1
|
Wu WH, Yang YL, Wang T, Sun XM, Wei MG, Zhou XY, Zhu LZ, Ma G, Liu B, Qi LW, Liu Q. Ginsenoside compound K restrains hepatic fibrotic response by dual-inhibition of GLS1 and LDHA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156223. [PMID: 39561660 DOI: 10.1016/j.phymed.2024.156223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Liver fibrosis is a dynamic process marked by the accumulation of extracellular matrix due to hepatic stellate cells (HSCs) activation. Ginsenoside compound K (CK), a rare derivative of its parent ginsenosides, is known to significantly ameliorate metabolic disorders. PURPOSE The aim of this study was to elucidate the protective effects of CK against liver fibrosis with a focus on metabolic regulation. METHODS We established liver fibrosis models in mice using carbon tetrachloride (CCl4) challenge, bile duct ligation, or a methionine-choline deficient diet, with continuous oral administration of CK at specified doses and intervals. Simultaneously, we examined the impact of CK on metabolic regulation in cultured HSCs and investigated the associated mechanisms. RESULTS CK was found to alleviate liver injury and curb fibrotic responses in mouse models, as well as decrease elevated levels of liver enzyme. Metabolomic analysis in vitro highlighted the crucial roles of pyruvate and glutamine metabolism in metabolic remodeling. Immunohistochemical staining indicated significantly elevated expressions of lactate dehydrogenase A (LDHA) (p = 0.014) and glutaminase 1 (GLS1) (p = 0.024) in liver cirrhosis patients. Comparable alterations were noted in the liver of model mice and in cultured HSCs. Molecular docking and bio-layer interferometry demonstrated that CK interacts with and inhibits the activities of LDHA and GLS1. As expected, CK attenuated glycolysis and glutaminolysis, reducing HSC growth dependently on lactate and α-ketoglutarate (α-KG). Upon HSC activation, metabolism is reprogrammed with Myc as a key regulator, transcriptionally controlling LDHA, GLS1, and glutamine transporters SLC1A5 and SLC38A5. CK inhibited Myc induction, integrating glycolysis and glutaminolysis regulation to counteract the fibrotic response. CONCLUSION CK inhibited LDHA and GLS1 activities, thereby inhibiting hepatic fibrosis. These findings offer new insights into the role of ginsenosides in liver protection, especially regarding metabolic disorders.
Collapse
Affiliation(s)
- Wen-Hui Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Lan Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210009, China
| | - Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Guang Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yue Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Zeng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 210009, China.
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Xu C, Lin W, Zhang Q, Ma Y, Wang X, Guo A, Zhu G, Zhou Z, Song W, Zhao Z, Jiao Y, Wang X, Du C. MGST1 facilitates novel KRAS G12D inhibitor resistance in KRAS G12D-mutated pancreatic ductal adenocarcinoma by inhibiting ferroptosis. Mol Med 2024; 30:199. [PMID: 39501138 PMCID: PMC11536589 DOI: 10.1186/s10020-024-00972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a low 5-year survival rate. Treatment options for PDAC patients are limited. Recent studies have shown promising results with MRTX1133, a KRASG12D inhibitor that demonstrated potent antitumor activity in various types of tumors with KRASG12D mutation. Resistance to KRAS inhibitors is frequently occurred and one of the main reasons for treatment failure. Understanding resistance mechanisms to novel KRAS inhibitors is crucial to ensure sustained and durable remissions. METHODS Two KRASG12D inhibitor MRTX1133-resistant PDAC cell lines were established in vitro. The resistance mechanisms to KRASG12D inhibitor MRTX1133 against PDAC in vitro and in vivo were characterized by RNA sequencing, reverse transcript polymerase chain reaction, cytotoxicity test, plasmid transfection, lentivirus transfection, lipid peroxidation detection, malondialdehyde levels detection, glutathione levels detection, western blot, immunofluorescence, nude mice tumorigenesis experiment and immunohistochemistry. RESULTS The bioinformatics analysis and transcriptome sequencing showed that ferroptosis was involved in the resistant effect of the KRASG12D inhibitor treatment, and MGST1 was the key molecule against MRTX1133-induced ferroptosis. Increased expression of MGST1 weakened the cytotoxicity of MRTX1133 by inhibiting lipid peroxidation-induced ferroptosis in KRASG12D inhibitor-resistant PDAC cells. Knockdown or overexpression of MGST1 conferred sensitivity or resistance to KRASG12D inhibitor MRTX1133, respectively. Mechanismly, increased nuclear localization and higher levels of active β-catenin were observed in MRTX1133-resistant PDAC cells, which contributed to higher MGST1 expression. Knockdown of CTNNB1 or TCF4 can decreased MGST1 expression. Additionally, we found that PKF-118-310, an antagonist of β-catenin/Tcf4 complex, repressed MGST1 expression. In both in vitro and in vivo models, a synergistic effect was observed when combining MRTX1133 and PKF-118-310 in KRASG12D inhibitor MRTX1133-resistant PDAC cells and tumors. CONCLUSION Our data showed that KRASG12D inhibitor MRTX1133 combined with PKF-118-310 could enhance the effectiveness of MRTX1133 treatment response through induction of ferroptosis via inhibiting MGST1 expression in MRTX1133-resistant PDAC cells and tumors. This evidence may provide a promising strategy to overcome KRASG12D inhibitor MRTX1133 resistance in PDAC patients with KRASG12D mutations.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Xue Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Ai Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Guiling Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Zhendiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Weiwei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Ziyi Zhao
- Harrow international School Shenzhen Qianhai, Shenzhen, 518000, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450000, China.
| | - Chunxia Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen X, Jiang C, Chen M, Li X, Yu W, Qiu A, Sun L, Pu L, Shi Y. SYK promotes the formation of neutrophil extracellular traps by inducing PKM2 nuclear translocation and promoting STAT3 phosphorylation to exacerbate hepatic ischemia-reperfusion injury and tumor recurrence. Mol Med 2024; 30:146. [PMID: 39261768 PMCID: PMC11391729 DOI: 10.1186/s10020-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND At present, hepatic ischemia-reperfusion injury (IRI) is an important complication of partial hepatectomy and liver transplantation, and it is an important cause of poor prognosis. Spleen tyrosine kinase(SYK) plays an important role in a variety of signaling pathways in the liver, but its role in hepatic IRI is still unclear. This study aims to investigate the role and mechanism of SYK in hepatic IRI and tumor recurrence. METHODS We first observed the activation of SYK in the liver of mice in response to hepatic IRI. Subsequently, Pharmacological inhibitions of SYK were used to evaluated the effect of SYK on neutrophil recruitment and NETosis, and further explored the effect of SYK on IRI and tumor recurrence. RESULTS Our study shows that SYK is activated in response to hepatic IRI and aggravates liver injury. On the one hand, neutrophils SYK during the early stage of liver reperfusion increases neutrophil extracellular traps (NETs) production by promoting Pyruvate kinase M2(PKM2) nuclear translocation leading to upregulation of phosphorylated STAT3, thereby exacerbating liver inflammation and tumor recurrence. On the other hand, macrophages SYK can promote the recruitment of neutrophils and increase the activation of NLRP3 inflammasome and IL1β, which further promotes the formation of NETs. CONCLUSIONS Our study demonstrates that neutrophil and macrophage SYK synergistically promote hepatic IRI and tumor recurrence, and SYK may be a potential target to improve postoperative hepatic IRI and tumor recurrence.
Collapse
Affiliation(s)
- Xuejiao Chen
- Department of General Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, 75 Theater Road, Yancheng, 224000, Jiangsu province, China
| | - Chuanwei Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China
| | - Aigang Qiu
- Department of General Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, 75 Theater Road, Yancheng, 224000, Jiangsu province, China
| | - Linfeng Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210003, Jiang Su province, China.
| | - Yuhua Shi
- Department of General Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, 75 Theater Road, Yancheng, 224000, Jiangsu province, China.
