1/miR-188-3p/GPX4 signaling axis, and making ferroptosis induction a promising therapeutic strategy for BPH patients with AR deficiency.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianchao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Urology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China.
| | - Ruimeng Yang
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA; Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhou Y, Chen Y, Zhao P, Xian T, Gao Y, Fan S, Fang JH, Huang M, Bi H. The YY1-CPT1C signaling axis modulates the proliferation and metabolism of pancreatic tumor cells under hypoxia. Biochem Pharmacol 2024; 227:116422. [PMID: 38996932 DOI: 10.1016/j.bcp.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.
Collapse
Affiliation(s)
- Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province 511436, China
| | - Pengfei Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Tu Xian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
5
|
Xi Q, Yang G, He X, Zhuang H, Li L, Lin B, Wang L, Wang X, Fang C, Chen Q, Yang Y, Yu Z, Zhang H, Cai W, Li Y, Shen H, Liu L, Zhang R. M 6A-mediated upregulation of lncRNA TUG1 in liver cancer cells regulates the antitumor response of CD8 + T cells and phagocytosis of macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400695. [PMID: 38981064 PMCID: PMC11425850 DOI: 10.1002/advs.202400695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Tumor immune evasion relies on the crosstalk between tumor cells and adaptive/innate immune cells. Immune checkpoints play critical roles in the crosstalk, and immune checkpoint inhibitors have achieved promising clinical effects. The long non-coding RNA taurine-upregulated gene 1 (TUG1) is upregulated in hepatocellular carcinoma (HCC). However, how TUG1 is upregulated and the effects on tumor immune evasion are incompletely understood. Here, METTL3-mediated m6A modification led to TUG1 upregulation is demonstrated. Knockdown of TUG1 inhibited tumor growth and metastasis, increased the infiltration of CD8+ T cells and M1-like macrophages in tumors, promoted the activation of CD8+ T cells through PD-L1, and improved the phagocytosis of macrophages through CD47. Mechanistically, TUG1 regulated PD-L1 and CD47 expressions by acting as a sponge of miR-141 and miR-340, respectively. Meanwhile, TUG1 interacted with YBX1 to facilitate the upregulation of PD-L1 and CD47 transcriptionally, which ultimately regulated tumor immune evasion. Clinically, TUG1 positively correlated with PD-L1 and CD47 in HCC tissues. Moreover, the combination of Tug1-siRNA therapy with a Pdl1 antibody effectively suppressed tumor growth. Therefore, the mechanism of TUG1 in regulating tumor immune evasion is revealed and can inform existing strategies targeting TUG1 for enhancing HCC immune therapy and drug development.
Collapse
Affiliation(s)
- Qing Xi
- Department of Gastroenterology and HepatologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou510080China
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Guangze Yang
- Laboratory of Immunology and InflammationDepartment of ImmunologyKey Laboratory of Immune Microenvironment and Diseases of Educational Ministry of ChinaTianjin Medical UniversityTianjin300070China
| | - Xue He
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic SurgeryThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou450008China
| | - Li Li
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Bing Lin
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Lingling Wang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Xianyang Wang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Chunqiang Fang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Qiurui Chen
- Department of BioscienceSchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Yongjie Yang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Zhaoan Yu
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Hao Zhang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Wenqian Cai
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Yan Li
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Han Shen
- Department of BioscienceSchool of Life Sciences and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhou51006China
| | - Li Liu
- Department of RadiologyThe University of Texas Southwestern Medical Center5323 Harry Hines Blvd.DallasTX75390USA
| | - Rongxin Zhang
- Laboratory of Immunology and InflammationDepartment of BiotechnologySchool of Life Sciences and BiopharmaceuticsGuangdong Provincial Key Laboratory of Advanced Drug DeliveryGuangdong Provincial Engineering Center of Topical Precise Drug Delivery SystemGuangdong Pharmaceutical UniversityGuangzhou51006China
| |
Collapse
|
6
|
Fan Z, Pan H, Qu N, Wang X, Cao L, Chen L, Liu M. LncRNA taurine upregulated gene 1 in liver disease. Clin Chim Acta 2024; 560:119752. [PMID: 38821337 DOI: 10.1016/j.cca.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences exceeding 200 nucleotides in length that lack protein-coding capacity and participate in diverse biological processes in the human body, particularly exerting a pivotal role in disease surveillance, diagnosis, and progression. Taurine upregulated gene 1 (TUG1) is a versatile lncRNA, and recent studies have revealed that the aberrant expression or function of TUG1 is intricately linked to the pathogenesis of liver diseases. Consequently, we have summarized the current understanding of the mechanism of TUG1 in liver diseases such as liver fibrosis, fatty liver, cirrhosis, liver injury, hepatitis, and liver cancer. Moreover, mounting evidence suggests that interventions targeting TUG1 or its downstream pathways may hold therapeutic promise for liver diseases. This review elucidates the characteristics, mechanisms, and targets of TUG1 in liver diseases, offering a theoretical basis for the prevention, diagnosis, treatment, and prognostic biomarkers of liver diseases.
Collapse
Affiliation(s)
- Zihao Fan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Na Qu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lianrui Cao
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| | - Mingxia Liu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| |
Collapse
|
7
|
Izadifard M, Ahmadvand M, Pashaiefar H, Alimoghadam K, Kasaeian A, Barkhordar M, Seghatoleslami G, Vaezi M, Ghavamzadeh A, Yaghmaie M. Diagnosis of Cutaneous Acute Graft‑Versus‑Host Disease Through Circulating Plasma miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p as Prospective Noninvasive Biomarkers Following Allogeneic Hematopoietic Stem Cell Transplantation. Clin Transplant 2024; 38:e15371. [PMID: 39031894 DOI: 10.1111/ctr.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND There are currently no laboratory tests that can accurately predict the likelihood of developing acute graft-versus-host disease (aGVHD), a patient's response to treatment, or their survival chance. This research aimed to establish circulating miRNAs as diagnostic, prognostic, or predictive biomarkers of aGVHD. METHODS In a prospective cohort, we studied the incidence of cutaneous aGVHD in AML patients undergoing allo-HSCT at Shariati Hospital in Tehran, Iran during 2020-2023. Patients with cutaneous aGVHD were labeled as the case group, while patients without cutaneous aGVHD were selected as the control group. Accordingly, the expression levels of six significant miRNAs (miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, miR-548a-3p) were evaluated by quantitative reverse transcription-polymerase chain reaction (RTqPCR) in three different time-points: before transplantation, on day 14 and day 21 after transplantation. RESULTS The levels of plasma miR-455-3p, miR-5787, miR-638, and miR-3613-5p were significantly downregulated, while miR-548a-3p, and miR-6511b-5p were significantly upregulated in individuals with cutaneous aGVHD in comparison to patients without GVHD. Additionally, the possibility for great diagnostic accuracy for cutaneous aGVHD was revealed by ROC curve analysis of differentially expressed miRNAs (DEMs). CONCLUSION The study findings encourage us to hypothesize that the aforementioned miRNAs may contribute to the predominance of aGVHD, particularly low-grade cutaneous aGVHD.
