1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Iyer JS, Juyal D, Le Q, Shanis Z, Pokkalla H, Pouryahya M, Pedawi A, Stanford-Moore SA, Biddle-Snead C, Carrasco-Zevallos O, Lin M, Egger R, Hoffman S, Elliott H, Leidal K, Myers RP, Chung C, Billin AN, Watkins TR, Patterson SD, Resnick M, Wack K, Glickman J, Burt AD, Loomba R, Sanyal AJ, Glass B, Montalto MC, Taylor-Weiner A, Wapinski I, Beck AH. AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases. Nat Med 2024; 30:2914-2923. [PMID: 39112795 PMCID: PMC11485234 DOI: 10.1038/s41591-024-03172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/03/2024] [Indexed: 09/08/2024]
Abstract
Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis) require histologic scoring for assessment of inclusion criteria and endpoints. However, variability in interpretation has impacted clinical trial outcomes. We developed an artificial intelligence-based measurement (AIM) tool for scoring MASH histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research Network necroinflammation grades and fibrosis stages were reproducible (κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62-0.74). The AIM-MASH versus consensus agreements were comparable to average pathologists for MASH Clinical Research Network scores (82% versus 81%) and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH for key histological features of MASH correlated with mean pathologist scores and noninvasive biomarkers and strongly predicted progression-free survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. In a retrospective analysis of the ATLAS trial (NCT03449446), responders receiving study treatment showed a greater continuous change in fibrosis compared with placebo (P = 0.02). Overall, these results suggest that AIM-MASH may assist pathologists in histologic review of MASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aryan Pedawi
- PathAI, Boston, MA, USA
- Atomwise, San Francisco, CA, USA
| | | | | | | | - Mary Lin
- PathAI, Boston, MA, USA
- Supernus Pharmaceuticals, Rockville, MD, USA
| | | | - Sara Hoffman
- PathAI, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hunter Elliott
- PathAI, Boston, MA, USA
- BigHat Biosciences, San Mateo, CA, USA
| | - Kenneth Leidal
- PathAI, Boston, MA, USA
- Genesis Therapeutics, Burlingame, CA, USA
| | - Robert P Myers
- Gilead Sciences, Inc., Foster City, CA, USA
- OrsoBio, Inc., Palo Alto, CA, USA
| | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, CA, USA
- Inipharm, San Diego, CA, USA
| | | | | | | | - Murray Resnick
- PathAI, Boston, MA, USA
- Rhode Island Hospital and The Miriam Hospital, Providence, RI, USA
| | | | - Jon Glickman
- PathAI, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Alastair D Burt
- NIHRB Medical Research Center, Newcastle University, Newcastle, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, VCU School of Medicine, Richmond, VA, USA
| | | | | | | | - Ilan Wapinski
- PathAI, Boston, MA, USA
- Sanofi Pharmaceuticals, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Bell JA, Davies ER, Brereton CJ, Vukmirovic M, Roberts JJW, Lunn K, Wickens L, Conforti F, Ridley RA, Ceccato J, Sayer LN, Johnston DA, Vallejo AF, Alzetani A, Jogai S, Marshall BG, Fabre A, Richeldi L, Monk PD, Skipp P, Kaminski N, Offer E, Wang Y, Davies DE, Jones MG. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Rep Med 2024; 5:101695. [PMID: 39173635 PMCID: PMC11524965 DOI: 10.1016/j.xcrm.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Matrix stiffening by lysyl oxidase-like 2 (LOXL2)-mediated collagen cross-linking is proposed as a core feedforward mechanism that promotes fibrogenesis. Failure in clinical trials of simtuzumab (the humanized version of AB0023, a monoclonal antibody against human LOXL2) suggested that targeting LOXL2 may not have disease relevance; however, target engagement was not directly evaluated. We compare the spatial transcriptome of active human lung fibrogenesis sites with different human cell culture models to identify a disease-relevant model. Within the selected model, we then evaluate AB0023, identifying that it does not inhibit collagen cross-linking or reduce tissue stiffness, nor does it inhibit LOXL2 catalytic activity. In contrast, it does potently inhibit angiogenesis consistent with an alternative, non-enzymatic mechanism of action. Thus, AB0023 is anti-angiogenic but does not inhibit LOXL2 catalytic activity, collagen cross-linking, or tissue stiffening. These findings have implications for the interpretation of the lack of efficacy of simtuzumab in clinical trials of fibrotic diseases.