| |
Collapse
|
5
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Ho CH, Chang TT, Lin HC, Wang SF. Agalactosyl IgG induces liver fibrogenesis via Fc gamma receptor 3a on human hepatic stellate cells. J Pathol 2024; 263:508-519. [PMID: 38886892 DOI: 10.1002/path.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The relevance of aberrant serum IgG N-glycosylation in liver fibrosis has been identified; however, its causal effect remains unclear. Because hepatic stellate cells (HSCs) contribute substantially to liver fibrosis, we investigated whether and through which mechanisms IgG N-glycosylation affects the fibrogenic properties of HSCs. Analysis of serum IgG1 N-glycome from 151 patients with chronic hepatitis B or liver cirrhosis revealed a positive correlation between Ishak fibrosis grading and IgG1 with agalactosyl N-glycoforms on the crystallizable fragment (Fc). Fc gamma receptor (FcγR) IIIa was observed in cultured human HSCs and HSCs in human liver tissues, and levels of FcγRIIIa in HSCs correlated with the severity of liver fibrosis. Additionally, agalactosyl IgG treatment caused HSCs to have a fibroblast-like morphology, enhanced migration and invasion capabilities, and enhanced expression of the FcγRIIIa downstream tyrosine-protein kinase SYK. Furthermore, agalactosyl IgG treatment increased fibrogenic factors in HSCs, including transforming growth factor (TGF)-β1, total collagen, platelet-derived growth factor subunit B and its receptors, pro-collagen I-α1, α-smooth muscle actin, and matrix metalloproteinase 9. These effects were more pronounced in HSCs that stably expressed FCGR3A and were reduced in FCGR3A knockout cells. Agalactosyl IgG and TGF-β1 each increased FCGR3A in HSCs. Furthermore, serum TGF-β1 concentrations in patients were positively correlated with agalactosyl IgG1 levels and liver fibrosis severity, indicating a positive feedback loop involving agalactosyl IgG, HSC-FcγRIIIa, and TGF-β1. In conclusion, agalactosyl IgG promotes fibrogenic characteristics in HSCs through FcγRIIIa. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Chang Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Yao Y, Zuo X, Shao F, Yu K, Liang Q. Jaceosidin attenuates the progression of hepatic fibrosis by inhibiting the VGLL3/HMGB1/TLR4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155502. [PMID: 38489889 DOI: 10.1016/j.phymed.2024.155502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-β, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1β in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-β-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Xiaoling Zuo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Feng Shao
- Qingdao Jinmotang Biotechnology Co., Ltd, Qingdao, Shandong Province 266000, China
| | - Kexin Yu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Quanquan Liang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
8
|
Du M, Liu K, Lai H, Qian J, Ai L, Zhang J, Yin J, Jiang D. Functional meniscus reconstruction with biological and biomechanical heterogeneities through topological self-induction of stem cells. Bioact Mater 2024; 36:358-375. [PMID: 38496031 PMCID: PMC10944202 DOI: 10.1016/j.bioactmat.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Meniscus injury is one of the most common sports injuries within the knee joint, which is also a crucial pathogenic factor for osteoarthritis (OA). The current meniscus substitution products are far from able to restore meniscal biofunctions due to the inability to reconstruct the gradient heterogeneity of natural meniscus from biological and biomechanical perspectives. Here, inspired by the topology self-induced effect and native meniscus microstructure, we present an innovative tissue-engineered meniscus (TEM) with a unique gradient-sized diamond-pored microstructure (GSDP-TEM) through dual-stage temperature control 3D-printing system based on the mechanical/biocompatibility compatible high Mw poly(ε-caprolactone) (PCL). Biologically, the unique gradient microtopology allows the seeded mesenchymal stem cells with spatially heterogeneous differentiation, triggering gradient transition of the extracellular matrix (ECM) from the inside out. Biomechanically, GSDP-TEM presents excellent circumferential tensile modulus and load transmission ability similar to the natural meniscus. After implantation in rabbit knee, GSDP-TEM induces the regeneration of biomimetic heterogeneous neomeniscus and efficiently alleviates joint degeneration. This study provides an innovative strategy for functional meniscus reconstruction. Topological self-induced cell differentiation and biomechanical property also provides a simple and effective solution for other complex heterogeneous structure reconstructions in the human body and possesses high clinical translational potential.
Collapse
Affiliation(s)
- Mingze Du
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Kangze Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore
| | - Huinan Lai
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Zhejiang, 310058, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Zhejiang, 310058, China
| | - Liya Ai
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jiying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power Transmission and Control Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Zhejiang, 310058, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Lattig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal significant loci associated with alcohol use disorder. Front Genet 2024; 15:1345410. [PMID: 38633406 PMCID: PMC11021708 DOI: 10.3389/fgene.2024.1345410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United States
| | - Maria C. Lattig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, United States
| |
Collapse
|
10
|
Huang Z, Luo L, Wu Z, Xiao Z, Wen Z. Identification of m6A-associated autophagy genes in non-alcoholic fatty liver. PeerJ 2024; 12:e17011. [PMID: 38436022 PMCID: PMC10909346 DOI: 10.7717/peerj.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Background Studies had shown that autophagy was closely related to nonalcoholic fat liver disease (NAFLD), while N6-methyladenosine (m6A) was involved in the regulation of autophagy. However, the mechanism of m6A related autophagy in NAFLD was unclear. Methods The NAFLD related datasets were gained via the Gene Expression Omnibus (GEO) database, and we also extracted 232 autophagy-related genes (ARGs) and 37 m6A. First, differentially expressed ARGs (DE-ARGs) and differentially expressed m6A (DE-m6A) were screened out by differential expression analysis. DE-ARGs associated with m6A were sifted out by Pearson correlation analysis, and the m6A-ARGs relationship pairs were acquired. Then, autophagic genes in m6A-ARGs pairs were analyzed for machine learning algorithms to obtain feature genes. Further, we validated the relationship between feature genes and NAFLD through quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB). Finally, the immuno-infiltration analysis was implement, and we also constructed the TF-mRNA and drug-gene networks. Results There were 19 DE-ARGs and four DE-m6A between NAFLD and normal samples. The three m6A genes and five AGRs formed the m6A-ARGs relationship pairs. Afterwards, genes obtained from machine learning algorithms were intersected to yield three feature genes (TBK1, RAB1A, and GOPC), which showed significant positive correlation with astrocytes, macrophages, smooth muscle, and showed significant negative correlation with epithelial cells, and endothelial cells. Besides, qRT-PCR and WB indicate that TBK1, RAB1A and GOPC significantly upregulated in NAFLD. Ultimately, we found that the TF-mRNA network included FOXP1-GOPC, ATF1-RAB1A and other relationship pairs, and eight therapeutic agents such as R-406 and adavosertib were predicted based on the TBK1. Conclusion The study investigated the potential molecular mechanisms of m6A related autophagy feature genes (TBK1, RAB1A, and GOPC) in NAFLD through bioinformatic analyses and animal model validation. However, it is critical to note that these findings, although consequential, demonstrate correlations rather than cause-and-effect relationships. As such, more research is required to fully elucidate the underlying mechanisms and validate the clinical relevance of these feature genes.
Collapse
Affiliation(s)
- Ziqing Huang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linfei Luo
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengqiang Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Xiao
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhili Wen
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Latig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal replicated and novel loci associated with alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299094. [PMID: 38105948 PMCID: PMC10725575 DOI: 10.1101/2023.11.28.23299094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| | - Maria C. Latig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| |
Collapse
|
12
|
Wang C, Liu P, Sun Y, Liu T, Xu X, Guo J, Gong Z, Sun H, Xu R. Prognostic biomarker SYK and its correlation with immune infiltrates in glioma. Exp Ther Med 2023; 26:499. [PMID: 37810632 PMCID: PMC10557046 DOI: 10.3892/etm.2023.12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/24/2023] [Indexed: 10/10/2023] Open
Abstract
The tumor microenvironment (TME) provides excellent conditions for the development of glioma. The present study sought to identify the prognostic factors of glioma that could be used to improve the prognosis of patients with this disease. In the present study, Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data calculations were employed to estimate the ratio of tumor-infiltrating immune cells and the quantity of immune and stromal components in 698 glioma cases from the Cancer Genome Atlas database. In addition, certain differentially expressed genes were studied by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and single genes associated with prognosis were identified by protein-protein interaction (PPI) network and Cox combined analysis. The immune and stromal scores of the TME were significantly associated with glioma patient survival. By using the PPI network and Cox regression analyses, spleen tyrosine kinase (SYK) was eventually identified as the best prognostic factor for patients with glioma. In addition, Gene Set Enrichment Analysis and CIBERSORT analyses were employed. The former indicated that the high-expression SYK group genes were mainly enriched in immune-related activities. The latter revealed that SYK expression was positively associated with T cell cluster of differentiation 4 memory resting and monocytes. The aforementioned experimental analyses provided the theoretical basis for the biological prediction of SYK. The data indicated that SYK contributed to immune predictors in patients with glioma by facilitating the shift of the TME from immune dominance to metabolic activity. Finally, reverse transcription-quantitative PCR and western blotting were used to verify the single gene expression in glioma cells. This may provide prognostic value for the treatment of glioma.
Collapse
Affiliation(s)
- Changxin Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Pei Liu
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yu Sun
- Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ting Liu
- Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoxiao Xu
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jiamin Guo
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zheng Gong
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haixin Sun
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
13
|
Yang Q, Tan T, He Q, Guo C, Chen D, Tan Y, Feng J, Song X, Gong T, Li J. Combined Amphiphilic Silybin Meglumine Nanosuspension Effective Against Hepatic Fibrosis in Mice Model. Int J Nanomedicine 2023; 18:5197-5211. [PMID: 37720597 PMCID: PMC10505037 DOI: 10.2147/ijn.s407762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Silybin (SLB) as an effective hepatoprotective phytomedicine has been limited by its hydrophobicity, poor bioavailability and accumulation at lesion sites. Additionally, present drug loading methods are impeded by their low drug loading capacity, potential hazard of materials and poor therapeutic effects. Consequently, there is a pressing need to devise an innovative approach for preparing nanosuspensions loaded with both SLB and Silybin Meglumine salt (SLB-M), as well as to investigate the therapeutic effects of SLB nanosuspensions against hepatic fibrosis. Methods The SLB nanosuspension (NS-SLB) was prepared and further modified with a hyaluronic acid-cholesterol conjugate (NS-SLB-HC) to improve the CD44 targeting proficiency of NS-SLB. To validate the accumulation of CD44 and ensure minimal cytotoxicity, cellular uptake and cytotoxicity assessments were carried out for the nanosuspensions. Western blotting was employed to evaluate the anti-hepatic fibrosis efficacy in LX-2 cells by inhibiting the secretion of collagen I. Hepatic fibrosis mouse models were used to further confirm the effectiveness of NS-SLB and NS-SLB-HC against hepatic fibrosis in vivo. Results Uniform nanosuspensions were prepared through self-assembly, achieving high drug loading rates of 89.44% and 60.67%, respectively. Both SLB nanosuspensions showed minimal cytotoxicity in cellular environments and mitigated hepatic fibrosis in vitro. NS-SLB-HC was demonstrated to target activated hepatic stellate cells by receptor-ligand interaction between HA and CD44. They can reverse hepatic fibrosis in vivo by downregulating TGF-β and inhibiting the secretion of α-SMA and collagen I. Conclusion Designed as a medical excipient analogue, SLB-M was aimed to establish an innovative nanosuspension preparation method, characterized by high drug loading capacity and a notable impact against hepatic fibrosis.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong637100, People’s Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Tiantian Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Dan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Xu Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jia Li
- West China Hospital of Stomatology, Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
14
|
Wu J, Yan J, Hua Z, Jia J, Zhou Z, Zhang J, Li J, Zhang J. Identification of molecular signatures in acute myocardial infarction based on integrative analysis of proteomics and transcriptomics. Genomics 2023; 115:110701. [PMID: 37597790 DOI: 10.1016/j.ygeno.2023.110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most serious cardiovascular diseases, characterized by a rapid and irreversible decline in myocardial function. Early detection of patients with MI and prolonging the optimal therapeutic window of acute myocardial infarction (AMI) are particularly important. This study aimed to identify the diagnostic biomarkers and novel therapeutic targets for acute myocardial infarction. METHOD We generated the AMI mouse models by ligating the proximal left anterior descending coronary artery. Six time points-Sham, AMI 10-min, 1-h, 6-h, 24-h, and 72-h-were chosen to examine the molecular changes that occur during the AMI process. RNA-seq and DIA-MS were performed on the infarcted left ventricular tissues of AMI mice at each time point. Co-expression pattern genes were screened from myocardial infarction samples at different time points by time-series analysis. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to examine these genes. Using the Interactive Gene/Protein Retrieval Tool (STRING) database, the protein-protein interaction network (PPI) was constructed and the hub genes were identified. In order to evaluate the diagnostic value of hub genes, a receiver operating characteristic (ROC) curve was constructed. An independent data set, GSE163772, confirmed the diagnostic value of hub genes further. RESULT We obtained the expression profiles at different time points after the occurrence of heart failure through high-throughput sequencing, and found 167 genes with similar expression patterns through time series analysis. The immune response and immune-related pathways had the greatest enrichment of these genes. Among them, Itgb2 Syk, Tlr4, Tlr2, Itgax, and Lcp2 may play key roles as hub genes. Combined with the results of proteomic analysis, it was found that the expression of Coro1a in both omics increased with time. The results of external validation showed that TLR2, ITGAX, and LCP2 had good predictive ability for AMI diagnosis. CONCLUSION Itgb2, Syk, Tlr4, Tlr2, Itgax, Lcp2 and Coro1a are considered to be the seven key genes significantly associated with AMI. Our results may provide potential targets for the prevention of adverse ventricular remodeling and the treatment of AMI.