Collapse
Affiliation(s)
- Marzieh Izadifard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghadam
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Vaezi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
9
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Yao X, Liu S, Xia H, Li H, Wang Z, Su L, Guo W, Chen H. Transcriptomic sequencing analysis of key long noncoding RNAs and mRNAs expression profiles in postoperative recurrence of hepatocellular carcinoma. Technol Health Care 2024; 32:735-747. [PMID: 37545269 DOI: 10.3233/thc-230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recurrence is the main cause of death in hepatocellular carcinoma (HCC) patients after liver resection. OBJECTIVE The long non-coding RNAs (lncRNAs) have been reported participated in progression and prognosis of HCC, however, the vital role of lncRNA in postoperative recurrence of HCC has rarely been systematically identified. METHODS RNA-sequencing (RNA-seq) was performed between orthotopic model of HCC and hepatoma postoperative recurrent model to comprehensively analyze the integrated transcriptome expression profiles of lncRNA and mRNA. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was then conducted to quantify the expression levels of DElncRNAs and their target mRNAs. RESULTS In our study, 211 lncRNAs (P-value < 0.05) and 1125 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two groups. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DElncRNAs and DEmRNAs were mainly enriched in lipid metabolism, including Arachidonic acid metabolism, PPAR signaling pathway, Steroid hormone biosynthesis, Linoleic acid metabolism, Inflammatory mediator regulation of TRP channels, and Fatty acid degradation. Furthermore, we constructed lncRNA-mRNA interaction networks and protein-protein interaction (PPI) network, and verified by qRT-PCR, suggesting that increased DEIncRNAs (XLOC_063499 and XLOC_042016) may prevent HCC recurrence after surgery by upregulating on targeted cytochrome P450 (CYP) family genes in the lipid metabolism pathway, such as cyp3a16, cyp3a44, cyp2c39, cyp2c40 and cyp2c68. CONCLUSION Overall, Our findings provided new insights for further investigation of biological function in lncRNA related HCC recurrence.
Collapse
Affiliation(s)
- Xiaohui Yao
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen TCM Anorectal Hospital (Futian), Shenzhen, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shan Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huan Xia
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanhan Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhijie Wang
- Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Le Su
- Department of Gynecology and Pediatrics, Traditional Chinese Medicine Hospital of Haizhu District, Guangzhou, Guangdong, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanrui Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yan L, Sun H, Chen Y, Yu X, Zhang J, Li P. FOXP2 suppresses the proliferation, invasion, and aerobic glycolysis of hepatocellular carcinoma cells by regulating the KDM5A/FBP1 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:341-356. [PMID: 37713600 DOI: 10.1002/tox.23971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
The Warburg effect is the preference of cancer cells to use glycolysis rather than oxidative phosphorylation to generate energy. Accumulating evidence suggests that aerobic glycolysis is widespread in hepatocellular carcinoma (HCC) and closely related to tumorigenesis. The purpose of this study was to investigate the role and mechanism of forkhead box P2 (FOXP2) in aerobic glycolysis and tumorigenesis in HCC. Here, we found that FOXP2 was lower expressed in HCC tissues and cells than in nontumor tissues and normal hepatocytes. Overexpression of FOXP2 suppressed cell proliferation and invasion of HCC cells and promoted cell apoptosis in vitro, and hindered the growth of mouse xenograft tumors in vivo. Further researches showed that FOXP2 inhibited the Warburg effect in HCC cells. Moreover, we demonstrated that FOXP2 up-regulated the expression of fructose-1, 6-diphosphatase (FBP1), and the inhibitory effect of FOXP2 on glycolysis was dependent on FBP1. Mechanistically, as a transcription factor, FOXP2 negatively regulated the transcription of lysine-specific demethylase 5A (KDM5A), and then blocked KDM5A-induced H3K4me3 demethylation in FBP1 promoter region, thereby promoting the expression of FBP1. Consistently, overexpressing KDM5A or silencing FBP1 effectively reversed the inhibitory effect of FOXP2 on HCC progression. Together, our findings revealed the mechanistic role of the FOXP2/KDM5A/FBP1 axis in glycolysis and malignant progression of HCC cells, providing a potential molecular target for the therapy of HCC.
Collapse
Affiliation(s)
- Lijing Yan
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanhuan Sun
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuling Chen
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingru Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Lin YH. The effects of intracellular and exosomal ncRNAs on cancer progression. Cancer Gene Ther 2023; 30:1587-1597. [PMID: 37884579 DOI: 10.1038/s41417-023-00679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Altered gene expression as well as mislocalization of a gene's encoded product (proteins or noncoding RNAs (ncRNAs)) can lead to disease and cancer formation. Multiple studies have indicated that exosomes and their contents act as cell-to-cell communicators and play a key role in cancer progression. Moreover, exosomes contain several functional molecules, including ncRNAs. NcRNAs function as master regulators to coordinate cell growth, cell motility and drug resistance. However, intracellular ncRNAs, which can be transferred to recipient cells via exosomes (exosomal ncRNAs), mediate common/distinct downstream molecules, signaling pathways and functions that are less emphasized concepts in cancer development research. In this study, by using exosomes as a model, we comprehensively discuss the current knowledge regarding (1) the functional role of ncRNAs, both their intracellular and exosomal forms, in cancer progression, (2) the possible mechanism of ncRNA incorporation into exosomes and (3) the therapeutic applications and limitations of exosomes based on current knowledge.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
13
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
15
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
16
|
Feng L, Wei Y, Sun Y, Zhou L, Bi S, Chen W, Xiang W. MIR34A modulates lens epithelial cell apoptosis and cataract development via the HK1/caspase 3 signaling pathway. Aging (Albany NY) 2023; 15:6331-6345. [PMID: 37414399 PMCID: PMC10373963 DOI: 10.18632/aging.204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Cataracts are the leading cause of blindness in the world. Age is a major risk factor for cataracts, and with increasing aging, the burden of cataracts will grow, but the exact details of cataractogenesis remain unclear. A recent study showed that microRNA-34a (MIR34A) is involved in the development of cataracts, but the underlying pathogenesis remains obscure. Here, our results of microRNA target prediction showed that hexokinase 1 (HK1) is one of the genes targeted by MIR34A. Based on this finding, we focused on the function of MIR34A and HK1 in the progress of cataracts, whereby the human lens epithelial cell line SRA01/04 and mouse lens were treated with MIR34A mimics and HK1 siRNA. We found that HK1 mRNA is a direct target of MIR34A, whereby the high expression of MIR34A in the cataract lens suppresses the expression of HK1. In vitro, the upregulation of MIR34A together with the downregulation of HK1 inhibits the proliferation, induces the apoptosis of SRA01/04 cells, and accelerates the opacification of mouse lenses via the HK1/caspase 3 signaling pathway. In summary, our study demonstrates that MIR34A modulates lens epithelial cell (LEC) apoptosis and cataract development through the HK1/caspase 3 signaling pathway.