Collapse
Affiliation(s)
- Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | - Leanne Wickens
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Jessica Ceccato
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; Department of Medicine, University of Padova, Padova, Italy
| | - Lucy N Sayer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - David A Johnston
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Sanjay Jogai
- University Hospital Southampton, SO16 6YD Southampton, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | | | - Paul Skipp
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Offer
- Medicines Discovery Catapult, Alderley Edge, UK
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
4
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
5
|
Xia J, Shi Y, Chen X. New insights into the mechanisms of the extracellular matrix and its therapeutic potential in anaplastic thyroid carcinoma. Sci Rep 2024; 14:20977. [PMID: 39251678 PMCID: PMC11384763 DOI: 10.1038/s41598-024-72020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer, and it has a poor prognosis and high probability of metastatic recurrence. The long-term survival of cancer cells depends on their ability to settle in a favorable environment. Cancer cells interact with other cells in the tumor microenvironment to shape the "soil" and make it suitable for cell growth by forming an extremely complex tumor ecosystem. The extracellular matrix (ECM) is an essential component of the tumor ecosystem, and its biological and mechanical changes strongly affect tumor invasion, metastasis, immune escape and drug resistance. Compared to normal tissues, biological processes, such as collagen synthesis and ECM signaling, are significantly activated in ATC tissues. However, how ATC triggers changes in the properties of the ECM and its interaction with the ECM remain poorly characterized. Therefore, an in-depth study of the regulatory mechanism of the abnormal activation of ECM signaling in ATC is highly important for achieving the therapeutic goal of exerting antitumor effects by destroying the "soil" in which cancer cells depend for survival. In this research, we revealed the aberrant activation state of ECM signaling in ATC progression and attempted to uncover the potential mechanism of action of ECM components in ATC, with the aim of providing new drug targets for ATC therapy.
Collapse
Affiliation(s)
- Jinkun Xia
- Department of Vascular and Thyroid Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Yuyu Shi
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, 550003, Guizhou, China
| | - Xinxu Chen
- Emergency Department, Fenggang County People's Hospital, Fenggang, 564299, Guizhou, China
| |
Collapse
|
6
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2024:S0016-5085(24)05455-6. [PMID: 39251168 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Royal Free Hospital, London, UK; University of Pittsburgh Medical Center-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
7
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU. KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
An J, Chon YE, Kim G, Kim MN, Kim HY, Lee HA, Yu JH, Choi M, Jun DW, Kim SU, Han JW, Jin YJ. Diagnostic accuracy of vibration-controlled transient elastography for staging liver fibrosis in autoimmune liver diseases: A systematic review and meta-analysis. Clin Mol Hepatol 2024; 30:S134-S146. [PMID: 39165158 PMCID: PMC11493360 DOI: 10.3350/cmh.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND/AIMS The assessment of liver fibrosis is crucial for managing autoimmune liver diseases such as primary biliary cholangitis (PBC), autoimmune hepatitis (AIH), and primary sclerosing cholangitis (PSC). However, data on the efficacy of noninvasive tests for these diseases are limited. This meta-analysis evaluated the diagnostic accuracy of vibration-controlled transient elastography (VCTE) for staging fibrosis in patients with autoimmune liver disease. METHODS Searches were conducted in PubMed, Embase, CINAHL, Web of Science, and Cochrane Library databases to assess the diagnostic accuracy of VCTE against histology as the reference standard in adult patients with autoimmune liver disease. The summary area under the curve (sAUC) and diagnostic odds ratio were calculated for significant fibrosis (SF), advanced fibrosis (AF), and cirrhosis, according to liver biopsy. RESULTS Fourteen articles were included, comprising 559 PBC patients from six studies, 388 AIH patients from five studies, and 151 PSC patients from three studies. VCTE demonstrated good performance for fibrosis staging in PBC, AIH, and PSC. In PBC, sAUCs of VCTE were 0.87, 0.89, and 0.99 for staging SF, AF, and cirrhosis, respectively. In AIH, the sAUCs were 0.88, 0.88, and 0.92, respectively, while in PSC, they were 0.88, 0.95, and 0.92, respectively. The cutoff values for AF were 7.5-17.9 kPa in PBC, 8.18-12.1 kPa in AIH, and 9.6 kPa in PSC. CONCLUSION VCTE shows high diagnostic accuracy for staging liver fibrosis in patients with autoimmune liver diseases. This non-invasive method serves as a valuable tool for the evaluation and monitoring of fibrosis in these lifelong diseases.
Collapse
Affiliation(s)
- Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Gunho Kim
- Hanyang University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Hee Yeon Kim
- Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Miyoung Choi
- Division of Health Technology Assessment Research, National EvidenceBased Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Dae Won Jun
- Department of Gastroenterology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
9
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Helmke S, Kittelson J, Imperial JC, McRae MP, Everson GT. The Oral Cholate Challenge Test Quantifies Risk for Liver-Related Clinical Outcomes in Primary Sclerosing Cholangitis. GASTRO HEP ADVANCES 2024; 3:944-953. [PMID: 39286620 PMCID: PMC11403427 DOI: 10.1016/j.gastha.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims We quantified hepatic functional impairment using quantitative function tests and linked severity of functional impairment to liver-related complications and outcome in primary sclerosing cholangitis. Methods Forty-seven patients had baseline testing, and 40 were retested after 1 year. For each test, cholates labeled with cold, nonradioactive isotopes were administered orally (DuO, SHUNT tests) and intravenously (SHUNT test), and blood was analyzed at 20 and 60 minutes (DuO), or 0, 5, 20, 45, 60, and 90 minutes (SHUNT). Disease severity index (DSI), hepatic reserve (HR%), and portal-systemic shunting (SHUNT%) were calculated. Results Three subgroups with low, moderate, and high disease severity were defined from the age-adjusted results for DSI, HR%, and SHUNT%. Standard laboratory tests, clinical scores, cytokine levels, and clinical outcome correlated with these subgroups. In univariate analysis of baseline tests, SHUNT% was a strong predictor of clinical outcome (n = 13 of 47; areas under the receiver operating characteristic curve, 0.84DuO, 0.90SHUNT). A model combining SHUNT%, DSI (or HR%), platelet count, and changes from baseline was most predictive of outcome (n = 10 of 40; areas under the receiver operating characteristic curve, 0.95DuO, 0.96SHUNT). Conclusion DSI, HR%, and SHUNT% identified subgroups of primary sclerosing cholangitis based on the age-related severity of hepatic impairment that predicted risk for liver-related clinical outcome. Further study is warranted to confirm and validate these intriguing findings both in studies of natural progression of primary sclerosing cholangitis and in clinical trials. DuO enhances the utility of quantitative liver function testing.