Collapse
Affiliation(s)
- Jiawen Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiale Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Hua
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingyi Jia
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhitong Zhou
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junfang Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Zhou Y, Zhang Y, Yu W, Qin Y, He H, Dai F, Wang Y, Zhu F, Zhou G. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases. Immun Inflamm Dis 2023; 11:e934. [PMID: 37506139 PMCID: PMC10373573 DOI: 10.1002/iid3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
17
|
Gao C, Li J, Zeng F, Wang L, Chen K, Chen D, Hong J, Qu C. MCM6 promotes intrahepatic cholangiocarcinoma progression by upregulating E2F1 and enhancing epithelial-mesenchymal transition. Carcinogenesis 2023; 44:279-290. [PMID: 37185675 DOI: 10.1093/carcin/bgad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Minichromosome maintenance complex component 6 (MCM6), a member of the MCM family, plays a pivotal role in DNA replication initiation and genome duplication of proliferating cells. MCM6 is upregulated in multiple malignancies and is considered a novel diagnostic biomarker. However, the functional contributions and prognostic value of MCM6 in intrahepatic cholangiocarcinoma (ICC) remain unexplored. In this study, we investigated the molecular function of MCM6 in ICC. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO, GSE107943) indicated an upregulation of MCM6 in tumor tissues. Immunohistochemical analysis performed on 115 cases of ICC samples confirmed the upregulation of MCM6 and further suggested that a high level of MCM6 expression predicted shorter overall and disease-free survival in ICC patients. Functional studies suggested that MCM6 knockdown significantly suppressed cell viability, blocked cell cycle progression and inhibited metastasis, while the enhancement of MCM6 expression promoted the proliferation and migration of ICC cells both in vitro and in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) suggested that the epithelial-mesenchymal transition (EMT) and E2F1-correlated genes were enriched in ICC tissues with high MCM6 expression. Further verification indicated that MCM6 promoted the EMT of ICC cells via upregulating E2F1. In addition, E2F1 knockdown partially blocked the pro-malignant effects of MCM6 overexpression. In summary, MCM6 was found to be a novel prognostic and predictive marker for ICC. MCM6 promoted ICC progression via activation of E2F1-mediated EMT.
Collapse
Affiliation(s)
- Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jing Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Fuling Zeng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Lijuan Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| | - Kaiyun Chen
- Department of General Surgery, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510632, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
18
|
Zeng W, Xu X, Xu F, Zhu F, Li Y, Ma J. Exploring Key Genes with Diagnostic Value for Nonalcoholic Steatohepatitis Based on Bioinformatics Analysis. ACS OMEGA 2023; 8:20959-20967. [PMID: 37323410 PMCID: PMC10268261 DOI: 10.1021/acsomega.3c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023]
Abstract
We aimed to screen specific genes in liver tissue samples of patients with nonalcoholic steatohepatitis (NASH) with clinical diagnostic value based on bioinformatics analysis. The datasets of liver tissue samples from healthy individuals and NASH patients were retrieved for consistency cluster analysis to obtain the NASH sample typing, followed by verification of the diagnostic value of sample genotyping-specific genes. All samples were subjected to logistic regression analysis, followed by the establishment of the risk model, and then, the diagnostic value was determined by receiver operating characteristic curve analysis. NASH samples could be divided into cluster 1, cluster 2, and cluster 3, which could predict the nonalcoholic fatty liver disease activity score of patients. A total of 162 sample genotyping-specific genes were extracted from patient clinical parameters, and the top 20 core genes in the protein interaction network were obtained for logistic regression analysis. Five sample genotyping-specific genes (WD repeat and HMG-box DNA-binding protein 1 [WDHD1], GINS complex subunit 2 [GINS2], replication factor C subunit 3 (RFC3), secreted phosphoprotein 1 [SPP1], and spleen tyrosine kinase [SYK]) were extracted to construct the risk models with high diagnostic value in NASH. Compared with the low-risk group, the high-risk group of the model showed increased lipoproduction and decreased lipolysis and lipid β oxidation. The risk models based on WDHD1, GINS2, RFC3, SPP1, and SYK have high diagnostic value in NASH, and this risk model is closely related to lipid metabolism pathways.
Collapse
Affiliation(s)
- Wenchun Zeng
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Xiangwei Xu
- Department
of Pharmacy, The First People’s Hospital
of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Fang Xu
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Fang Zhu
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Yuecui Li
- Department
of Infectious Liver Disease, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| | - Ji Ma
- Department
of Gastroenterology, The First People’s
Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, P. R. China
| |
Collapse
|
19
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
20
|
Torres S, Ortiz C, Bachtler N, Gu W, Grünewald LD, Kraus N, Schierwagen R, Hieber C, Meier C, Tyc O, Joseph Brol M, Uschner FE, Nijmeijer B, Welsch C, Berres M, Garcia‐Ruiz C, Fernandez‐Checa JC, Trautwein C, Vogl TJ, Zeuzem S, Trebicka J, Klein S. Janus kinase 2 inhibition by pacritinib as potential therapeutic target for liver fibrosis. Hepatology 2023; 77:1228-1240. [PMID: 35993369 PMCID: PMC10026969 DOI: 10.1002/hep.32746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Janus kinase 2 (JAK2) signaling is increased in human and experimental liver fibrosis with portal hypertension. JAK2 inhibitors, such as pacritinib, are already in advanced clinical development for other indications and might also be effective in liver fibrosis. Here, we investigated the antifibrotic role of the JAK2 inhibitor pacritinib on activated hepatic stellate cells (HSCs) in vitro and in two animal models of liver fibrosis in vivo . APPROACH AND RESULTS Transcriptome analyses of JAK2 in human livers and other targets of pacritinib have been shown to correlate with profibrotic factors. Although transcription of JAK2 correlated significantly with type I collagen expression and other profibrotic genes, no correlation was observed for interleukin-1 receptor-associated kinase and colony-stimulating factor 1 receptor. Pacritinib decreased gene expression of fibrosis markers in mouse primary and human-derived HSCs in vitro . Moreover, pacritinib decreased the proliferation, contraction, and migration of HSCs. C 57 BL/6J mice received ethanol in drinking water (16%) or Western diet in combination with carbon tetrachloride intoxication for 7 weeks to induce alcoholic or nonalcoholic fatty liver disease. Pacritinib significantly reduced liver fibrosis assessed by gene expression and Sirius red staining, as well as HSC activation assessed by alpha-smooth muscle actin immunostaining in fibrotic mice. Furthermore, pacritinib decreased the gene expression of hepatic steatosis markers in experimental alcoholic liver disease. Additionally, pacritinib protected against liver injury as assessed by aminotransferase levels. CONCLUSIONS This study demonstrates that the JAK2 inhibitor pacritinib may be promising for the treatment of alcoholic and nonalcoholic liver fibrosis and may be therefore relevant for human pathology.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Cristina Ortiz
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Nadine Bachtler
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Wenyi Gu
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Leon D. Grünewald
- Department of Diagnostic and Interventional Radiology, Universit+y Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nico Kraus
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Christoph Hieber
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Caroline Meier
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Olaf Tyc
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Maximilian Joseph Brol
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Frank Erhard Uschner
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Bart Nijmeijer
- Research and Development Department, Linxis BV, Amsterdam, The Netherlands
| | - Christoph Welsch
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Marie‐Luise Berres
- Department of Internal Medicine III, Aachen University Hospital, Aachen, Germany
| | - Carmen Garcia‐Ruiz
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Department of Medicine, University of Southern California, Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jose Carlos Fernandez‐Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Liver Unit‐IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Department of Medicine, University of Southern California, Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christian Trautwein
- Department of Internal Medicine III, Aachen University Hospital, Aachen, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, Universit+y Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure – EF Clif, Barcelona, Spain
| | - Sabine Klein
- Department of Internal Medicine I, Goethe University Clinic Frankfurt, Frankfurt, Germany
- Department of Internal Medicine B, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Liu X, Wu Y, Li Y, Li K, Hou S, Ding M, Tan J, Zhu Z, Tang Y, Liu Y, Sun Q, Wang C, Zhang C. Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5). J Zhejiang Univ Sci B 2023; 24:248-261. [PMID: 36916000 PMCID: PMC10014314 DOI: 10.1631/jzus.b2200383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xuwentai Liu