Collapse
Affiliation(s)
- Lujia Feng
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaowei Bi
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wu Xiang
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| |
Collapse
|
17
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
18
|
Zheng J, Yan X, Lu T, Song W, Li Y, Liang J, Zhang J, Cai J, Sui X, Xiao J, Chen H, Chen G, Zhang Q, Liu Y, Yang Y, Zheng K, Pan Z. CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J Exp Clin Cancer Res 2023; 42:63. [PMID: 36922872 PMCID: PMC10018916 DOI: 10.1186/s13046-023-02624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The Warburg effect is well-established to be essential for tumor progression and accounts for the poor clinical outcomes of hepatocellular carcinoma (HCC) patients. An increasing body of literature suggests that circular RNAs (circRNAs) are important regulators for HCC. However, few circRNAs involved in the Warburg effect of HCC have hitherto been investigated. Herein, we aimed to explore the contribution of circFOXK2 to glucose metabolism reprogramming in HCC. METHODS In the present study, different primers were designed to identify 14 circRNAs originating from the FOXK2 gene, and their differential expression between HCC and adjacent liver tissues was screened. Ultimately, circFOXK2 (hsa_circ_0000817) was selected for further research. Next, the clinical significance of circFOXK2 was evaluated. We then assessed the pro-oncogenic activity of circFOXK2 and its impact on the Warburg effect in both HCC cell lines and animal xenografts. Finally, the molecular mechanisms of how circFOXK2 regulates the Warburg effect of HCC were explored. RESULTS CircFOXK2 was aberrantly upregulated in HCC tissues and positively correlated with poor clinical outcomes in patients that underwent radical hepatectomy. Silencing of circFOXK2 significantly suppressed HCC progression both in vitro and in vivo. Mechanistically, circFOXK2 upregulated the expression of protein FOXK2-142aa to promote LDHA phosphorylation and led to mitochondrial fission by regulating the miR-484/Fis1 pathway, ultimately activating the Warburg effect in HCC. CONCLUSIONS CircFOXK2 is a prognostic biomarker of HCC that promotes the Warburg effect by promoting the expression of proteins and miRNA sponges that lead to tumor progression. Overall, circFOXK2 has huge prospects as a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wen Song
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Kanghong Zheng
- Department of General Surgery of Guangdong Tongjiang Hospital, Foshan, 528300, China.
| | - Zihao Pan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Lin J, Wang S, Lan W, Ji M, Li M. Pien Tze Huang regulates phosphorylation of metabolic enzymes in mice of hepatocellular carcinoma. Sci Rep 2023; 13:1897. [PMID: 36732657 PMCID: PMC9894829 DOI: 10.1038/s41598-023-29116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The Chinese medicine formula Pien Tze Huang (PZH) has been applied to the treatment of various diseases, the reported anti-tumor mechanisms included regulation of inflammation-associated cytokine secretion and cancer growth pathways. However, the potential influence of PZH on tumor metabolism remains unclear. This study aimed to investigate the global effect of PZH on hepatocellular carcinoma (HCC) compared with the anti-tumor agent sorafenib based on tandem mass tag (TMT) label proteomic and phosphoproteomic analysis in addition to parallel reaction monitoring (PRM) verification. It was observed that PZH could inhibit tumor weight by 59-69% in different concentrations. TMT proteomic studies indicated that fructose/mannose metabolism and glucagon signaling pathway in PZH group, and arachidonic acid metabolism and PPAR signaling pathway in sorafenib group, were significantly enriched, while glycolysis/gluconeogenesis pathway was found to be enriched remarkably both in PZH and sorafenib groups in TMT phosphoproteomic study. PRM verification further indicated that both PZH and sorafenib could down-regulate phosphorylations of the glycolytic enzymes phosphofructokinases 1, fructose-bisphosphate Aldolase A, phosphoglycerate mutase 2 and lactate dehydrogenase A chain, while phosphorylations of long chain fatty acid CoA ligase in fatty acid activation and acetyl-coenzyme A synthetase in glycolysis were significantly inhibited by PZH and sorafenib, respectively. This study proposed that PZH shared a similar anti-tumor mechanism of metabolic regulation to sorafenib, but differed in the regulation of some metabolic nodes. This is the first time to uncover the relationship between the anti-tumor effect of PZH and metabolic related enzymes, which distinguished from the known mechanisms of PZH. These data provided the potential molecular basis for PZH acting as a therapeutic drug for HCC, and offered cues of manipulation on Warburg effect under the treatment of PZH.
Collapse
Affiliation(s)
- Jinxia Lin
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China. .,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China.
| | - Shicong Wang
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Wenliang Lan
- Zhangzhou Pientzehuang Pharmaceutical Co., Ltd., Huporoad, Zhangzhou, 363000, People's Republic of China.,Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, 363000, Fujian, People's Republic of China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Mei Li
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
21
|
Liang L, Wang X, Huang S, Chen Y, Zhang P, Li L, Cui Y. Tyrosine kinase inhibitors as potential sensitizers of adoptive T cell therapy for hepatocellular carcinoma. Front Immunol 2023; 14:1046771. [PMID: 36936932 PMCID: PMC10014465 DOI: 10.3389/fimmu.2023.1046771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence malignant tumor worldwide and lacks effective treatment options. Targeted drugs are the preferred recommendations for the systemic treatment of hepatocellular carcinoma. Immunotherapy is a breakthrough in the systemic treatment of malignant tumors, including HCC. However, either targeted therapy or immunotherapy alone is inefficient and has limited survival benefits on part of HCC patients. Investigations have proved that tyrosine kinase inhibitors (TKIs) have regulatory effects on the tumor microenvironment and immune response, which are potential sensitizers for immunotherapy. Herein, a combination therapy using TKIs and immunotherapy has been explored and demonstrated to improve the effectiveness of treatment. As an effective immunotherapy, adoptive T cell therapy in solid tumors is required to improve tumor infiltration and killing activity which can be possibly achieved by combination with TKIs.