Collapse
Affiliation(s)
- Steve Helmke
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- HepQuant LLC, Denver, Colorado
| | - John Kittelson
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Gregory T Everson
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- HepQuant LLC, Denver, Colorado
| |
Collapse
|
11
|
Dillman JR, Trout AT, Taylor AE, Khendek L, Kasten JL, Sheridan RM, Sharma D, Karns RA, Castro-Rojas C, Zhang B, Miethke AG. Association Between MR Elastography Liver Stiffness and Histologic Liver Fibrosis in Children and Young Adults With Autoimmune Liver Disease. AJR Am J Roentgenol 2024; 223:e2431108. [PMID: 38630086 DOI: 10.2214/ajr.24.31108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND. Liver fibrosis is an important clinical endpoint of the progression of autoimmune liver disease (AILD); its monitoring would benefit from noninvasive imaging tools. OBJECTIVE. The purpose of this study was to assess the relationship between MR elastography (MRE) liver stiffness measurements and histologic liver fibrosis, as well as to evaluate the performance of MRE and biochemical-based clinical markers for stratifying histologic liver fibrosis severity, in children and young adults with AILD. METHODS. This retrospective study used an existing institutional registry of children and young adults diagnosed with AILD (primary sclerosing cholangitis [PSC], autoimmune sclerosing cholangitis [ASC], or autoimmune hepatitis [AIH]). The registry was searched to identify patients who underwent both a research abdominal 1.5-T MRI examination that included liver MRE (performed for registry enrollment) and a clinically indicated liver biopsy within 6 months of that examination. MRE used a 2D gradient-recalled echo sequence. One analyst measured mean liver shear stiffness (in kilopascals) for each examination. Laboratory markers of liver fibrosis (aspartate aminotransferase-to-platelet ratio index [APRI] and fibrosis-4 [FIB-4] score) were recorded. For investigational purposes, one pathologist, blinded to clinical and MRI data, determined histologic Metavir liver fibrosis stage. The Spearman rank order correlation coefficient was calculated between MRE liver stiffness and Metavir liver fibrosis stage. ROC analysis was used to evaluate diagnostic performance for identifying advanced fibrosis (i.e., differentiating Metavir F0-F1 from F2-F4 fibrosis), and sensitivity and specificity were calculated using the Youden index. RESULTS. The study included 46 patients (median age, 16.6 years [IQR, 13.7-17.8 years]; 20 female patients, 26 male patients); 12 had PSC, 10 had ASC, and 24 had AIH. Median MRE liver stiffness was 2.9 kPa (IQR, 2.2-4.0 kPa). MRE liver stiffness and Metavir fibrosis stage showed strong positive correlation (ρ = 0.68). For identifying advanced liver fibrosis, MRE liver stiffness had an AUC of 0.81, with sensitivity of 65.4% and specificity of 90.0%; APRI had an AUC of 0.72, with sensitivity of 64.0% and specificity of 80.0%; and FIB-4 score had an AUC of 0.71, with sensitivity of 60.0% and specificity of 85.0%. CONCLUSION. MRE liver stiffness measurements were associated with histologic liver fibrosis severity. CLINICAL IMPACT. The findings support a role for MRE in noninvasive monitoring of liver stiffness, a surrogate for fibrosis, in children and young adults with AILD. TRIAL REGISTRATION. ClinicalTrials.gov NCT03175471.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Ste ML5031, Cincinnati, OH 45229
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Ste ML5031, Cincinnati, OH 45229
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Amy E Taylor
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Leticia Khendek
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jennifer L Kasten
- Department of Pediatrics, Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Rachel M Sheridan
- Department of Pediatrics, Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Divya Sharma
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Rebekah A Karns
- Department of Pediatrics, Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Cyd Castro-Rojas
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bin Zhang
- Department of Pediatrics, Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Alexander G Miethke
- Center for Autoimmune Liver Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
12
|
