1
|
Zhang J, Zhao Y, Wu S, Han M, Gao L, Yang K, Chen H, Wang C, Xu G. Mechanosensing by Piezo1 in gastric ghrelin cells contributes to hepatic lipid homeostasis in mice. Sci Signal 2024; 17:eadq9463. [PMID: 39436995 DOI: 10.1126/scisignal.adq9463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Ghrelin is an orexigenic peptide released by gastric ghrelin cells that contributes to obesity and hepatic steatosis. The mechanosensitive ion channel Piezo1 in gastric ghrelin cells inhibits the synthesis and secretion of ghrelin in response to gastric mechanical stretch. We sought to modulate hepatic lipid metabolism by manipulating Piezo1 in gastric ghrelin cells. Mice with a ghrelin cell-specific deficiency of Piezo1 (Ghrl-Piezo1-/-) had hyperghrelinemia and hepatic steatosis when fed a low-fat or high-fat diet. In these mice, hepatic lipid accumulation was associated with changes in gene expression and in protein abundance and activity expected to increase hepatic fatty acid synthesis and decrease lipid β-oxidation. Pharmacological inhibition of the ghrelin receptor improved hepatic steatosis in Ghrl-Piezo1-/- mice, thus confirming that the phenotype of these mice was due to overproduction of ghrelin caused by inactivation of Piezo1. Gastric implantation of silicone beads to induce mechanical stretch of the stomach inhibited ghrelin synthesis and secretion, thereby helping to suppress fatty liver development induced by a high-fat diet in wild-type mice but not in Ghrl-Piezo1-/- mice. Our study elucidates the mechanism by which Piezo1 in gastric ghrelin cells regulate hepatic lipid accumulation, providing insights into potential treatments for fatty liver.
Collapse
Affiliation(s)
- Jinshan Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Shaohong Wu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Mengxue Han
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Ke Yang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Hui Chen
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, 510632 Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang Z, Su D, Lai M, Song Y, Li H, Yang M, Zhu G, Liu H, Ai Z. New antidepressant mechanism of Yueju Pill: Increasing ghrelin level by inhibiting gastric mTOR/S6K signaling pathway and sensitizing hippocampal GHS-R. Heliyon 2024; 10:e37038. [PMID: 39296021 PMCID: PMC11407933 DOI: 10.1016/j.heliyon.2024.e37038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aim Yueju Pill (YJ) not only has good antidepressant effect but also can effectively treat digestive system diseases. However,it remains unclear whether the mechanism of antidepressant action of YJ is related to the peripheral digestive system. The purpose of this study was to elucidate the antidepressant mechanism of YJ on ghrelin level based on gastric mTOR/S6K signal pathway and sensitized hippocampal Ghrelin/GHS-R system in CUMS mice. Experimental procedure The depression model was induced by chronic unpredictable mild stress (CUMS) and social isolation. The antidepressant effect of YJ was observed by behavioral experiment and hemodynamic experiments. Ghrelin levels in in hippocampus and blood were measured by Elisa kit, and the mRNA of ghrelin in mice stomach was measured by Real-time Quantitative PCR (RT-qPCR). The activation level of gastric mTOR/S6K signal pathway was detected by Western Blot (WB). Rapamycin (Rapa) and L-Leucine (L-Leu) were used to verify the effects of YJ on the synthesis and release of ghrelin. The activity of GHS-R in hippocampus was observed by immunofluorescence. Hippocampal neuronal damage was evaluated by HE staining and Nissl staining. The level of central neurotransmitter was measured by liquid chromatograph mass spectrometer (LC-MS). Results and conclusion YJ ameliorates CUMS-induced depressive-like behavior by inhibiting the gastric mTOR/S6K signaling pathway and increasing GHR expression in the mouse stomach. However, these effects of YJ could be resisted by L-Leu (a mTOR receptor agonist). Further studies have shown that YJ can sensitize the Ghrelin/GHS-R system in the hippocampus, with significant neuroprotective effects, and is also involved in regulating the levels of key neurotransmitters (5-hydroxytryptamine, Dopamine and γ-aminobutyric acid) in depressive-like states.