Collapse
Affiliation(s)
- Linjun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xiaoyan Wang
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Shuying Huang
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Yanwei Chen
- Department of Pulmonary Critical Care Medicine of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| | - Yong Cui
- Department of Oncology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- *Correspondence: Peng Zhang, ; Liang Li, ; Yong Cui,
| |
Collapse
|
22
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Xie D, Zhang G, Ma Y, Wu D, Jiang S, Zhou S, Jiang X. Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7840606. [PMID: 36532884 PMCID: PMC9757943 DOI: 10.1155/2022/7840606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2025]
Abstract
Primary liver carcinoma is the sixth most common cancer worldwide, while hepatocellular carcinoma (HCC) is the most dominant cancer type. Chronic hepatitis B and C virus infections and aflatoxin exposure are the main risk factors, while nonalcoholic fatty liver disease caused by obesity, diabetes, and metabolic syndrome are the more common risk factors for HCC. Metabolic disorders caused by these high-risk factors are closely related to the tumor microenvironment of HCC, revealing a possible cause-and-effect relationship between the two. These metabolic disorders involve many complex metabolic pathways, such as carbohydrate, lipid, lipid derivative, amino acid, and amino acid derivative metabolic processes. The resulting metabolites with significant abnormal changes in the concentration level in circulating blood may be used as biomarkers to guide the diagnosis, treatment, or prognosis of HCC. At present, there are high-throughput technologies that can quickly detect small molecular metabolites in many samples. Compared to tissue biopsy, blood samples are easier to obtain, and patients' willingness to participate is higher, which makes it possible to study blood HCC biomarkers. Over the past few years, a substantial body of research has been performed worldwide, and other potential biomarkers have been identified. Unfortunately, due to the limitations of each study, only a few markers have been widely verified and are suitable for clinical use. This review briefly summarizes the potential blood metabolic markers related to the diagnosis of HCC, mainly focusing on amino acids and their derivative metabolism, lipids and their derivative metabolism, and other possible related metabolisms.
Collapse
Affiliation(s)
- Da Xie
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
| | - Yanan Ma
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Dongyu Wu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Shuang Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Songke Zhou
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| |
Collapse
|
24
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Berhane T, Holm A, Karstensen KT, Petri A, Ilieva MS, Krarup H, Vyberg M, Løvendorf MB, Kauppinen S. Knockdown of the long noncoding RNA PURPL induces apoptosis and sensitizes liver cancer cells to doxorubicin. Sci Rep 2022; 12:19502. [PMID: 36376362 PMCID: PMC9663437 DOI: 10.1038/s41598-022-23802-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with increasing incidence in western countries. Most HCC patients have advanced cancer at the time of diagnosis due to the asymptomatic nature of early-stage HCC and do not qualify for potentially curative surgical treatment, thus, highlighting the need for new therapeutic strategies. Long noncoding RNAs (lncRNAs) comprise a large and heterogeneous group of non-protein coding transcripts that play important regulatory roles in numerous biological processes in cancer. In this study, we performed RNA sequencing of liver biopsies from ten HCC, ten hepatitis C virus-associated HCC, and four normal livers to identify dysregulated lncRNAs in HCC. We show that the lncRNA p53-upregulated-regulator-of-p53-levels (PURPL) is upregulated in HCC biopsies and that its expression is p53-dependent in liver cancer cell lines. In addition, antisense oligonucleotide-mediated knockdown of PURPL inhibited cell proliferation, induced apoptosis, and sensitized HepG2 human HCC cells to treatment with the chemotherapeutic agent doxorubicin. In summary, our findings suggest that PURPL could serve as a new therapeutic target for reversing doxorubicin resistance in HCC.
Collapse
Affiliation(s)
- Tsinat Berhane
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark ,grid.5170.30000 0001 2181 8870Present Address: Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anja Holm
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kasper Thystrup Karstensen
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark ,grid.6203.70000 0004 0417 4147Present Address: Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Andreas Petri
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark ,grid.424580.f0000 0004 0476 7612Present Address: Department of Bioinformatics, Lundbeck, Valby, Denmark
| | - Mirolyuba Simeonova Ilieva
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Henrik Krarup
- grid.5117.20000 0001 0742 471XDepartment of Molecular Diagnostics and Department of Medical Gastroenterology, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mogens Vyberg
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark ,grid.5117.20000 0001 0742 471XDepartment of Pathology, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Bengtson Løvendorf
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XPresent Address: Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sakari Kauppinen
- grid.5117.20000 0001 0742 471XCenter for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| |
Collapse
|
26
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Peng J, Cai D, Zeng R, Zhang C, Li G, Chen S, Yuan X, Peng L. Upregulation of Superenhancer-Driven LncRNA FASRL by USF1 Promotes De Novo Fatty Acid Biosynthesis to Exacerbate Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204711. [PMID: 36307901 PMCID: PMC9811444 DOI: 10.1002/advs.202204711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Superenhancers drive abnormal gene expression in tumors and promote malignancy. However, the relationship between superenhancer-associated long noncoding RNA (lncRNA) and abnormal metabolism is unknown. This study identifies a novel lncRNA, fatty acid synthesis-related lncRNA (FASRL), whose expression is driven by upstream stimulatory factor 1 (USF1) through its superenhancer. FASRL promotes hepatocellular carcinoma (HCC) cell proliferation in vitro and in vivo. Furthermore, FASRL binds to acetyl-CoA carboxylase 1 (ACACA), a fatty acid synthesis rate-limiting enzyme, increasing fatty acid synthesis via the fatty acid metabolism pathway. Moreover, the expression of FASRL, USF1, and ACACA is increased, and their high expression indicates a worse prognosis in HCC patients. In summary, USF1 drives FASRL transcription via a superenhancer. FASRL binding to ACACA increases fatty acid synthesis and lipid accumulation to mechanistically exacerbate HCC. FASRL may serve as a novel prognostic marker and treatment target in HCC.