Thorburn D, Leeming DJ, Barchuk WT, Wang Y, Lu X, Malkov VA, Ito KL, Bowlus CL, Levy C, Goodman Z, Karsdal MA, Muir AJ, Xu J. Serologic extracellular matrix remodeling markers are related to fibrosis stage and prognosis in a phase 2b trial of simtuzumab in patients with primary sclerosing cholangitis. Hepatol Commun 2024; 8:e0467. [PMID: 38967589 PMCID: PMC11227354 DOI: 10.1097/hc9.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/12/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Novel noninvasive predictors of disease severity and prognosis in primary sclerosing cholangitis (PSC) are needed. This study evaluated the ability of extracellular matrix remodeling markers to diagnose fibrosis stage and predict PSC-related fibrosis progression and clinical events. METHODS Liver histology and serum markers of collagen formation (propeptide of type III collagen [Pro-C3], propeptide of type IV collagen, propeptide of type V collagen), collagen degradation (type III collagen matrix metalloproteinase degradation product and type IV collagen matrix metalloproteinase degradation product), and fibrosis (enhanced liver fibrosis [ELF] score and its components [metalloproteinase-1, type III procollagen, hyaluronic acid]) were assessed in samples from baseline to week 96 in patients with PSC enrolled in a study evaluating simtuzumab (NCT01672853). Diagnostic performance for advanced fibrosis (Ishak stages 3-6) and cirrhosis (Ishak stages 5-6) was evaluated by logistic regression and AUROC. Prognostic performance for PSC-related clinical events and fibrosis progression was assessed by AUROC and Wilcoxon rank-sum test. RESULTS Among 234 patients, 51% had advanced fibrosis and 11% had cirrhosis at baseline. Baseline Pro-C3 and ELF score and its components provided moderate diagnostic ability for discrimination of advanced fibrosis (AUROC 0.73-0.78) and cirrhosis (AUROC 0.73-0.81). Baseline Pro-C3, ELF score, and type III procollagen provided a moderate prognosis for PSC-related clinical events (AUROC 0.70-0.71). Among patients without cirrhosis at baseline, median changes in Pro-C3 and ELF score to week 96 were higher in those with than without progression to cirrhosis (both p < 0.001). CONCLUSIONS Pro-C3 correlated with fibrosis stage, and Pro-C3 and ELF score provided discrimination of advanced fibrosis and cirrhosis and predicted PSC-related events and fibrosis progression. The results support the clinical utility of Pro-C3 and ELF score for staging and as prognostic markers in PSC.
Collapse
Affiliation(s)
- Douglas Thorburn
- Sheila Sherlock Liver Centre and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | | | | | - Ya Wang
- Gilead Sciences, Inc., Foster City, California, USA
| | - Xiaomin Lu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Kaori L. Ito
- Gilead Sciences, Inc., Foster City, California, USA
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | - Andrew J. Muir
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jun Xu
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
13
|
Hussain N, Ma C, Hirschfield G, Walmsley M, Hanford P, Vesterhus M, Kowdley K, Bergquist A, Ponsioen C, Levy C, Assis D, Schramm C, Bowlus C, Trauner M, Aiyegbusi OL, Jairath V, Trivedi PJ. Protocol for the development of a core outcome set for clinical trials in primary sclerosing cholangitis. BMJ Open 2024; 14:e080143. [PMID: 38926149 PMCID: PMC11216047 DOI: 10.1136/bmjopen-2023-080143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a progressive immune-mediated liver disease, for which no medical therapy has been shown to slow disease progression. However, the horizon for new therapies is encouraging, with several innovative clinical trials in progress. Despite these advancements, there is considerable heterogeneity in the outcomes studied, with lack of consensus as to what outcomes to measure, when to measure and how to measure. Furthermore, there has been a paradigm shift in PSC treatment targets over recent years, moving from biochemistry-based endpoints to histological assessment of liver fibrosis, imaging-based biomarkers and patient-reported outcome measures. The abundance of new interventional trials and evolving endpoints pose opportunities for all stakeholders involved in evaluating novel therapies. To this effect, there is a need to harmonise measures used in clinical trials through the development of a core outcome set (COS). METHODS AND ANALYSIS Synthesis of a PSC-specific COS will be conducted in four stages. Initially, a systematic literature review will be performed to identify outcomes previously used in PSC trials, followed by semistructured qualitative interviews conducted with key stakeholders. The latter may include patients, clinicians, researchers, pharmaceutical industry representatives and healthcare payers and regulatory agencies, to identify additional outcomes of importance. Using the outcomes generated from the literature review and stakeholder interviews, an international two-round Delphi survey will be conducted to prioritise outcomes for inclusion in the COS. Finally, a consensus meeting will be convened to ratify the COS and disseminate findings for application in future PSC trials. ETHICS AND DISSEMINATION Ethical approval has been granted by the East Midlands-Leicester Central Research Ethics Committee (Ref: 24/EM/0126) for this study. The COS from this study will be widely disseminated including publication in peer-reviewed journals, international conferences, promotion through patient-support groups and made available on the Core Outcomes Measurement in Effectiveness Trials (COMET) database. TRIAL REGISTRATION NUMBER 1239.