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi Li
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Kaiming Li
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Siyuan Hou
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Jingmin Tan
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zijing Zhu
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yingqi Tang
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yuming Liu
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Qianhui Sun
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China. ,
| | - Can Zhang
- State Key Laboratory of Natural Medicines / Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases / Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
23
|
Wang H, Zhang J, Liu J, Jiang Y, Fu L, Peng S. Identification of AKR1B10 as a key gene in primary biliary cholangitis by integrated bioinformatics analysis and experimental validation. Front Mol Biosci 2023; 10:1124956. [PMID: 36845547 PMCID: PMC9947156 DOI: 10.3389/fmolb.2023.1124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease that eventually progresses to cirrhosis and hepatocellular carcinoma (HCC) in the absence of proper treatment. However, Gene expression and molecular mechanisms involved in the pathogenesis of PBC have not been completely elucidated. Methods: Microarray expression profiling dataset GSE61260 was downloaded from the Gene Expression Omnibus (GEO) database. Data were normalized to screen differentially expressed genes (DEGs) using the limma package in R. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed. A protein-protein interaction (PPI) network was constructed to identify hub genes and an integrative regulatory network of transcriptional factor-DEG-microRNA was established. Gene Set Enrichment Analysis (GSEA) was used to analyze differences in biological states for groups with different expressions of aldo-keto reductase family 1 member B10 (AKR1B10). Immunohistochemistry (IHC) analysis was performed to validate the expression of hepatic AKR1B10 in patients with PBC. The association of hepatic AKR1B10 levels with clinical parameters was evaluated using one-way analysis of variance (ANOVA) and Pearson's correlation analysis. Results: This study identified 22 upregulated and 12 downregulated DEGs between patients with PBC and healthy controls. GO and KEGG analysis revealed that DEGs were mainly enriched in immune reactions. AKR1B10 was identified as a key gene and was further analyzed by screening out hub genes from the PPI network. GSEA analysis indicated that high expression of AKR1B10 might promote PBC to develop into HCC. Immunohistochemistry results verified the increased expression of hepatic AKR1B10 in patients with PBC and demonstrated its positive correlation with the severity of PBC. Conclusion: AKR1B10 was identified as a hub gene in PBC by integrated bioinformatics analysis and clinical validation. The increase of AKR1B10 expression in patients with PBC was associated with disease severity and might promote the progression of PBC to HCC.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
24
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
25
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
26
|
Zhao Y, Liu R, Li M, Liu P. The spleen tyrosine kinase (SYK): A crucial therapeutic target for diverse liver diseases. Heliyon 2022; 8:e12130. [PMID: 36568669 PMCID: PMC9768320 DOI: 10.1016/j.heliyon.2022.e12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an enigmatic protein tyrosine kinase, and involved in signal transduction related with lots of cellular processes. It's highly expressed in the cells of hematopoietic origin and acts as an important therapeutic target in the treatment of autoimmune diseases and allergic disorders. In recent years, more and more evidences indicate that SYK is expressed in non-hematopoietic cells and effectively regulates various non-immune biological responses as well. In this review, we mainly summary the role of SYK in different liver diseases. Robust SYK expression has been discovered in hepatocytes, hepatic stellate cells, as well as Kupffer cells, which participates in the regulation of numerous signal transduction in various liver diseases (e.g. hepatitis, liver fibrosis and hepatocellular carcinoma). In addition, the blockage of SYK activity using small molecule modulators is considered as a significant therapeutic strategy against liver diseases, and both hepatic SYK and non-hepatic SYK could become highly promising therapeutic targets. Totally, even though some critical points about the significance of SYK in liver diseases treatment still need further elaboration, more reliable biotechnical or pharmacological therapy modes will be established based on the better understanding of the relationship between SYK and liver diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China,Corresponding author.
| |
Collapse
|
27
|
You Y, Gao C, Wu J, Qu H, Xiao Y, Kang Z, Li J, Hong J. Enhanced Expression of ARK5 in Hepatic Stellate Cell and Hepatocyte Synergistically Promote Liver Fibrosis. Int J Mol Sci 2022; 23:ijms232113084. [PMID: 36361872 PMCID: PMC9655442 DOI: 10.3390/ijms232113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
AMPK-related protein kinase 5 (ARK5) is involved in a broad spectrum of physiological and cell events, and aberrant expression of ARK5 has been observed in a wide variety of solid tumors, including liver cancer. However, the role of ARK5 in liver fibrosis remains largely unexplored. We found that ARK5 expression was elevated in mouse fibrotic livers, and showed a positive correlation with the progression of liver fibrosis. ARK5 was highly expressed not only in activated hepatic stellate cells (HSCs), but also in hepatocytes. In HSCs, ARK5 prevents the degradation of transforming growth factor β type I receptor (TβRI) and mothers against decapentaplegic homolog 4 (Smad4) proteins by inhibiting the expression of Smad ubiquitin regulatory factor 2 (Smurf2), thus maintaining the continuous transduction of the transforming growth factor β (TGF-β) signaling pathway, which is essential for cell activation, proliferation and survival. In hepatocytes, ARK5 induces the occurrence of epithelial-mesenchymal transition (EMT), and also promotes the secretion of inflammatory factors. Inflammatory factors, in turn, further enhance the activation of HSCs and deepen the degree of liver fibrosis. Notably, we demonstrated in a mouse model that targeting ARK5 with the selective inhibitor HTH-01-015 attenuates CCl4-induced liver fibrosis in mice. Taken together, the results indicate that ARK5 is a critical driver of liver fibrosis, and promotes liver fibrosis by synergy between HSCs and hepatocytes.
Collapse
Affiliation(s)
- Yang You
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ziwei Kang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Correspondence: ; Tel.: +86-20-8522-0253
| |
Collapse
|
28
|
Xu C, Cheng S, Chen K, Song Q, Liu C, Fan C, Zhang R, Zhu Q, Wu Z, Wang Y, Fan J, Zheng H, Lu L, Chen T, Zhao H, Jiao Y, Qu C. Sex Differences in Genomic Features of Hepatitis B-Associated Hepatocellular Carcinoma With Distinct Antitumor Immunity. Cell Mol Gastroenterol Hepatol 2022; 15:327-354. [PMID: 36272708 PMCID: PMC9772570 DOI: 10.1016/j.jcmgh.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity. METHODS Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice. RESULTS Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect. CONCLUSIONS Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shaoyan Cheng
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chang Liu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Ruochan Zhang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Zhu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuting Wang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hongwei Zheng
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Lingling Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hong Zhao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Hong Zhao, MD, Department of Hepatobiliary Surgery, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Yuchen Jiao, MD, PhD, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Correspondence Address correspondence to: Chunfeng Qu, MD, PhD, State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
29
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
30
|
Guo R, Jia X, Ding Z, Wang G, Jiang M, Li B, Chen S, Xia B, Zhang Q, Liu J, Zheng R, Gao Z, Xie X. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Am J Cancer Res 2022; 12:5220-5236. [PMID: 35836819 PMCID: PMC9274737 DOI: 10.7150/thno.71400] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Liver fibrosis affects millions of people worldwide without an effective treatment. Although multiple cell types in the liver contribute to the fibrogenic process, hepatocyte death is considered to be the trigger. Multiple forms of cell death, including necrosis, apoptosis, and necroptosis, have been reported to co-exist in liver diseases. Mixed lineage kinase domain-like protein (MLKL) is the terminal effector in necroptosis pathway. Although necroptosis has been reported to play an important role in a number of liver diseases, the function of MLKL in liver fibrosis has yet to be unraveled. Methods and Results: Here we report that MLKL level is positively correlated with a number of fibrotic markers in liver samples from both patients with liver fibrosis and animal models. Mlkl deletion in mice significantly reduces clinical symptoms of CCl4- and bile duct ligation (BDL) -induced liver injury and fibrosis. Further studies indicate that Mlkl-/- blocks liver fibrosis by reducing hepatocyte necroptosis and hepatic stellate cell (HSC) activation. AAV8-mediated specific knockdown of Mlkl in hepatocytes remarkably alleviates CCl4-induced liver fibrosis in both preventative and therapeutic ways. Conclusion: Our results show that MLKL-mediated signaling plays an important role in liver damage and fibrosis, and targeting MLKL might be an effective way to treat liver fibrosis.