Collapse
Affiliation(s)
- Jiang‐Yun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Dian‐Kui Cai
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ren‐Li Zeng
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chao‐Yang Zhang
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Guan‐Cheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of EducationCentral South UniversityChangsha410078P. R. China
- Cancer Research InstituteCentral South UniversityChangsha410078P. R. China
| | - Si‐Fan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiao‐Qing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
28
|
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S, Azizidoost S. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci 2022; 308:120974. [PMID: 36126725 DOI: 10.1016/j.lfs.2022.120974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is malignant cancer that starts from the main liver cells. Although various classical methods have been used for patients with HCC, various molecular mechanisms involved in HCC progression should be invested. Previous studies demonstrated that abnormal expression of long non-coding RNAs (lncRNAs) presented important roles in the pathogenesis of HCC cells. LncRNA TUG1 was found to mediate HCC cell growth, EMT, and metastasis. Therefore, targeting TUG1 and its downstream genes may be a suitable approach for patients with HCC. In this review, we summarized the potential roles of TUG1 in HCC.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Dedy Kurniawan
- Laboratory Animal and Stem Cells, PT Bio Farma (Persero), Bandung 40161, West Java, Indonesia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Yan H, Ma X, Mi Z, He Z, Rong P. Extracellular Polysaccharide from Rhizopus nigricans Inhibits Hepatocellular Carcinoma via miR-494-3p/TRIM36 Axis and Cyclin E Ubiquitination. J Clin Transl Hepatol 2022; 10:608-619. [PMID: 36062277 PMCID: PMC9396321 DOI: 10.14218/jcth.2021.00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS This study was designed to uncover the mechanism for extracellular polysaccharide (EPS1-1)-mediated effects on hepatocellular carcinoma (HCC) development. METHODS HCC cells were treated with EPS1-1, miR-494-3p mimic, sh-TRIM36, and pcDNA3.1-TRIM36. The levels of miR-494-3p and TRIM36 were measured in normal hepatocytes, THLE-2, and HepG2 and HuH7HCC cell lines, along with the protein expression of cyclin D/E and p21. The proliferation, cell cycle, and apoptosis of HCC cells were assayed. The interactions between miR-494-3p and TRIM36, and between TRIM36 and cyclin E were assessed. Finally, the expression and localization of TRIM36 and cyclin E were monitored, and tumor apoptosis was detected, in tumor xenograft model. RESULTS EPS1-1 suppressed HCC cell proliferation and cyclin D/E expression and promoted apoptosis and p21 expression. miR-494-3p was upregulated and TRIM36 was downregulated in HCC cells. Transfection with miR-494-3p mimic or sh-TRIM36 facilitated HCC cell proliferation and the expression of cyclin D/E protein but they inhibited apoptosis and p21 expression in the presence of EPS1-1. Overexpression of TRIM36 further consolidated EPS1-1-mediated inhibition of HCC proliferation, cyclin D/E, and the promotion of apoptosis and p21 expression. Those effects were reversed by miR-494-3p overexpression. TRIM36 was a target gene of miR-494-3p, and TRIM36 induced cyclin E ubiquitination. EPS1-1 suppressed cyclin E expression, promoted TRIM36 expression and tumor apoptosis, all of which were abrogated by increasing the expression of miR-494-3p in vivo. CONCLUSIONS EPS1-1 protected against HCC by limiting its proliferation and survival through the miR-494-3p/TRIM36 axis and by inducing cyclin E ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | - Pengfei Rong
- Correspondence to: Pengfei Rong, Department of Radiology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China. ORCID: https://orcid.org/0000-0001-5473-1982. Tel: +86-18684706350, Fax: +86-731-88618411, E-mail:
| |
Collapse
|
30
|
Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Song L, Guo Y, Guo Y. Pan-cancer analysis of the angiotensin II receptor-associated protein as a prognostic and immunological gene predicting immunotherapy responses in pan-cancer. Front Cell Dev Biol 2022; 10:913684. [PMID: 36060798 PMCID: PMC9437438 DOI: 10.3389/fcell.2022.913684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Understanding interior molecular mechanisms of tumorigenesis and cancer progression contributes to antitumor treatments. The angiotensin II receptor-associated protein (AGTRAP) has been confirmed to be related with metabolic products in metabolic diseases and can drive the progression of hepatocellular carcinoma and colon carcinoma. However, functions of AGTRAP in other kinds of cancers are unclear, and a pan-cancer analysis of AGTRAP has not been carried out. Methods and materials: We downloaded data from The Cancer Genome Atlas and Genotype-Tissue Expression dataset and The Human Protein Atlas databases and then used R software (version 4.1.1) and several bioinformatic tools to conduct the analysis. Results: In our study, we evaluated the expression of AGTRAP in cancers, such as high expression in breast cancer, lung adenocarcinoma, and glioma and low expression in kidney chromophobe. Furthermore, our study revealed that high expression of AGTRAP is significantly related with poor prognosis in glioma, liver cancer, kidney chromophobe, and so on. We also explored the putative functional mechanisms of AGTRAP across pan-cancer, such as endoplasmic reticulum pathway, endocytosis pathway, and JAK-STAT signaling pathway. In addition, the connection between AGTRAP and tumor microenvironment, tumor mutation burden, and immune-related genes was proven. Conclusion: Our study provided comprehensive evidence of the roles of AGTRAP in different kinds of cancers and supported the relationship of AGTRAP and tumorous immunity.
Collapse
Affiliation(s)
- Kai Hong
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Yingjue Zhang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Lingli Yao
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Jiabo Zhang
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
| | - Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
| | - Lihua Song
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- Medicine School, Ningbo University, Ningbo, Zhejiang, China
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- *Correspondence: Yu Guo, ; Yangyang Guo,
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Ningbo, Zhejiang, China
- *Correspondence: Yu Guo, ; Yangyang Guo,
| |
Collapse
|
31
|
Ma F, Huang J, Li W, Li P, Liu M, Xue H. MicroRNA-455-3p functions as a tumor suppressor by targeting HDAC2 to regulate cell cycle in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2022; 37:1675-1685. [PMID: 35286011 DOI: 10.1002/tox.23516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers. MicroRNA has been studied more and more deeply and may become a new target for the treatment of HCC. Here, we investigated the role of miR-455-3p in HCC progression. Compared with non-tumor tissues and normal human hepatic cells, miR-455-3p expression was significantly downregulated in HCC tissues and cell lines. And overexpression of miR-455-3p inhibited cell proliferation and migration but promoted cell apoptosis in HCC cell lines HepG2 and Huh7. Mechanism studies displayed that miR-455-3p targeted HDAC2 and negatively regulated HDAC2 expression. Moreover, HDAC2 was highly expressed in HCC tissues and cell lines. Overexpression of HDAC2 reversed the inhibitory effects of miR-455-3p on cell proliferation, migration and cell cycle protein (CDK6 and cyclin D1) expression, and neutralized the promotion effects of miR-455-3p on cell apoptosis and the activation of p53 pathway. Furthermore, a p53 inhibitor Pifithrin-α (PFT-α) effectively abolished the effects of miR-455-3p on HCC cell behaviors. Additionally, the role of miR-455-3p in tumorigenesis was evaluated by using a mouse xenograft model, and the data showed that miR-455-3p suppressed tumor growth in vivo. In summary, our results suggested that miR-455-3p targeted HDAC2 to inhibit cell proliferation, migration and promote cell apoptosis via the activation of p53 pathway.