Collapse
Affiliation(s)
- Nasir Hussain
- NIHR Birmingham Biomedical Research Centre, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham Institute of Immunology and Immunotherapy, Birmingham, UK
| | - Christopher Ma
- Department of Medicine and Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Mette Vesterhus
- Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kris Kowdley
- Liver Care Network and Organ Care Research, Swedish Medical Center, Seattle, Washington, USA
| | - Annika Bergquist
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Stockholm, Sweden
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Cynthia Levy
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - David Assis
- Department of Medicine, Section of Digestive Disease, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christoph Schramm
- First Department of Medicine, Martin Zeitz Centre for Rare Disease and Hamburg Centre of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Bowlus
- Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Wien, Austria
| | - Olalekan Lee Aiyegbusi
- Centre for Patient-Reported Outcomes Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Palak J Trivedi
- NIHR Birmingham Biomedical Research Centre, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham Institute of Immunology and Immunotherapy, Birmingham, UK
| |
Collapse
|
14
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
15
|
Snir T, Greenman R, Aricha R, Frankel M, Lawler J, Saffioti F, Pinzani M, Thorburn D, Mor A, Vaknin I. Machine Learning Identifies Key Proteins in Primary Sclerosing Cholangitis Progression and Links High CCL24 to Cirrhosis. Int J Mol Sci 2024; 25:6042. [PMID: 38892228 PMCID: PMC11173115 DOI: 10.3390/ijms25116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, progressive disease, characterized by inflammation and fibrosis of the bile ducts, lacking reliable prognostic biomarkers for disease activity. Machine learning applied to broad proteomic profiling of sera allowed for the discovery of markers of disease presence, severity, and cirrhosis and the exploration of the involvement of CCL24, a chemokine with fibro-inflammatory activity. Sera from 30 healthy controls and 45 PSC patients were profiled with proximity extension assay, quantifying the expression of 2870 proteins, and used to train an elastic net model. Proteins that contributed most to the model were tested for correlation to enhanced liver fibrosis (ELF) score and used to perform pathway analysis. Statistical modeling for the presence of cirrhosis was performed with principal component analysis (PCA), and receiver operating characteristics (ROC) curves were used to assess the useability of potential biomarkers. The model successfully predicted the presence of PSC, where the top-ranked proteins were associated with cell adhesion, immune response, and inflammation, and each had an area under receiver operator characteristic (AUROC) curve greater than 0.9 for disease presence and greater than 0.8 for ELF score. Pathway analysis showed enrichment for functions associated with PSC, overlapping with pathways enriched in patients with high levels of CCL24. Patients with cirrhosis showed higher levels of CCL24. This data-driven approach to characterize PSC and its severity highlights potential serum protein biomarkers and the importance of CCL24 in the disease, implying its therapeutic potential in PSC.
Collapse
Affiliation(s)
- Tom Snir
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | | | | | | | - John Lawler
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Francesca Saffioti
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Adi Mor
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Ilan Vaknin
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| |
Collapse
|
16
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
17
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Zhang N, Yang A, Zhang W, Li H, Xu A, Yan X, Han Q, Wang B, You H, Chen W. Crosstalk of lysyl oxidase-like 1 and lysyl oxidase prolongs their half-lives and regulates liver fibrosis through Notch signal. Hepatol Commun 2024; 8:e0391. [PMID: 38466882 PMCID: PMC10932518 DOI: 10.1097/hc9.0000000000000391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Lysyl oxidase (LOX) family members (LOX and LOXL1 to 4) are crucial copper-dependent enzymes responsible for cross-linking collagen and elastin. Previous studies have revealed that LOX and LOXL1 are the most dramatically dysregulated LOX isoforms during liver fibrosis. However, the crosstalk between them and the underlying mechanisms involved in the profibrotic behaviors of HSCs, as well as the progression of liver fibrosis, remain unclear. METHODS pCol9GFP-HS4,5Tg mice, Loxl1fl/flGfapCre mice, human HSC line, and primary HSCs were enrolled to study the dysregulation pattern, profibrotic roles, and the potential mechanisms of LOX and LOXL1 interaction involved in the myofibroblast-like transition of HSCs and liver fibrogenesis. RESULTS LOX and LOXL1 were synergistically upregulated during liver fibrogenesis, irrespective of etiology, together orchestrating the profibrotic behaviors of HSCs. LOX and LOXL1 coregulated in HSCs, whereas LOXL1 dominated in the coregulation loop. Interestingly, the interaction between LOXL1 and LOX prolonged their half-lives, specifically enhancing the Notch signal-mediated myofibroblast-like transition of HSCs. Selective disruption of Loxl1 in Gfap+ HSCs deactivated the Notch signal, inhibited HSC activation, and relieved carbon tetrachloride-induced liver fibrosis. CONCLUSIONS Our current study confirmed the synergistic roles and the underlying mechanisms of LOXL1 and LOX crosstalk in the profibrotic behaviors of HSCs and liver fibrosis progression, providing experimental evidence for further clear mechanism-based anti-LOXL1 strategy development in the therapy of liver fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Yang
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Li
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuzhen Yan
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Sohal A, Kowdley KV. Novel preclinical developments of the primary sclerosing cholangitis treatment landscape. Expert Opin Investig Drugs 2024; 33:335-345. [PMID: 38480008 DOI: 10.1080/13543784.2024.2330738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease associated with inflammation, fibrosis, and destruction of intra- and extrahepatic bile ducts. Despite substantial recent advances in our understanding of PSC, the only proven treatment of PSC is liver transplantation. There is an urgent unmet need to find medical therapies for this disorder. AREAS COVERED Multiple drugs are currently under evaluation as therapeutic options for this disease. This article summarizes the literature on the various novel therapeutic options that have been investigated and are currently under development for the treatment of PSC. EXPERT OPINION In the next decade, more than one drug will likely be approved for the treatment of the disease, and we will be looking at combination therapies for the optimal management of the disease.