Collapse
Affiliation(s)
- Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200031, China,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200031, China,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Gang Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengmeng Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shanshan Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Liu
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruting Zheng
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,✉ Corresponding author: Dr. Xin Xie, 189 Guo Shou Jing Road, Shanghai 201203, China; Tel: (86) 186-0211-0377; Fax: 0086-21-50800721; E-mail:
| |
Collapse
|
31
|
Zhu S, Chen X, Chen SY, Wang A, Wu S, Wu YY, Cheng M, Xu JJ, Li XF, Huang C, Li J. Hesperetin derivative decreases CCl 4 -induced hepatic fibrosis by Ptch1-dependent mechanisms. J Biochem Mol Toxicol 2022; 36:e23149. [PMID: 35712856 DOI: 10.1002/jbt.23149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/05/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Hepatic fibrosis (HF), a continuous wound-healing response of the liver to repeated injuries, is characterized by abnormal extracellular matrix (ECM) accumulation. Hepatic stellate cells (HSCs) are considered a major cell type for ECM production. However, recent evidence indicates the lack of effective treatments for HF. Hesperetin, a Traditional Chinese Medicine monomer, has been isolated from the fruit peel of Citrusaurantium L. (Rutaceae). Growing evidence suggests the partial function of hesperetin in HF treatment. A hesperetin derivative (HD) was synthesized in our laboratory to increase the bioavailability and the water solubility of hesperetin. In this study, we detected the functions of HD in a mouse model of CCl4 -induced HF and transforming growth factor-β1-stimulated HSC-T6 cells, in vivo and in vitro. HD reduced histological damage and CCl4 -induced HF. Moreover, HD interference was associated with the activation of indicators in HSC-T6 cells, showing that HD is involved in HSCs activation in HF. Mechanistically, the Hedgehog pathway is involved in the HD treatment of HF, and HD may attenuate the aberrant expression of patched1. In conclusion, the studies indicate that HD may function as a potential antifibrotic Traditional Chinese Medicine monomer in HF therapy.
Collapse
Affiliation(s)
- Sai Zhu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xin Chen
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Si-Yu Chen
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ao Wang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Sha Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yuan-Yuan Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Miao Cheng
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Jin Xu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
32
|
Down-Regulating the High Level of 17-Beta-Hydroxysteroid Dehydrogenase 13 Plays a Therapeutic Role for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23105544. [PMID: 35628360 PMCID: PMC9146021 DOI: 10.3390/ijms23105544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and there is no specific drug to treat it. Recent results showed that 17-beta-hydroxysteroid dehydrogenase type 13 (HSD17B13) is associated with liver diseases, but these conclusions are controversial. Here, we showed that HSD17B13 was more highly expressed in the livers of NAFLD patients, and high expression was induced in the livers of murine NAFLD models and cultural hepatocytes treated using various etiologies. The high HSD17B13 expression in the hepatocytes facilitated the progression of NAFLD by directly stabilizing the intracellular lipid drops and by indirectly activating hepatic stellate cells. When HSD17B13 was overexpressed in the liver, it aggravated liver steatosis and fibrosis in mice fed with a high-fat diet, while down-regulated the high expression of HSD17B13 by short hairpin RNAs produced a therapeutic effect in the NAFLD mice. We concluded that high HSD17B13 expression is a good target for the development of drugs to treat NAFLD.
Collapse
|
33
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
34
|
Song Z, Liu X, Zhang W, Luo Y, Xiao H, Liu Y, Dai G, Hong J, Li A. Ruxolitinib suppresses liver fibrosis progression and accelerates fibrosis reversal via selectively targeting Janus kinase 1/2. J Transl Med 2022; 20:157. [PMID: 35382859 PMCID: PMC8981941 DOI: 10.1186/s12967-022-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND JAK1 and JAK2 have been implicated in fibrosis and cancer as a fibroblast-related marker; however, their role in liver fibrosis has not been elucidated. Here, we aim to determine the effect and underlying mechanism of JAK1/2 inhibition on liver fibrosis and hepatic stellate cells (HSCs) and further explore the therapeutic efficacy of Ruxolitinib, a JAK1/2 selective inhibitor, on preventing and reversing liver fibrosis in mice. METHODS Immunohistochemistry staining of JAK1 and JAK2 were performed on liver tissue in mice with hepatic fibrosis and human liver tissue microarray of liver cirrhosis and liver cancer. LX-2 cells treated with specific siRNA of JAK1 and JAK2 were used to analysis activation, proliferation and migration of HSCs regulated by JAK1/2. The effects of Ruxolitinib (JAK1/2 inhibitor) on liver fibrosis were studied in LX-2 cells and two progressive and reversible fibrosis animal models (carbon tetrachloride (CCl4), Thioacetamide (TAA)). RESULTS We found that JAK1/2 expression was positively correlated with the progression of HCC in humans and the levels of liver fibrosis in mice. Silencing of JAK1/2 down-regulated their downstream signaling and inhibited proliferation, migration, and activation of HSCs in vitro, while Ruxolitinib had similar effects on HSCs. Importantly, Ruxolitinib significantly attenuated fibrosis progression, improved cell damage, and accelerated fibrosis reversal in the liver of mice treated with CCl4 or TAA. CONCLUSIONS JAK1/2 regulates the function of HSCs and plays an essential role in liver fibrosis and HCC development. Its inhibitor, Ruxolitinib, may be an effective drug for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Zhenghui Song
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinhui Liu
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Wan Zhang
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yue Luo
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yun Liu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, China
| | - Guanqi Dai
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Aimin Li
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shiliugang Road, Guangzhou, 510315, Guangdong, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W, Wang C, Hang H, Wang H. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. eLife 2022; 11:71880. [PMID: 35191375 PMCID: PMC8893721 DOI: 10.7554/elife.71880] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacologic perturbation projects, such as Connectivity Map (CMap) and Library of Integrated Network-based Cellular Signatures (LINCS), have produced many perturbed expression data, providing enormous opportunities for computational therapeutic discovery. However, there is no consensus on which methodologies and parameters are the most optimal to conduct such analysis. Aiming to fill this gap, new benchmarking standards were developed to quantitatively evaluate drug retrieval performance. Investigations of potential factors influencing drug retrieval were conducted based on these standards. As a result, we determined an optimal approach for LINCS data-based therapeutic discovery. With this approach, homoharringtonine (HHT) was identified to be a candidate agent with potential therapeutic and preventive effects on liver cancer. The antitumor and antifibrotic activity of HHT was validated experimentally using subcutaneous xenograft tumor model and carbon tetrachloride (CCL4)-induced liver fibrosis model, demonstrating the reliability of the prediction results. In summary, our findings will not only impact the future applications of LINCS data but also offer new opportunities for therapeutic intervention of liver cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hailin Zhang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Mengnuo Chen
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Siying Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Ruolan Qian
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Linmeng Zhang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Huang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxin Qin
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Cun Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hualian Hang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Higo H, Ohashi K, Tomida S, Okawa S, Yamamoto H, Sugimoto S, Senoo S, Makimoto G, Ninomiya K, Nakasuka T, Nishii K, Taniguchi A, Kubo T, Ichihara E, Hotta K, Miyahara N, Maeda Y, Toyooka S, Kiura K. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res 2022; 23:20. [PMID: 35130915 PMCID: PMC8822646 DOI: 10.1186/s12931-022-01940-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tyrosine kinase activation plays an important role in the progression of pulmonary fibrosis. In this study, we analyzed the expression of 612 kinase-coding and cancer-related genes using next-generation sequencing to identify potential therapeutic targets for idiopathic pulmonary fibrosis (IPF). Methods Thirteen samples from five patients with IPF (Cases 1–5) and eight samples from four patients without IPF (control) were included in this study. Six of the thirteen samples were obtained from different lung segments of a single patient who underwent bilateral pneumonectomy. Gene expression analysis of IPF lung tissue samples (n = 13) and control samples (n = 8) was performed using SureSelect RNA Human Kinome Kit. The expression of the selected genes was further confirmed at the protein level by immunohistochemistry (IHC). Results Gene expression analysis revealed a correlation between the gene expression signatures and the degree of fibrosis, as assessed by Ashcroft score. In addition, the expression analysis indicated a stronger heterogeneity among the IPF lung samples than among the control lung samples. In the integrated analysis of the 21 samples, DCLK1 and STK33 were found to be upregulated in IPF lung samples compared to control lung samples. However, the top most upregulated genes were distinct in individual cases. DCLK1, PDK4, and ERBB4 were upregulated in IPF case 1, whereas STK33, PIM2, and SYK were upregulated in IPF case 2. IHC revealed that these proteins were expressed in the epithelial layer of the fibrotic lesions. Conclusions We performed a comprehensive kinase expression analysis to explore the potential therapeutic targets for IPF. We found that DCLK1 and STK33 may serve as potential candidate targets for molecular targeted therapy of IPF. In addition, PDK4, ERBB4, PIM2, and SYK might also serve as personalized therapeutic targets of IPF. Additional large-scale studies are warranted to develop personalized therapies for patients with IPF. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01940-y.
Collapse
Affiliation(s)
- Hisao Higo
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | | | - Satoru Senoo
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Go Makimoto
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
37
|
MOU WL, CHEN SR, WU ZT, HU LH, ZHANG JY, CHANG HJ, ZHOU H, LIU Y. LPS-TLR4/MD-2–TNF-α signaling mediates alcohol-induced liver fibrosis in rats. J Toxicol Pathol 2022; 35:193-203. [PMID: 35516842 PMCID: PMC9018403 DOI: 10.1293/tox.2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wen-Ling MOU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Shi-ru CHEN
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Zhen-ting WU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Li-hua HU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Ji-ye ZHANG
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Hong-jie CHANG
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Hang ZHOU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| | - Ying LIU
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin 150000, China
| |
Collapse
|
38
|
Li F, Li L, Zhang J, Yang X, Liu Y. Histone methyltransferase DOT1L mediates the TGF-β1/Smad3 signaling pathway through epigenetic modification of SYK in myocardial infarction. Hum Cell 2022; 35:98-110. [PMID: 34635982 DOI: 10.1007/s13577-021-00625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Myocardial infarction (MI) represents the most critical condition in coronary artery disease, and the fibrotic process, detrimental to optimal recovery, often sustains. In the present work, we assessed whether suppression of disruptor of telomeric silencing 1-like (DOT1L) could alleviate fibrosis in vivo and cardiac fibroblast (CFS) proliferation in vitro, and elucidated the possible mechanism involved in these events. After left coronary artery ligation, we found that the MI mice exhibited a decrease in cardiac function, along with evident MI and myocardial fibrosis. In addition, AngII increased CFS viability and migration, and enhanced the expression of fibrotic proteins. Inhibition of DOT1L ameliorated proliferation and fibrosis in CFS. Furthermore, DOT1L promoted the expression of spleen tyrosine kinase (SYK) by increasing the H3K79me2 modification of the SYK promoter. SYK upregulation reversed the inhibitory effect of DOT1L knockdown on CFS proliferation and fibrosis by activating the TGF-β1/Smad3 signaling. SYK also mitigated the ameliorative effect of DOT1L knockdown on myocardial injury and fibrosis caused by MI in vivo. In conclusion, these data indicated that DOT1L depletion might be a promising therapeutic target for fibrosis in MI.