Collapse
Affiliation(s)
- Zhentao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Meixizi Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Hong Liu
- Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| |
Collapse
|
3
|
Zhao Y, Liu Y, Tao T, Zhang J, Guo W, Deng H, Han M, Mo H, Tong X, Lin S, Yang J, Zhai H, Wang Q, Hu Z, Zhang W, Chen H, Xu G. Gastric mechanosensitive channel Piezo1 regulates ghrelin production and food intake. Nat Metab 2024; 6:458-472. [PMID: 38467889 DOI: 10.1038/s42255-024-00995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Ghrelin, produced mainly by gastric X/A-like cells, triggers a hunger signal to the central nervous system to stimulate appetite. It remains unclear whether X/A-like cells sense gastric distention and thus regulate ghrelin production. Here we show that PIEZO1 expression in X/A-like cells decreases in patients with obesity when compared to controls, whereas it increases after sleeve gastrectomy. Male and female mice with specific loss of Piezo1 in X/A-like cells exhibit hyperghrelinaemia and hyperphagia and are more susceptible to overweight. These phenotypes are associated with impairment of the gastric CaMKKII/CaMKIV-mTOR signalling pathway. Activation of PIEZO1 by Yoda1 or gastric bead implantation inhibits ghrelin production, decreases energy intake and induces weight loss in mice. Inhibition of ghrelin production by Piezo1 through the CaMKKII/CaMKIV-mTOR pathway can be recapitulated in a ghrelin-producing cell line mHypoE-42. Our study reveals a mechanical regulation of ghrelin production and appetite by PIEZO1 of X/A-like cells, which suggests a promising target for anti-obesity therapy.
Collapse
Affiliation(s)
- Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yang Liu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jinshan Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Handan Deng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Mengxue Han
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaohan Tong
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qimeng Wang
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengfang Hu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Hui Chen
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
4
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
5
|
Liang Y, Yu R, He R, Sun L, Luo C, Feng L, Chen H, Yin Y, Zhang W. Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass. Front Endocrinol (Lausanne) 2022; 13:891379. [PMID: 36082078 PMCID: PMC9445200 DOI: 10.3389/fendo.2022.891379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Roux-en-Y gastric bypass is an effective intervention for metabolic disorder. We aim to elucidate whether ghrelin contributes to weight reduction, and glycemic and lipid control after Roux-en-Y gastric bypass (RYGB). DESIGN Four-week-old WT and Ghrl-TSC1-/- mice were fed high fat diet for 12 weeks before surgery, and continued to be on the same diet for 3 weeks after surgery. Body weight, food intake, glycemic and lipid metabolism were analyzed before and after surgery. RESULTS Gastric and circulating ghrelin was significantly increased in mice with RYGB surgery. Hypoghrelinemia elicited by deletion of TSC1 to activate mTOR signaling in gastric X/A like cells demonstrated no effect on weight reduction, glycemic and lipid control induced by Roux-en-Y gastric bypass surgery. CONCLUSION Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Pathology, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Spann RA, Welch BA, Grayson BE. Ghrelin signalling is dysregulated in male but not female offspring in a rat model of maternal vertical sleeve gastrectomy. J Neuroendocrinol 2021; 33:e12913. [PMID: 33169872 PMCID: PMC7831688 DOI: 10.1111/jne.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Bariatric surgery is the most effective and durable means of treating obesity and its comorbidities. Women make up 80% of those receiving weight loss surgery and they experience improvements in fertility. Unfortunately, bariatric surgery in the context of pregnancy is associated with complications, including growth restriction and small-for-gestational age offspring (SGA). SGA offspring have a greater risk for obesity in adulthood, although the mechanism for this SGA-induced obesity is unknown. In a rat model of vertical sleeve gastrectomy (VSG), we previously identified reductions during pregnancy in ghrelin, a stomach-derived hormone that increases appetite and induces growth hormone secretion. Here, we hypothesise that VSG offspring will have altered ghrelin signalling compared to offspring of Sham dams as a result of reduced in utero ghrelin. At postnatal day (PND)21, male and female offspring of dams that have previously received VSG have an increase in mRNA expression for the ghrelin receptor in the hypothalamus compared to Sham offspring, and the expression of GOAT is lower in females compared to males. Liver expression of endogenous ghrelin antagonist, LEAP2, is elevated at PND60 in VSG offspring. Expression of other genes in the growth hormone system (growth hormone-releasing hormone and growth hormone) were not altered. Plasma levels of total ghrelin at PND21 are also not different between VSG and Sham pups. In adult pups, 1-hour chow intake of male but not female VSG offspring given is less than Sham offspring when given 50 µg kg-1 of exogenous ghrelin by i.p. injection. These results indicate that maternal VSG surgery has an impact on ghrelin signalling in offspring and that, as adults, male VSG offspring may be functionally less responsive to ghrelin than controls.