Collapse
Affiliation(s)
- Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, USA
| | - Kris V Kowdley
- Department of Hepatology, Liver Institute Northwest, Seattle, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, USA
| |
Collapse
|
20
|
Wu X, Li X, Wang L, Bi X, Zhong W, Yue J, Chin YE. Lysine Deacetylation Is a Key Function of the Lysyl Oxidase Family of Proteins in Cancer. Cancer Res 2024; 84:652-658. [PMID: 38194336 DOI: 10.1158/0008-5472.can-23-2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.
Collapse
Affiliation(s)
- Xingxing Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Luwei Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Xianxia Bi
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jicheng Yue
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
21
|
Lloyd SM, He Y. Exploring Extracellular Matrix Crosslinking as a Therapeutic Approach to Fibrosis. Cells 2024; 13:438. [PMID: 38474402 DOI: 10.3390/cells13050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissues and regulatory signals for resident cells. ECM requires a careful balance between protein accumulation and degradation for homeostasis. Disruption of this balance can lead to pathological processes such as fibrosis in organs across the body. Post-translational crosslinking modifications to ECM proteins such as collagens alter ECM structure and function. Dysregulation of crosslinking enzymes as well as changes in crosslinking composition are prevalent in fibrosis. Because of the crucial roles these ECM crosslinking pathways play in disease, the enzymes that govern crosslinking events are being explored as therapeutic targets for fibrosis. Here, we review in depth the molecular mechanisms underlying ECM crosslinking, how ECM crosslinking contributes to fibrosis, and the therapeutic strategies being explored to target ECM crosslinking in fibrosis to restore normal tissue structure and function.
Collapse
Affiliation(s)
- Sarah M Lloyd
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| | - Yupeng He
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA
| |
Collapse
|
22
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
23
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
24
|
Wheless WH, Russo MW. Treatment of Primary Sclerosing Cholangitis Including Transplantation. Clin Liver Dis 2024; 28:171-182. [PMID: 37945158 DOI: 10.1016/j.cld.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Primary sclerosing cholangitis is a progressive cholestatic liver disease that causes stricturing of the intra and extrahepatic bile ducts that can lead to cirrhosis and end stage liver disease. Effective medical therapy has been elusive, but a course of ursodeoxycholic acid may be prescribed at doses of 17-23 mg/kg/day for up to a year to determine if a reduction in serum alkaline phosphatase is observed. A number of drugs are under investigation, including FXR agonists with choleretic and antimicrobial properties. Liver transplantation for PSC has one of the highest survival rates, but recurrent PSC is seen in up to 25% of recipients.
Collapse
Affiliation(s)
- William H Wheless
- Division of Hepatology, Atrium Health Wake Forest, Charlotte, NC, USA
| | - Mark W Russo
- Division of Hepatology, Atrium Health Wake Forest, Charlotte, NC, USA.
| |
Collapse
|
25
|
Nam K, Dos Santos HT, Maslow FM, Small T, Shanbhag V, Petris MJ, Baker OJ. Copper chelation reduces early collagen deposition and preserves saliva secretion in irradiated salivary glands. Heliyon 2024; 10:e24368. [PMID: 38298614 PMCID: PMC10828693 DOI: 10.1016/j.heliyon.2024.e24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.
Collapse
Affiliation(s)
- Kihoon Nam
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Harim Tavares Dos Santos
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Frank M. Maslow
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Travis Small
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Vinit Shanbhag
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
| | - Michael J. Petris
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
- Department of Ophthalmology, University of Missouri, Columbia, MO, 65211, United States
| | - Olga J. Baker
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
- Department of Biochemistry, United States
| |
Collapse
|
26
|
Gee MFW, Palladino A, Levy HR, De Vol E, Kiaei D. Derivation and validation of Transform equations to convert historical Enhanced liver fibrosis (ELF) scores to modern equivalents. Clin Chim Acta 2024; 552:117696. [PMID: 38070667 DOI: 10.1016/j.cca.2023.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS The Siemens Healthineers ELF™ Test was designed in 2004 with 2 algorithms to allow choice in histological alignment. Consequently, historical and modern algorithms are not fully harmonized, complicating comparisons involving early datasets. We derived transform equations to equate all ELF score versions, allowing historical data to be used in systematic reviews and meta-analyses. METHODS Historical ELF equations were graphed pairwise versus their modern equivalent to assess correlation and derive four transforms. Transforms were validated using multiple datasets and evaluated for median absolute bias, number of samples reflecting clinically significant bias, number of discordant samples, bias at established cutoffs, and regression slope and y-intercept. RESULTS Three transforms were validated equating Scheuer-aligned and/or age-included historical ELF equations (Immuno 1) to later equations aligned to Ishak and omitting age. A fourth transform corrected ADVIA Centaur® / Atellica® IM ELF scores miscalculated using the Scheuer Immuno 1 equation. Transformed data were well within allowable ELF bias limits. CONCLUSIONS All transforms enabled accurate comparison of ELF scores generated by all historical algorithms to the current ADVIA Centaur / Atellica IM Analyzer ELF score. The transforms presented in this report should be used in systematic reviews and meta-analyses to facilitate comparisons to historical data.