Collapse
Affiliation(s)
- Fei Li
- Department of Cardiology, Yantai Mountain Hospital, Yantai, 264001, Shandong, People's Republic of China
| | - Lei Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jiacheng Zhang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xuesong Yang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yang Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
39
|
Zhu H, Zhao H, Xu S, Zhang Y, Ding Y, Li J, Huang C, Ma T. Sennoside A alleviates inflammatory responses by inhibiting the hypermethylation of SOCS1 in CCl 4-induced liver fibrosis. Pharmacol Res 2021; 174:105926. [PMID: 34619344 DOI: 10.1016/j.phrs.2021.105926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the consequence of chronic liver injury and is a major challenge to global health. However, successful therapy for liver fibrosis is still lacking. Sennoside A (SA), a commonly used clinical stimulant laxative, is reported to improve hepatic disease, but the underlying mechanisms remain largely elusive. Here, we show for the first time that SA enhanced suppressor of cytokine signaling 1 (SOCS1) expression in a DNA methyltransferase 1 (DNMT1)-dependent manner and thereby attenuated liver fibrosis. Consistently, SA inhibited the expression of the liver fibrogenesis markers α-smooth muscle actin (α-SMA) and type I collagen alpha-1 (Col1α1) and suppressed inflammatory responses in vivo and in vitro. Coculture experiments with macrophages/hepatic stellate cells (HSCs) revealed that SA suppressed HSC proliferation by downregulating proinflammatory cytokines in macrophages. Mechanically, SA promoted the aberrant expression of SOCS1 in liver fibrosis. However, blocking SOCS1 expression weakened the inhibitory effect of SA on HSC proliferation, indicating that SOCS1 may play an important role in mediating the antifibrotic effect of SA. Furthermore, SA inhibited DNMT1-mediated SOCS1 and reduced HSC proliferation by inhibiting inflammatory responses in carbon tetrachloride (CCl4) -induced liver fibrosis.
Collapse
Affiliation(s)
- Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Songbing Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuhao Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
40
|
Hu Q, Liu M, You Y, Zhou G, Chen Y, Yuan H, Xie L, Han S, Zhu K. Dual inhibition of reactive oxygen species and spleen tyrosine kinase as a therapeutic strategy in liver fibrosis. Free Radic Biol Med 2021; 175:193-205. [PMID: 34492311 DOI: 10.1016/j.freeradbiomed.2021.08.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) play key roles in liver fibrosis (LF) and hepatocellular carcinoma (HCC). We previously reported that spleen tyrosine kinase (SYK) is critical for HSCs activation, however, the mechanisms are insufficiently understood. In the present study, we found that SYK facilitated autophagy to promote HSCs activation by enhancing reactive oxygen species (ROS) generation. However, SYK inhibitor GS-9973 could efficiently reduce HSCs ROS generation in vitro but not in vivo. Mechanistically, hepatocytes (HCs) would release ROS outside and then diffuse into HSCs to promote autophagy and activation in vitro in the context of inflammation. We then further examined the ROS contents in liver sections and primary liver cells of carbon tetrachloride (CCl4) induced mice treated with or without different doses of Silybin, a natural compound characterized by a well-established antioxidant and hepatoprotective properties, and found that ROS intensities in both liver sections and their deprived primary cells were efficiently inhibited in a dose-dependent fashion. Lastly, we evaluated the rational combination of Silybin and GS-9973 in the treatment of CCl4 induced mice and found that this combination is well tolerated and acts synergistically against HSCs activity, LF and HCC. The combinational use of Silybin and GS-9973 could be a promising therapeutic strategy in patients suffering from LF and even HCC.
Collapse
Affiliation(s)
- Qiaoting Hu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| | - Yundan You
- Department of Emergency Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Guo Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Shisong Han
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
41
|
Yang X, Cao N, Chen L, Liu L, Zhang M, Cao Y. Suppression of Cell Tumorigenicity by Non-neural Pro-differentiation Factors via Inhibition of Neural Property in Tumorigenic Cells. Front Cell Dev Biol 2021; 9:714383. [PMID: 34595169 PMCID: PMC8476888 DOI: 10.3389/fcell.2021.714383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Our studies have demonstrated that cell tumorigenicity and pluripotent differentiation potential stem from neural stemness or a neural ground state, which is defined by a regulatory network of higher levels of machineries for basic cell physiological functions, including cell cycle, ribosome biogenesis, protein translation, spliceosome, epigenetic modification factors, reprogramming factors, etc., in addition to the neural stemness specific factors. These machineries and neural stemness factors mostly play cancer-promoting roles. It can be deduced that differentiation requires the repression of neural ground state and causes the reduction or loss of neural ground state and thus tumorigenicity in tumorigenic cells. Formerly, we showed that neuronal differentiation led to reduced tumorigenicity in tumorigenic cells. In the present study, we show that non-neural pro-differentiation factors, such as GATA3, HNF4A, HHEX, and FOXA3 that specify mesodermal or/and endodermal tissues during vertebrate embryogenesis, suppress tumorigenicity via repression of neural stemness and promotion of non-neural property in tumorigenic cells. Mechanistically, these transcription factors repress the transcription of neural enriched genes and meanwhile activate genes that specify non-neural properties via direct binding to the promoters of these genes. We also show that combined expression of HHEX and FOXA3 suppresses tumorigenesis effectively in the AOM/DSS model of colitis-associated cancer. We suggest that targeting the property of neural stemness could be an effective strategy for cancer therapy.
Collapse
Affiliation(s)
- Xiaoli Yang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Ning Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Lu Chen
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Min Zhang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Luci C, Vieira E, Bourinet M, Rousseau D, Bonnafous S, Patouraux S, Lefevre L, Larbret F, Prod’homme V, Iannelli A, Tran A, Anty R, Bailly-Maitre B, Deckert M, Gual P. SYK-3BP2 Pathway Activity in Parenchymal and Myeloid Cells Is a Key Pathogenic Factor in Metabolic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2021; 13:173-191. [PMID: 34411785 PMCID: PMC8593618 DOI: 10.1016/j.jcmgh.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Spleen tyrosine kinase (SYK) signaling pathway regulates critical processes in innate immunity, but its role in parenchymal cells remains elusive in chronic liver diseases. We investigate the relative contribution of SYK and its substrate c-Abl Src homology 3 domain-binding protein-2 (3BP2) in both myeloid cells and hepatocytes in the onset of metabolic steatohepatitis. METHODS Hepatic SYK-3BP2 pathway was evaluated in mouse models of metabolic-associated fatty liver diseases (MAFLD) and in obese patients with biopsy-proven MAFLD (n = 33). Its role in liver complications was evaluated in Sh3bp2 KO and myeloid-specific Syk KO mice challenged with methionine and choline deficient diet and in homozygous Sh3bp2KI/KI mice with and without SYK expression in myeloid cells. RESULTS Here we report that hepatic expression of 3BP2 and SYK correlated with metabolic steatohepatitis severity in mice. 3BP2 deficiency and SYK deletion in myeloid cells mediated the same protective effects on liver inflammation, injury, and fibrosis priming upon diet-induced steatohepatitis. In primary hepatocytes, the targeting of 3BP2 or SYK strongly decreased the lipopolysaccharide-mediated inflammatory mediator expression and 3BP2-regulated SYK expression. In homozygous Sh3bp2KI/KI mice, the chronic inflammation mediated by the proteasome-resistant 3BP2 mutant promoted severe hepatitis and liver fibrosis with augmented liver SYK expression. In these mice, the deletion of SYK in myeloid cells was sufficient to prevent these liver lesions. The hepatic expression of SYK is also up-regulated with metabolic steatohepatitis and correlates with liver macrophages in biopsy-proven MAFLD patients. CONCLUSIONS Collectively, these data suggest an important role for the SYK-3BP2 pathway in the pathogenesis of chronic liver inflammatory diseases and highlight its targeting in hepatocytes and myeloid cells as a potential strategy to treat metabolic steatohepatitis.