Collapse
Affiliation(s)
- Redin A. Spann
- Department of Neurobiology and Anatomical Sciences University of Mississippi Medical Center, Jackson, MS 39216
| | - Bradley A. Welch
- Department of Neurobiology and Anatomical Sciences University of Mississippi Medical Center, Jackson, MS 39216
| | - Bernadette E. Grayson
- Department of Neurobiology and Anatomical Sciences University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
7
|
Liang Y, Yin W, Yin Y, Zhang W. Ghrelin Based Therapy of Metabolic Diseases. Curr Med Chem 2021; 28:2565-2576. [PMID: 32538716 PMCID: PMC11213490 DOI: 10.2174/0929867327666200615152804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ghrelin, a unique 28 amino acid peptide hormone secreted by the gastric X/A like cells, is an endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin-GHSR signaling has been found to exert various physiological functions, including stimulation of appetite, regulation of body weight, lipid and glucose metabolism, and increase of gut motility and secretion. This system is thus critical for energy homeostasis. OBJECTIVE The objective of this review is to highlight the strategies of ghrelin-GHSR based intervention for therapy of obesity and its related metabolic diseases. RESULTS Therapeutic strategies of metabolic disorders targeting the ghrelin-GHSR pathway involve neutralization of circulating ghrelin by antibodies and RNA spiegelmers, antagonism of ghrelin receptor by its antagonists and inverse agonists, inhibition of ghrelin O-acyltransferase (GOAT), as well as potential pharmacological approach to decrease ghrelin synthesis and secretion. CONCLUSION Various compounds targeting the ghrelin-GHSR system have shown promising efficacy for the intervention of obesity and relevant metabolic disorders in animals and in vitro. Further clinical trials to validate their efficacy in human beings are urgently needed.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhen Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| |
Collapse
|
8
|
Yin Y, Wang Q, Qi M, Zhang C, Li Z, Zhang W. Ghrelin ameliorates nonalcoholic steatohepatitis induced by chronic low-grade inflammation via blockade of Kupffer cell M1 polarization. J Cell Physiol 2020; 236:5121-5133. [PMID: 33345314 DOI: 10.1002/jcp.30218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Whether the stomach influences the progression of nonalcoholic steatohepatitis (NASH) remains largely unknown. Ghrelin, a 28-amino acid gastric hormone, is critical for the regulation of energy metabolism and inflammation. We investigated whether ghrelin affects the progression of NASH. NASH was induced with lipopolysaccharide (LPS; 240 μg/kg/day) in male C57BL/6J mice with high-fat diet (HFD). Ghrelin (11 nmol/kg/day) was administrated by a subcutaneous mini-pump. Liver steatosis, inflammation, and fibrosis were assessed. Kupffer cells and hepatocytes isolated from wild type, GHSR1a-/- or PPARγ+/- mice were cocultured to determine the cellular and molecular mechanism by which ghrelin ameliorates NASH. A low concentration of LPS activates the Kupffer cells, leading to the development of NASH in mice fed HFD. Ghrelin blocked the progression of NASH induced by LPS via GHSR1a-mediated attenuation of Kupffer cells M1 polarization. GHSR1a was detected in Kupffer cells isolated from wild-type mice but not in GHSR1a deficient animals. Upon binding with ghrelin, internalization of GHSR1a occurred. Ghrelin reduced levels of tumor necrosis factor-α and inducible nitricoxide synthase while increasing Arg1 in Kupffer cells treated with LPS. Ghrelin markedly attenuated the upregulation of lipid accumulation induced by the supernatant of Kupffer cells under both basal and LPS-treated conditions. Deficiency of PPARγ significantly reduced the effect of LPS on the hepatic steatosis in mice and in cultured hepatocytes. Our studies indicate that the stomach may improve the development of NASH via ghrelin. Ghrelin may serve as a marker and therapeutic target for NASH.