Collapse
Affiliation(s)
- Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Huang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Emerging roles and potential clinical applications of long non-coding RNAs in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113327. [PMID: 35779423 DOI: 10.1016/j.biopha.2022.113327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common highly malignant tumors in humans, as well as the leading cause of cancer-related death worldwide. Growing evidence has indicated that lncRNAs are implicated in different molecular mechanisms, including interactions with DNA, RNA, or protein, so that to regulate the gene expression at epigenetic, transcriptional, or posttranscriptional level. Moreover, the mechanism of action of lncRNA is closely related to its subcellular localization. An increasing number of studies have certified that lncRNA plays a significant biological function in the occurrence and development of hepatocellular carcinoma, such as involving in cell proliferation, metastasis, apoptosis, ferroptosis, autophagy, and reprogramming of energy metabolism. As a result, lncRNA has great potential as a novel biomarker for diagnosis or therapeutics of hepatocellular carcinoma. In this review, we highlight the correlation between subcellular localization of lncRNA and its mechanism of action, discuss the biological roles of lncRNA and the latest research advances in hepatocellular carcinoma, and emphasize the potential of lncRNA as a therapeutic target for advanced patients of hepatocellular carcinoma.
Collapse
|
33
|
Yang J, Liu F, Wang Y, Qu L, Lin A. LncRNAs in tumor metabolic reprogramming and immune microenvironment remodeling. Cancer Lett 2022; 543:215798. [PMID: 35738332 DOI: 10.1016/j.canlet.2022.215798] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Evidence accumulated over the past decade has verified that long non-coding RNAs (lncRNAs) exert important functions in multiple cell programs. As a novel class of cellular regulatory molecules, lncRNAs interact with different molecules, such as DNA, RNA or proteins, depending on their subcellular distribution, to modulate gene transcription and kinase cascades. It has been widely clarified that lncRNAs play important roles in modulating metabolic reprogramming and reshaping the immune landscape and serve as hinges bridging tumor metabolism and anti-tumor immunity. Given these facts, lncRNAs, as putative regulators of tumor initiation and progression, have attracted extensive attention in recent years. In this review, we summarized the current research progress on the role of lncRNAs in tumor metabolic reprogramming and tumor-immune microenvironment remodeling, and conclude with our laboratory's contributions in advancing the clinical applications of lncRNAs.
Collapse
Affiliation(s)
- Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China; Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
34
|
Yuan T, Zhou T, Qian M, Du J, Liu Y, Wang J, Li Y, Fan G, Yan F, Dai X, Li X, Wu Y, Dong X, He Q, Zhu H, Yang B. SDHA/B reduction promotes hepatocellular carcinoma by facilitating the deNEDDylation of cullin1 and stabilizing YAP/TAZ. Hepatology 2022. [PMID: 35713976 DOI: 10.1002/hep.32621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Succinate dehydrogenase enzyme (SDH) is frequently diminished in samples from patients with hepatocellular carcinoma (HCC), and SDH reduction is associated with elevated succinate level and poor prognosis in patients with HCC. However, the underlying mechanisms of how impaired SDH activity promotes HCC remain unclear. APPROACH AND RESULTS In this study, we observed remarkable downregulations of SDH subunits A and B (SDHA/B) in chronic liver injury-induced murine HCC models and patient samples. Subsequent RNA sequencing, hematoxylin and eosin staining, and immunohistochemistry analyses of HCC samples revealed that Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) were significantly upregulated in HCC, with their levels inversely correlating with that of SDHA/B. YAP/TAZ stability was greatly enhanced in SDHA/B-depleted HCC cells along with accumulation of succinate. Further mechanistic analyses demonstrated that impaired activity of SDHA/B resulted in succinate accumulation, which facilitated the deNEDDylation of cullin1 and therefore disrupted the E3 ubiquitin ligase SCFβ-TrCP complex, consequently leading to YAP/TAZ stabilization and activation in HCC cells. The accelerated in vitro cell proliferation and in vivo tumor growth caused by SDHA/B reduction or succinate exposure were largely dependent on the aberrant activation of YAP/TAZ. CONCLUSIONS Our study demonstrated that SDHA/B reduction promotes HCC proliferation by preventing the proteasomal degradation of YAP/TAZ through modulating cullin1 NEDDylation, thus binding SDH-deficient HCC cells to YAP/TAZ pathway and rendering these cells vulnerable to YAP/TAZ inhibition. Our findings warrant further investigation on the therapeutic effects of targeting YAP/TAZ in patients with HCC displaying reduced SDHA/B or elevated succinate levels.
Collapse
Affiliation(s)
- Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiamin Du
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jia'er Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yonghao Li
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guanghan Fan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Xiawei Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China
| | - Xin Dong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Zhao LQ, Sun W, Zhang P, Gao W, Fang CY, Zheng AW. MFAP2 aggravates tumor progression through activating FOXM1/β-catenin-mediated glycolysis in ovarian cancer. Kaohsiung J Med Sci 2022; 38:772-780. [PMID: 35546486 DOI: 10.1002/kjm2.12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological tumors that seriously endanger the health and quality of life of women. Microfibril-associated protein 2 (MFAP2) has been demonstrated to play crucial roles in the development of multiple tumors. However, the function of MFAP2 in ovarian cancer remains unclear. In this study, we found that MFAP2 was upregulated in ovarian cancer and cells and was positively correlated with FOXM1 and glycolysis-related genes. The results of Cell Count Kit-8, colony formation, and flow cytometry assays indicated that MFAP2 promoted cell proliferation. In addition, MFAP2 promotes cell proliferation, glucose uptake, lactate production; increases ATP levels, extracellular acidification ratio, and oxygen consumption ratio in ovarian cancer cells and increases the expression of glycolytic proteins. Further mechanistic analysis suggests that MFAP2 promotes FOXM1/β-catenin-mediated glycolysis signaling in ovarian cancer cells. Knockdown of MFAP2 inhibits ovarian cancer xenograft tumor growth and expression of Ki-67, MFAP2, FOXM1, GLUT1, HK2, and β-catenin in mice. In conclusion, MFAP2 promotes cell proliferation and glycolysis by modulating the FOXM1/β-catenin signaling pathway in ovarian cancer, which may offer a fresh insight into the treatment of ovarian cancer in the glycolysis pathway.