Collapse
Affiliation(s)
- Carmelo Luci
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Elodie Vieira
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Manon Bourinet
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Lauren Lefevre
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | | | | | | | - Albert Tran
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | - Marcel Deckert
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Marcel Deckert, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Microenvironment, signaling and cancer", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France.
| | - Philippe Gual
- Université Côte d’Azur, INSERM, U1065, C3M, Nice, France,Correspondence Address correspondence to: Philippe Gual, PhD, Inserm UMR1065/C3M, Bâtiment Universitaire ARCHIMED, Team "Chronic liver diseases associated with obesity and alcohol", 151 route Saint Antoine de Ginestière, BP 2 3194, 06204 Nice, France. fax: +33 4 89 06 42 60.
| |
Collapse
|
43
|
Wu C, Cheng D, Peng Y, Li Y, Fu C, Wang Y, Fu L, Peng S, Ni X. Hepatic BRD4 Is Upregulated in Liver Fibrosis of Various Etiologies and Positively Correlated to Fibrotic Severity. Front Med (Lausanne) 2021; 8:683506. [PMID: 34336890 PMCID: PMC8317578 DOI: 10.3389/fmed.2021.683506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has been implicated to play a regulatory role in fibrogenic gene expression in animal models of liver fibrosis. The potential role of BRD4 in liver fibrosis in humans remains unclear. We sought to investigate the expression and cellular localization of BRD4 in fibrotic liver tissues. Human liver tissues were collected from healthy individuals and patients with liver fibrosis of various etiologies. RNA-seq showed that hepatic BRD4 mRNA was elevated in patients with liver fibrosis compared with that in healthy controls. Subsequent multiple manipulations such as western blotting, real-time quantitative polymerase chain reaction, and dual immunofluorescence analysis confirmed the abnormal elevation of the BRD4 expression in liver fibrosis of various etiologies compared to healthy controls. BRD4 expression was positively correlated with the severity of liver fibrosis, and also correlated with the serum levels of aspartate aminotransferase and total bilirubin. Moreover, the expression of C-X-C motif chemokine ligand 6 (CXCL6), a factor interplayed with BRD4, was increased in hepatic tissues of the patients with liver fibrosis. Its expression level was positively correlated with BRD4 level. BRD4 is up-regulated in liver fibrosis, regardless of etiology, and its increased expression is positively correlated with higher degrees of liver fibrosis. Our data indicate that BRD4 play a critical role in the progress of liver fibrosis, and it holds promise as a potential target for intervention of liver fibrosis.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Da Cheng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Yanghui Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China.,International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
44
|
Qu C, He L, Yao N, Li J, Jiang Y, Li B, Peng S, Hu K, Chen D, Chen G, Huang W, Cao M, Fan J, Yuan Y, Ye W, Hong J. Myofibroblast-Specific Msi2 Knockout Inhibits HCC Progression in a Mouse Model. Hepatology 2021; 74:458-473. [PMID: 33609283 DOI: 10.1002/hep.31754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Myofibroblasts play a pivotal role in the development and progression of HCC. Here, we aimed to explore the role and mechanism of myofibroblast Musashi RNA binding protein 2 (MSI2) in HCC progression. APPROACH AND RESULTS Myofibroblast infiltration and collagen deposition were detected and assessed in the tissues from 117 patients with HCC. Transgenic mice (Msi2ΔCol1a1 ) with floxed Msi2 allele and collagen type I alpha 1 chain (Col1a1)-ligand inducible Cre recombinases (CreER) were constructed to generate a myofibroblast-specific Msi2 knockout model. Mouse HCC cells were orthotopically transplanted into the Msi2ΔCol1a1 or the control mice (Msi2F/F ). We found that the deposition of collagen fibers, the main product of myofibroblasts, predicted a poor prognosis for HCC; meanwhile, we detected high MSI2 expression in the peritumoral infiltrated myofibroblasts. Conditional deletion of Msi2 in myofibroblasts significantly inhibited the growth of orthotopically implanted HCC, reduced both intrahepatic and lung metastasis, and prolonged the overall survival of tumor-bearing mice (P = 0.002). In vitro analysis demonstrated that myofibroblasts promoted cell proliferation, invasion, and epithelial-mesenchymal transformation of HCC cells, whereas Msi2 deletion in myofibroblasts reversed these effects. Mechanically, Msi2 knockout decreased myofibroblast-derived IL-6 and IL-11 secretion by inhibiting the extracellular signal-regulated kinase 1/2 pathway, and thus attenuated the cancer stem cell-promoting effect of myofibroblasts. Interestingly, we found that the simultaneous knockout of Msi2 in myofibroblasts and knockdown of Msi2 in HCC cells could not further attenuate the implanted HCC progression. CONCLUSIONS Myofibroblast-specific Msi2 knockout abrogated the tumor-promoting function of myofibroblasts and inhibited HCC progression in mouse models. Targeting myofibroblast MSI2 expression may therefore prove to be a therapeutic strategy for HCC treatment in the future.
Collapse
Affiliation(s)
- Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Chen
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Fan
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Benedé-Ubieto R, Estévez-Vázquez O, Guo F, Chen C, Singh Y, Nakaya HI, Gómez Del Moral M, Lamas-Paz A, Morán L, López-Alcántara N, Reissing J, Bruns T, Avila MA, Santamaría E, Mazariegos MS, Woitok MM, Haas U, Zheng K, Juárez I, Martín-Villa JM, Asensio I, Vaquero J, Peligros MI, Argemi J, Bataller R, Ampuero J, Romero Gómez M, Trautwein C, Liedtke C, Bañares R, Cubero FJ, Nevzorova YA. An Experimental DUAL Model of Advanced Liver Damage. Hepatol Commun 2021; 5:1051-1068. [PMID: 34141989 PMCID: PMC8183170 DOI: 10.1002/hep4.1698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals exhibiting an intermediate alcohol drinking pattern in conjunction with signs of metabolic risk present clinical features of both alcohol-associated and metabolic-associated fatty liver diseases. However, such combination remains an unexplored area of great interest, given the increasing number of patients affected. In the present study, we aimed to develop a preclinical DUAL (alcohol-associated liver disease plus metabolic-associated fatty liver disease) model in mice. C57BL/6 mice received 10% vol/vol alcohol in sweetened drinking water in combination with a Western diet for 10, 23, and 52 weeks (DUAL model). Animals fed with DUAL diet elicited a significant increase in body mass index accompanied by a pronounced hypertrophy of adipocytes, hypercholesterolemia, and hyperglycemia. Significant liver damage was characterized by elevated plasma alanine aminotransferase and lactate dehydrogenase levels, extensive hepatomegaly, hepatocyte enlargement, ballooning, steatosis, hepatic cell death, and compensatory proliferation. Notably, DUAL animals developed lobular inflammation and advanced hepatic fibrosis. Sequentially, bridging cirrhotic changes were frequently observed after 12 months. Bulk RNA-sequencing analysis indicated that dysregulated molecular pathways in DUAL mice were similar to those of patients with steatohepatitis. Conclusion: Our DUAL model is characterized by obesity, glucose intolerance, liver damage, prominent steatohepatitis and fibrosis, as well as inflammation and fibrosis in white adipose tissue. Altogether, the DUAL model mimics all histological, metabolic, and transcriptomic gene signatures of human advanced steatohepatitis, and therefore serves as a preclinical tool for the development of therapeutic targets.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Physiology, Genetics and MicrobiologyFaculty of BiologyComplutense University MadridMadridSpain.,Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Olga Estévez-Vázquez
- Department of Physiology, Genetics and MicrobiologyFaculty of BiologyComplutense University MadridMadridSpain.,Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Feifei Guo
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Youvika Singh
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil.,Scientific Platform PasteurUniversity of São PauloSão PauloBrazil
| | | | - Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,Institute for Endocrinology and DiabetesCenter of Brain Behavior & MetabolismUniversity of LübeckLübeckGermany
| | - Johanna Reissing
- Department of Internal Medicine IIIUniversity Hospital RWTHAachenGermany
| | - Tony Bruns
- Department of Internal Medicine IIIUniversity Hospital RWTHAachenGermany
| | - Matías A Avila
- Hepatology ProgramCIMAUniversity of NavarraPamplonaSpain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Instituto de Investigaciones Sanitarias de NavarraPamplonaSpain
| | - Eva Santamaría
- Hepatology ProgramCIMAUniversity of NavarraPamplonaSpain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain
| | - Marina S Mazariegos
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | | | - Ute Haas
- Department of Internal Medicine IIIUniversity Hospital RWTHAachenGermany
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,12 de Octubre Health Research InstituteMadridSpain.,Department of AnesthesiologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Ignacio Juárez
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain
| | - José Manuel Martín-Villa
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
| | - Iris Asensio
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain.,Servicio de Aparato DigestivoHospital General Universitario Gregorio MarañónMadridSpain
| | - Javier Vaquero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain.,Servicio de Aparato DigestivoHospital General Universitario Gregorio MarañónMadridSpain
| | - Maria Isabel Peligros
- Servicio de Anatomía PatológicaHospital General Universitario Gregorio MarañónMadridSpain
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and NutritionCenter for Liver DiseasesUniversity of PittsburghPittsburghPAUSA.,Liver UnitClinica Universidad de Navarra, University of NavarraPamplonaSpain.,Hepatology ProgramCentro de Investigación Médica AplicadaUniversidad de NavarraPamplonaSpain
| | - Ramón Bataller
- Division of Gastroenterology, Hepatology and NutritionCenter for Liver DiseasesUniversity of PittsburghPittsburghPAUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Javier Ampuero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Biomedical Research Networking Center in Hepatic and Digestive DiseasesInstituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío de SevillaUniversity of SevillaSevillaSpain
| | - Manuel Romero Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Biomedical Research Networking Center in Hepatic and Digestive DiseasesInstituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío de SevillaUniversity of SevillaSevillaSpain
| | | | - Christian Liedtke
- Department of Internal Medicine IIIUniversity Hospital RWTHAachenGermany
| | - Rafael Bañares
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain.,Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain.,Servicio de Aparato DigestivoHospital General Universitario Gregorio MarañónMadridSpain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,12 de Octubre Health Research InstituteMadridSpain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENTComplutense University School of MedicineMadridSpain.,Department of Internal Medicine IIIUniversity Hospital RWTHAachenGermany.,12 de Octubre Health Research InstituteMadridSpain
| |
Collapse
|
46
|
Zeng B, Liao B, Zhou D, Bai Y, Chen H, Chen B, Zhu Z. [Inhibitory effect of Xinhui citrus fermentation liquor on liver fibrosis in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:588-592. [PMID: 33963720 DOI: 10.12122/j.issn.1673-4254.2021.04.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effect of Xinhui citrus fermentation liquor on liver fibrosis in mice. OBJECTIVE Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4 in 105 male C57BL/6 mice, followed by gavage of 0.1 mL 40% CCl4 olive oil 3 times a week (model group, n=49) or daily gavage of citrus liquor at the dose of 0.26 mL (citrus liquor group, n=56) for 8 weeks. Seven mice receiving only olive oil treatment (0.1 mL, 3 times a week) and another 7 treated with citrus liquor served as the control group. Liver tissues and serum samples were collected from 7 mice in the citrus liquor group and model group each week and from the mice in the two control groups at the 8th week for pathological examination of the liver tissues using HE staining and Sirius red staining and for determination of the biochemical indexes of liver function. OBJECTIVE The mice in the model group showed progressively worsened liver fibrosis with obvious hepatic steatosis, necrosis and inflammatory cell infiltration. These liver pathologies were much ameliorated in citrus liquor group, which showed significantly reduced vacuolation, inflammatory cell infiltration, collagen deposition and the Ishak score of the liver tissue (P < 0.05). Serum levels of cholyglycine, alanine aminotransferase, transglutaminase and alanine aminotransferase were all significantly lower in citrus liquor group than in the model group (P < 0.05). OBJECTIVE Xinhui citrus fermentation liquor has protective effect on the liver and can significantly ameliorate liver fibrosis in mice.