Collapse
Affiliation(s)
- Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Qin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Meiyuzhen Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Chen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ziru Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigon, USA
| |
Collapse
|
9
|
Pena-Leon V, Perez-Lois R, Seoane LM. mTOR Pathway is Involved in Energy Homeostasis Regulation as a Part of the Gut-Brain Axis. Int J Mol Sci 2020; 21:ijms21165715. [PMID: 32784967 PMCID: PMC7460813 DOI: 10.3390/ijms21165715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian, or mechanic, target of rapamycin (mTOR) signaling is a crucial factor in the regulation of the energy balance that functions as an energy sensor in the body. The present review explores how the mTOR/S6k intracellular pathway is involved in modulating the production of different signals such as ghrelin and nesfatin-1 in the gastrointestinal tract to regulate food intake and body weight. The role of gastric mTOR signaling in different physiological processes was studied in depth through different genetic models that allow the modulation of mTOR signaling in the stomach and specifically in gastric X/A type cells. It has been described that mTOR signaling in X/A-like gastric cells has a relevant role in the regulation of glucose and lipid homeostasis due to its interaction with different organs such as liver and adipose tissue. These findings highlight possible therapeutic strategies, with the gut–brain axis being one of the most promising targets in the treatment of obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Luisa Maria Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence:
| |
Collapse
|
10
|
Lai Y, Zhao A, Tan M, Yang M, Lin Y, Li S, Song J, Zheng H, Zhu Z, Liu D, Liu C, Li L, Yang G. DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling. EMBO Rep 2020; 21:e49473. [PMID: 31885214 PMCID: PMC7001503 DOI: 10.15252/embr.201949473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
Collapse
Affiliation(s)
- Yerui Lai
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Minghong Tan
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- School of Biomedical SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Yao Lin
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Shengbing Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- Chongqing Key Laboratory for oral Diseases and Biomedical ScienceCollege of StomatologyChongqing Medical UniversityChongqingChina
| | - Hongting Zheng
- Department of EndocrinologyXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiming Zhu
- Department of Hypertension and EndocrinologyDaping HospitalChongqing Institute of HypertensionThird Military Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Ling Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
11
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol 2019; 244:R1-R15. [PMID: 31751295 PMCID: PMC6892457 DOI: 10.1530/joe-19-0399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Alyce M Martin
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Emily W Sun
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Correspondence should be addressed to D J Keating:
| |
Collapse
|
13
|
Mao Z, Yang Q, Yin W, Su W, Lin H, Feng M, Pan K, Yin Y, Zhang W. ETV5 regulates GOAT/ghrelin system in an mTORC1-dependent manner. Mol Cell Endocrinol 2019; 485:72-80. [PMID: 30735697 DOI: 10.1016/j.mce.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Ghrelin, a 28 amino acid peptide hormone, regulates multiple important metabolic functions. Its acylation by ghrelin-O-acyl-transferase enzyme (GOAT) is required for binding to and activating its receptor, the growth hormone secretagogue receptor 1a. Mechanism underlying the regulation of GOAT and acyl ghrelin remains unclear. The present study demonstrated that ETV5 could transactivate GOAT promoter region and increase its expression, leading to subsequent increase in the production of acyl ghrelin. mTORC1 modulated ETV5 expression levels, likely via altering its protein stability, in the murine hypothalamic CLU122 cells and in mice. Moreover, ETV5 mediated the effects of mTORC1 signaling on the expression level of acyl ghrelin. Our study suggests a novel mTORC1-ETV5-GOAT/ghrelin axis in the regulation of ghrelin system. ETV5 may be a key regulator of mTORC1-GOAT/ghrelin axis in ghrelin producing cells and a potential therapeutic target for organism energy imbalance.
Collapse
Affiliation(s)
- Zhuo Mao
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China.
| | - Qing Yang
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, 100191, China
| | - Wen Su
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China
| | - Hui Lin
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China
| | - Mingji Feng
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong province, 518000, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, 100191, China
| | - Weizhen Zhang
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong province, 518000, China; Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|