Collapse
Affiliation(s)
- Ling-Qin Zhao
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Sun
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ping Zhang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wen Gao
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chen-Yan Fang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ai-Wen Zheng
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
36
|
Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K, Zeng Y. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer 2022; 151:337-347. [PMID: 35460073 PMCID: PMC9325518 DOI: 10.1002/ijc.34040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Metabolic reprogramming is considered to be an important hallmark of cancer. Emerging studies have demonstrated that noncoding RNAs (ncRNAs) are closely associated with metabolic reprogramming of HCC. NcRNAs can directly regulate the expressions or functions of metabolic enzymes or indirectly regulate the metabolism of HCC cells through some vital signaling pathways. Until now, the mechanisms of HCC development and progression remain largely unclear, and understanding the regulatory mechanism of ncRNAs on metabolic reprogramming of HCC may provide an important basis for breakthrough progress in the treatment of HCC. In this review, we summarize the ncRNAs involved in regulating metabolic reprogramming of HCC. Specifically, the regulatory roles of ncRNAs in glucose, lipid and amino acid metabolism are elaborated. In addition, we discuss the molecular mechanism of ncRNAs in regulation of metabolic reprogramming and possible therapeutic strategies that target the metabolism of cancer cells by modulating the expressions of specific ncRNAs.
Collapse
Affiliation(s)
- Wenwei Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huixian Liu
- Department of Postanesthesia Care Unit & Surgical Anesthesia Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
37
|
miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci 2022; 79:216. [PMID: 35348905 PMCID: PMC8964646 DOI: 10.1007/s00018-022-04228-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.
Collapse
|
38
|
Wang S, Qian Z, Ge X, Li C, Xue M, Liang K, Ma R, Ouyang L, Zheng L, Jing J, Cao S, Zhang Y, Yang Y, Chen Y, Ma J, Yao B. LncRNA Tug1 maintains blood-testis barrier integrity by modulating Ccl2 expression in high-fat diet mice. Cell Mol Life Sci 2022; 79:114. [PMID: 35103851 PMCID: PMC11073184 DOI: 10.1007/s00018-022-04142-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
Sertoli cells are essential for spermatogenesis in the testicular seminiferous tubules by forming blood-testis barrier (BTB) and creating a unique microenvironment for spermatogenesis. Many lncRNAs have been reported to participate in spermatogenesis. However, the role of long noncoding RNAs (lncRNAs) in Sertoli cells has rarely been examined. Herein, we found that a high-fat diet (HFD) decreased sperm quality, impaired BTB integrity and resulted in accumulation of saturated fatty acids (SFAs), especially palmitic acid (PA), in mouse testes. PA decreased the expression of tight junction (TJ)-related proteins, increased permeability and decreased transepithelial electrical resistance (TER) in primary Sertoli cells and TM4 cells. Moreover, lncRNA Tug1 was found to be involved in PA-induced BTB disruption by RNA-seq. Tug1 depletion distinctly impaired the TJs of Sertoli cells and overexpression of Tug1 alleviated the disruption of BTB integrity induced by PA. Moreover, Ccl2 was found to be a downstream target of Tug1, and decreased TJ-related protein levels and TER and increased FITC-dextran permeability in vitro. Furthermore, the addition of Ccl2 damaged BTB integrity after overexpression of Tug1 in the presence of PA. Mechanistically, we found that Tug1 could directly bind to EZH2 and regulate H3K27me3 occupancy in the Ccl2 promoter region by RNA immunoprecipitation and chromatin immunoprecipitation assays. Our study revealed an important role of Tug1 in the BTB integrity of Sertoli cells and provided a new view of the role of lncRNAs in male infertility.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lei Ouyang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Siyuan Cao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yang Yang
- Basic Medical Laboratory, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
39
|
The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int J Mol Sci 2022; 23:ijms23020800. [PMID: 35054987 PMCID: PMC8776206 DOI: 10.3390/ijms23020800] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.
Collapse
|
40
|
Min X, Cheng H, Cao X, Chen Z, Zhang X, Li Y, Mao Q, Xue B, Fang L, Liu L, Ding Z. Heat shock protein A12A activates migration of hepatocellular carcinoma cells in a monocarboxylate transporter 4-dependent manner. Cell Stress Chaperones 2022; 27:83-95. [PMID: 35050463 PMCID: PMC8821763 DOI: 10.1007/s12192-021-01251-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
Metastasis is responsible for most of the hepatocellular carcinoma (HCC)-associated death. However, its underlying mechanism has yet to be fully elucidated. Glycolysis-derived lactate has been shown to be a powerful regulator of cancer metastasis. Heat shock protein A12A (HSPA12A) encodes a novel member of HSP70 family. We have recently demonstrated that heat shock protein A12A (HSPA12A) inhibited renal cancer cell migration by suppressing lactate output and glycolytic activity, which were mediated by unstabilizing CD147 and promoting its degradation. By striking contrast, here we demonstrated that HSPA12A promoted migration of human HCC cells. Extracellular acidification, lactate export, and glycolytic activity in HCC cells were also promoted following HSPA12A overexpression. Further analysis revealed that HSPA12A interacted with MCT4 and increased its membrane localization, thereby promoting export of lactate generated from glycolysis; this led, ultimately, to HCC cell migration. Our results revealed the opposite effect of HSPA12A on migration of renal cancer cells and that of HCC cells. Of note, in contrast to the inhibitory effect on CD147 expression in renal cancer cells, we found that HSPA12A increased CD147 expression in HCC cells, indicating that the expression of CD147 might exist heterogeneity in different cancer cell types. Taken together, we identified HSPA12A as an activator of HCC migration, a role opposite to that of renal cancer cells. Inhibiting HSPA12A might be a potential therapeutic intervention for HCC metastasis.