Collapse
Affiliation(s)
- B Zeng
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - B Liao
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - D Zhou
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - Y Bai
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - H Chen
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - B Chen
- Guangdong Xinbaotang Biological Technology Co, Ltd., Jiangmen 529100, China
| | - Z Zhu
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
47
|
Xie C, Wu H, Pan T, Zheng X, Yang X, Zhang G, Lian Y, Lin J, Peng L. A novel panel based on immune infiltration and tumor mutational burden for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:8563-8587. [PMID: 33714200 PMCID: PMC8034943 DOI: 10.18632/aging.202670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/31/2020] [Indexed: 12/30/2022]
Abstract
Tumor mutation burden (TMB) has been associated with prognosis in various malignancies, but it has yet to be elucidated in hepatocellular carcinoma (HCC). We aimed to investigate the prognostic effects of TMB and its relationship with immune infiltration through multiple databases and whole-exome sequencing, so as to establish a panel model capable of predicting prognosis. The results demonstrated that the prognosis of high TMB group was worse than that of low TMB group, with a cutoff TMB value of 4.9. Enrichment analysis demonstrated that differentially expressed genes were mainly related to T cell activation, cell membrane localization and matrix composition. Tumor immune infiltration analysis revealed the infiltrations of Th2, Th17, and Tgd were up-regulated in high TMB group, while those of Tr1, MAIT, and DC were up-regulated in low TMB group. TMB-Infiltration model fit well with the actual survival observation, with a C-index 0.785 (0.700-0.870), which verified in ICGC-LIRI-JP was 0.650 (0.553-0.747). Additionally, these screened immune genes performed well in predicting tumor vascular invasion with a C-index of 0.847 (0.778-0.916). Overall, these results indicated that patients with high mutation frequency of immune-related genes and high TMB were prone to have worse prognosis and relapse after radical treatment.
Collapse
Affiliation(s)
- Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hewei Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Tao Pan
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xingrong Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Genglin Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yunwen Lian
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiaxin Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
48
|
Yu B, Mamedov R, Fuhler GM, Peppelenbosch MP. Drug Discovery in Liver Disease Using Kinome Profiling. Int J Mol Sci 2021; 22:2623. [PMID: 33807722 PMCID: PMC7961955 DOI: 10.3390/ijms22052623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the most important organs, playing critical roles in maintaining biochemical homeostasis. Accordingly, disease of the liver is often debilitating and responsible for untold human misery. As biochemical nexus, with kinases being master regulators of cellular biochemistry, targeting kinase enzymes is an obvious avenue for treating liver disease. Development of such therapy, however, is hampered by the technical difficulty of obtaining comprehensive insight into hepatic kinase activity, a problem further compounded by the often unique aspects of hepatic kinase activities, which makes extrapolations from other systems difficult. This consideration prompted us to review the current state of the art with respect to kinome profiling approaches towards the hepatic kinome. We observe that currently four different approaches are available, all showing significant promise. Hence we postulate that insight into the hepatic kinome will quickly increase, leading to rational kinase-targeted therapy for different liver diseases.
Collapse
Affiliation(s)
| | | | | | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC—University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (B.Y.); (R.M.); (G.M.F.)
| |
Collapse
|
49
|
Jiang Y, Chen S, Li Q, Liang J, Lin W, Li J, Liu Z, Wen M, Cao M, Hong J. TANK-Binding Kinase 1 (TBK1) Serves as a Potential Target for Hepatocellular Carcinoma by Enhancing Tumor Immune Infiltration. Front Immunol 2021; 12:612139. [PMID: 33679751 PMCID: PMC7930497 DOI: 10.3389/fimmu.2021.612139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background Numerous cancer types present the aberrant TANK-binding kinase 1 (TBK1) expression, which plays an important role in driving inflammation and innate immunity. However, the prognostic role of TBK1 and its relationship with immune cell infiltration in hepatocellular carcinoma (HCC) remain unclear. Methods The expression and prognostic value of TBK1 was analyzed by Tumor Immune Estimation Resource (TIMER), Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and further confirmed in the present cohort of patients with HCC. The association between TBK1 and HCC immune infiltrates, and its potential mechanism were investigated via analyses of the Tumor Immune Estimation Resource, tumor-immune system interactions database (TISIDB), CIBERSORT, STRING, and Metascape. The effect of TBK1 on immune infiltrates and the therapeutic value of targeting TBK1 were further investigated in a HCC mouse model by treatment with a TBK1 antagonist. Results The level of TBK1 expression in HCC was higher than that measured in normal tissues, and associated with poorer overall survival (GEPIA: hazard ratio [HR]=1.80, P=0.038; Kaplan-Meier plotter: HR=1.87, P<0.001; CPTAC: HR=2.23, P=0.007; Our cohort: HR=2.92, P=0.002). In addition, high TBK1 expression was found in HCC with advanced TNM stage and identified as an independent poor prognostic factor for overall survival among patients with HCC. In terms of immune infiltration, tumor tissues from HCC patients with high TBK1 expression had a low proportion of CD8+ T cells, and TBK1 expression did not show prognostic value in HCC patients with enriched CD8+ T cells. Furthermore, TBK1 expression was positively correlated with the markers of T cell exhaustion and immunosuppressive cells in the HCC microenvironment. Mechanistically, the promotion of HCC immunosuppression by TBK1 was involved in the regulation of inflammatory cytokines. In vivo experiments revealed that treatment with a TBK1 antagonist delayed HCC growth by increasing the number of tumor-infiltrating CD8+ T cells. Conclusions The up-regulated expression of TBK1 may be useful in predicting poor prognosis of patients with HCC. In addition, TBK1, which promotes the HCC immunosuppressive microenvironment, may be a potential immunotherapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Peking University, Shenzhen, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Junjie Liang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weida Lin
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhilong Liu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingbo Wen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Lin HY, Wang X, Tseng TS, Kao YH, Fang Z, Molina PE, Cheng CH, Berglund AE, Eeles RA, Muir KR, Pashayan N, Haiman CA, Brenner H, Consortium TP, Park JY. Alcohol Intake and Alcohol-SNP Interactions Associated with Prostate Cancer Aggressiveness. J Clin Med 2021; 10:553. [PMID: 33540941 PMCID: PMC7867322 DOI: 10.3390/jcm10030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Excessive alcohol intake is a well-known modifiable risk factor for many cancers. It is still unclear whether genetic variants or single nucleotide polymorphisms (SNPs) can modify alcohol intake's impact on prostate cancer (PCa) aggressiveness. The objective is to test the alcohol-SNP interactions of the 7501 SNPs in the four pathways (angiogenesis, mitochondria, miRNA, and androgen metabolism-related pathways) associated with PCa aggressiveness. We evaluated the impacts of three excessive alcohol intake behaviors in 3306 PCa patients with European ancestry from the PCa Consortium. We tested the alcohol-SNP interactions using logistic models with the discovery-validation study design. All three excessive alcohol intake behaviors were not significantly associated with PCa aggressiveness. However, the interactions of excessive alcohol intake and three SNPs (rs13107662 [CAMK2D, p = 6.2 × 10-6], rs9907521 [PRKCA, p = 7.1 × 10-5], and rs11925452 [ROBO1, p = 8.2 × 10-4]) were significantly associated with PCa aggressiveness. These alcohol-SNP interactions revealed contrasting effects of excessive alcohol intake on PCa aggressiveness according to the genotypes in the identified SNPs. We identified PCa patients with the rs13107662 (CAMK2D) AA genotype, the rs11925452 (ROBO1) AA genotype, and the rs9907521 (PRKCA) AG genotype were more vulnerable to excessive alcohol intake for developing aggressive PCa. Our findings support that the impact of excessive alcohol intake on PCa aggressiveness was varied by the selected genetic profiles.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xinnan Wang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tung-Sung Tseng
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yu-Hsiang Kao
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Kenneth R Muir
- Division of Population Health, Health Services Research, and Primary Care, University of Manchester, Oxford Road, Manchester, M139PT, UK
| | - Nora Pashayan
- Department of Applied Health Research, University College London, WC1E 7HB, London, UK
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90015, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - The Practical Consortium
- The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (PRACTICAL, http://practical.icr.ac.uk/), London SM2 5NG, UK. Additional members from The PRACTICAL Consortium were provided in the Supplement
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|