Collapse
Affiliation(s)
- Matthew F W Gee
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| | - Agostino Palladino
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| | - H Roma Levy
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| | - Edward De Vol
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| | - David Kiaei
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| |
Collapse
|
27
|
Yan X, Zhang N, Wei L, Zhang W, Huang T, Li W, Chen W, Yang A, You H. Selective inhibition of hepatic stellate cell and fibroblast-derived LOXL1 attenuates BDL- and Mdr2-/--induced cholestatic liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G608-G621. [PMID: 37873581 DOI: 10.1152/ajpgi.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Lysyl oxidase-like 1 (LOXL1) proteins are amine oxidases that play a crucial role in extracellular matrix remodeling due to their collagen cross-linking and intracellular functions. The role of LOXL1 in cholestatic liver fibrosis remains unexplored. We measured LOXL1 expression in two murine models of cholestasis [Mdr2 knockout (Mdr2-/-) and bile duct ligation (BDL)]. We used adeno-associated virus (AAV) serotype 6-mediated hepatic delivery against LOXL1 (AAV2/6-shLoxl1) to investigate the therapeutic efficacy of targeting LOXL1 in cholestatic liver fibrosis. NIH-3T3 murine fibroblasts were used to investigate the function and regulatory mechanisms of LOXL1 in vitro. LOXL1 expression was significantly upregulated in Mdr2-/- and BDL mice compared with their corresponding controls, predominantly in collagen-rich fibrous septa and portal areas. AAV2/6-shLoxl1 significantly reduced LOXL1 levels in Mdr2-/- and BDL mice, mainly in desmin-positive hepatic stellate cells (HSCs) and fibroblasts. Concomitant with reduced LOXL1 expression, there was reduced ductular reaction, inflammation, and fibrosis in both Mdr2-/- and BDL mice. In addition, Loxl1 intervention decreased Ki-67-positive cells in the desmin-positive areas in both Mdr2-/- and BDL mice. Overexpression of LOXL1 significantly promoted fibroblast proliferation by activating the platelet-derived growth factor receptor and extracellular signal-regulated kinase signaling pathways in vitro. Our findings demonstrated that selective inhibition of LOXL1 derived from HSCs/fibroblasts attenuated cholestatic liver/biliary fibrosis, inflammation, ductal reaction, and HSC/fibroblast proliferation. Based on our findings, LOXL1 could be a potential therapeutic target for cholestatic fibrosis.NEW & NOTEWORTHY Selectively, inhibition of HSC/fibroblasts-derived LOXL1 by AAV2/6-shLoxl1 could reduce collagen deposition, HSC/fibroblasts proliferation, and cholestatic liver fibrosis progression. In addition, overexpression of LOXL1 significantly promoted HSC/fibroblast proliferation by activating the PDGFRß/PI3K and ERK signaling pathways in vitro.
Collapse
Affiliation(s)
- Xuzhen Yan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Ning Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Luyang Wei
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Weiyu Li
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
| | - Hong You
- Beijing Clinical Medicine Institute, Beijing, People's Republic of China
- National Clinical Research Center of Digestive Diseases, Beijing, People's Republic of China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, People's Republic of China
| |
Collapse
|
28
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
29
|
Felli E, Selicean S, Guixé-Muntet S, Wang C, Bosch J, Berzigotti A, Gracia-Sancho J. Mechanobiology of portal hypertension. JHEP Rep 2023; 5:100869. [PMID: 37841641 PMCID: PMC10568428 DOI: 10.1016/j.jhepr.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between mechanical stimuli and cellular mechanobiology orchestrates the physiology of tissues and organs in a dynamic balance characterized by constant remodelling and adaptative processes. Environmental mechanical properties can be interpreted as a complex set of information and instructions that cells read continuously, and to which they respond. In cirrhosis, chronic inflammation and injury drive liver cells dysfunction, leading to excessive extracellular matrix deposition, sinusoidal pseudocapillarization, vascular occlusion and parenchymal extinction. These pathological events result in marked remodelling of the liver microarchitecture, which is cause and result of abnormal environmental mechanical forces, triggering and sustaining the long-standing and progressive process of liver fibrosis. Multiple mechanical forces such as strain, shear stress, and hydrostatic pressure can converge at different stages of the disease until reaching a point of no return where the fibrosis is considered non-reversible. Thereafter, reciprocal communication between cells and their niches becomes the driving force for disease progression. Accumulating evidence supports the idea that, rather than being a passive consequence of fibrosis and portal hypertension (PH), mechanical force-mediated pathways could themselves represent strategic targets for novel therapeutic approaches. In this manuscript, we aim to provide a comprehensive review of the mechanobiology of PH, by furnishing an introduction on the most important mechanisms, integrating these concepts into a discussion on the pathogenesis of PH, and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| |
Collapse
|
30
|
Tan N, Lubel J, Kemp W, Roberts S, Majeed A. Current Therapeutics in Primary Sclerosing Cholangitis. J Clin Transl Hepatol 2023; 11:1267-1281. [PMID: 37577219 PMCID: PMC10412694 DOI: 10.14218/jcth.2022.00068s] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 07/03/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an orphan, cholestatic liver disease that is characterized by inflammatory biliary strictures with variable progression to end-stage liver disease. Its pathophysiology is poorly understood. Chronic biliary inflammation is likely driven by immune dysregulation, gut dysbiosis, and environmental exposures resulting in gut-liver crosstalk and bile acid metabolism disturbances. There is no proven medical therapy that alters disease progression in PSC, with the commonly prescribed ursodeoxycholic acid being shown to improve liver biochemistry at low-moderate doses (15-23 mg/kg/day) but not alter transplant-free survival or liver-related outcomes. Liver transplantation is the only option for patients who develop end-stage liver disease or refractory complications of PSC. Immunosuppressive and antifibrotic agents have not proven to be effective, but there is promise for manipulation of the gut microbiome with fecal microbiota transplantation and antibiotics. Bile acid manipulation via alternate synthetic bile acids such as norursodeoxycholic acid, or interaction at a transcriptional level via nuclear receptor agonists and fibrates have shown potential in phase II trials in PSC with several leading to larger phase III trials. In view of the enhanced malignancy risk, statins, and aspirin show potential for reducing the risk of colorectal cancer and cholangiocarcinoma in PSC patients. For patients who develop clinically relevant strictures with cholestatic symptoms and worsening liver function, balloon dilatation is safer compared with biliary stent insertion with equivalent clinical efficacy.