Collapse
Affiliation(s)
- Xinxu Min
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
- Department of Anesthesiology, The First Affiliated Hospital With Wannan Medical College, Wuhu, 241001, China
| | - Xiaofei Cao
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Ziyang Chen
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Yunfan Li
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Qian Mao
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China.
| |
Collapse
|
41
|
Farmer M, Redd K, Roberson T, Smith M, Steed KL. The role of epigenetics in cancer metastasis. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:277-300. [DOI: 10.1016/b978-0-12-821789-4.00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
43
|
Schönberg J, Borlak J. Reliable miRNA biomarker quantification in clinical practice - are we there yet? Anal Biochem 2021; 634:114431. [PMID: 34695390 DOI: 10.1016/j.ab.2021.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Blood-borne miRNAs serve as disease diagnostic biomarkers and await clinical validation. Here, we evaluated Cel-miR-39-3p and miRNA16-5p as calibrator for the quantification of 15 miRNAs linked to hepatic impairment. We added defined copy numbers of Cel-miR-39-3p to plasma of healthy controls (N = 5) and patient samples undergoing liver resection (N = 51). The miRNAs were isolated according to SOPs and quantified by RT-qPCR using the 2-(ΔΔ-CT)-method. Although miRNA16-5p and the spike-in control behaved similar in qPCR assays (R2 = 0.8591) the spike-in control suffered from high inter-patient variability (median 7.6-fold) and low recoveries (median 5.6%, 95% CI 1.5-11.8%). Adding Cel-miR-39-3p to blood samples prior to RNA-isolation improved the recoveries (median 105.7%; 95% CI 29.9-219.9%), yet the inter-patient variability remained high (median 7.2-fold). Alike, we observed significant variability in CT-values for miRNA16-5p (range 14.7-fold) thus rendering this internal, blood-borne reference gene unacceptable as comparator. Specifically, 10 out of 15 diagnostic miRNAs failed the criteria R2 ≥ 0.8 even though we added a defined copy number of Cel-miR-39-3p. This suggests interference of the spike-in control with individual miRNAs in the assay. Our study highlights current limitations in the quantification of blood-borne miRNAs that is of particularly importance when used for disease diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Juliette Schönberg
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
44
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
46
|
Tang C, Liu J, Hu Q, Zeng S, Yu L. Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol 2021; 908:174367. [PMID: 34303661 DOI: 10.1016/j.ejphar.2021.174367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
Metastatic colorectal cancer (mCRC) has long been lethal despite the continuous efforts of researchers worldwide to discover and improve therapeutic regimens. Thanks to the emergence of long non-coding RNAs (lncRNAs), which has strongly reshaped our inherent perspectives on the pathophysiological patterns of disease, research in the field has been reinvigorated. Here, we focus on current understanding of the modes of action of lncRNAs, and review their regulatory roles in metastatic colorectal cancer, and discuss correlated potential lncRNA-based therapeutics. All of the discussed studies share clear and promising perspectives on future diagnostic and therapeutic remedies for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
47
|
Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. Brief Bioinform 2021; 23:6377515. [PMID: 34585231 DOI: 10.1093/bib/bbab407] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases. RESULTS In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
Collapse
Affiliation(s)
- Xiaosa Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Xiaowei Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Minghao Yin
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
48
|
Huang Z, Xia H, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Kang P, Su Z, Cui Y, Yam JWP, Xu Y. The Mechanism and Clinical Significance of Circular RNAs in Hepatocellular Carcinoma. Front Oncol 2021; 11:714665. [PMID: 34540684 PMCID: PMC8445159 DOI: 10.3389/fonc.2021.714665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
49
|
Zhang M, Lu N, Guo XY, Li HJ, Guo Y, Lu L. Influences of the lncRNA TUG1-miRNA-34a-5p network on fibroblast-like synoviocytes (FLSs) dysfunction in rheumatoid arthritis through targeting the lactate dehydrogenase A (LDHA). J Clin Lab Anal 2021; 35:e23969. [PMID: 34403518 PMCID: PMC8418480 DOI: 10.1002/jcla.23969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease. The cellular glucose metabolism of fibroblast‐like synoviocytes (FLSs) of RA has been revealed to be essential to the pathogenesis and development of RA. To date, the precise roles and molecular mechanisms of long noncoding RNA TUG1 in RA have not been elucidated. Methods TUG1 and miR‐34a‐5p were detected by qRT‐PCR. Interactions between lncRNA‐miRNA and miRNA‐mRNA were validated by RNA pull‐down assay and luciferase assay. The glucose metabolism was evaluated by glucose uptake and extracellular acidification rate (ECAR). Cell viability was determined by MTT assay and Annexin V assay. Results TUG1 expression was significantly upregulated in synovial fibroblast‐like synoviocytes (FLSs) compared with normal FLSs. Functional assays uncovered that silence of TUG1 suppressed FLSs‐RA invasion, migration, glucose metabolism, and increased apoptosis. Bioinformatics analysis indicated that TUG1 interacted with miR‐34a‐5p. RNA pull‐down assay and luciferase assay validated that TUG1 sponged miR‐34a‐5p in FLSs‐RA. Overexpression of miR‐34a‐5p effectively inhibited glucose metabolism of FLSs‐RA. Furthermore, the glucose metabolism of FLSs‐RA was significantly elevated compared with normal FLSs. The glucose metabolism enzyme, LDHA, was directly targeted by miR‐34a‐5p in FLSs. Rescue experiments validated that the miR‐34a‐5p‐inhibited glucose metabolism of FLSs‐RA was through targeting LDHA. Finally, we showed restoration of miR‐34a‐5p in TUG1‐overexpressing FLSs‐RA successfully overcame the TUG1‐promoted glucose metabolism and apoptosis resistance via targeting LDHA. Conclusion The present study uncovered critical roles and molecular mechanisms underlying the TUG1‐mediated glucose metabolism and apoptosis of FLSs‐RA through modulating the miR‐34a‐5p‐LDHA pathway in fibroblast‐like synoviocytes of rheumatoid arthritis.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiao-Yun Guo
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hong-Jun Li
- Department of Rheumatology and Immunology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Guo
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
50
|
Sellitto A, Pecoraro G, Giurato G, Nassa G, Rizzo F, Saggese P, Martinez CA, Scafoglio C, Tarallo R. Regulation of Metabolic Reprogramming by Long Non-Coding RNAs in Cancer. Cancers (Basel) 2021; 13:cancers13143485. [PMID: 34298698 PMCID: PMC8308086 DOI: 10.3390/cancers13143485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
- Genome Research Center for Health—CRGS, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
- Genome Research Center for Health—CRGS, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
- Genome Research Center for Health—CRGS, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
| | - Pasquale Saggese
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.S.); (C.A.M.); (C.S.)
| | - Cesar A. Martinez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.S.); (C.A.M.); (C.S.)
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.S.); (C.A.M.); (C.S.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (G.P.); (G.G.); (G.N.); (F.R.)
- Genome Research Center for Health—CRGS, University of Salerno Campus of Medicine, 84081 Baronissi, Italy
- Correspondence: ; Tel.: +39-089-965067
| |
Collapse
|