Collapse
Affiliation(s)
- Natassia Tan
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - John Lubel
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - William Kemp
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart Roberts
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology and Hepatology, Alfred Health; Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Kim YS, Hurley EH, Park Y, Ko S. Treatment of primary sclerosing cholangitis combined with inflammatory bowel disease. Intest Res 2023; 21:420-432. [PMID: 37519211 PMCID: PMC10626010 DOI: 10.5217/ir.2023.00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 08/01/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a progressive cholestatic, inflammatory, and fibrotic disease that is strongly associated with inflammatory bowel disease (IBD). PSC-IBD represents a unique disease entity and patients with this disease have an increased risk of malignancy development, such as colorectal cancer and cholangiocarcinoma. The pathogenesis of PSC-IBD involves genetic and environmental factors such as gut dysbiosis and bile acids alteration. However, despite the advancement of disease characteristics, no effective medical therapy has proven to have a significant impact on the prognosis of PSC. The treatment options for patients with PSC-IBD do not differ from those for patients with PSC alone. Potential candidate drugs have been developed based on the pathogenesis of PSC-IBD, such as those that target modulation of bile acids, inflammation, fibrosis, and gut dysbiosis. In this review, we summarize the current medical treatments for PSC-IBD and the status of new emerging therapeutic agents.
Collapse
Affiliation(s)
- You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Edward H. Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Russo MW. Noninvasive prognostic models, imaging, and elastography to predict clinical events in primary sclerosing cholangitis: A review. World J Hepatol 2023; 15:1013-1020. [PMID: 37900215 PMCID: PMC10600698 DOI: 10.4254/wjh.v15.i9.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Surrogate endpoints are needed to estimate clinical outcomes in primary sclerosing cholangitis (PSC). Serum alkaline phosphatase was among the first markers studied, but there is substantial variability in alkaline phosphatase levels during the natural history of PSC without intervention. The Mayo risk score incorporates noninvasive variables and has served as a surrogate endpoint for survival for more than two decades. Newer models have better test performance than the Mayo risk score, including the primary sclerosing risk estimate tool (PREsTo) model and UK-PSC score that estimate hepatic decompensation and transplant free survival, respectively. The c-statistics for transplant-free survival for the Mayo risk model and the long-term UK-PSC model are 0.68 and 0.85, respectively. The c-statistics for hepatic decompensation for the Mayo risk model and PREsTo model are 0.85 and 0.90, respectively. The Amsterdam-Oxford model included patients with large duct and small duct PSC and patients with PSC-autoimmune hepatitis overlap and had a c-statistic of 0.68 for transplant-free survival. Other noninvasive tests that warrant further validation include magnetic resonance imaging, elastography and the enhanced liver fibrosis score. Prognostic models, noninvasive tests or a combination of these surrogate endpoints may not only serve to be useful in clinical trials of investigational agents, but also serve to inform our patients about their prognosis.
Collapse
Affiliation(s)
- Mark W Russo
- Division of Hepatology, Atrium Health Wake Forest, Charlotte, NC 28204, United States.
| |
Collapse
|
33
|
Cano A, Eraso P, Mazón MJ, Portillo F. LOXL2 in Cancer: A Two-Decade Perspective. Int J Mol Sci 2023; 24:14405. [PMID: 37762708 PMCID: PMC10532419 DOI: 10.3390/ijms241814405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.
Collapse
Affiliation(s)
- Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.C.); (P.E.); (M.J.M.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz—IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
34
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
35
|
Poe A, Martinez Yus M, Wang H, Santhanam L. Lysyl oxidase like-2 in fibrosis and cardiovascular disease. Am J Physiol Cell Physiol 2023; 325:C694-C707. [PMID: 37458436 PMCID: PMC10635644 DOI: 10.1152/ajpcell.00176.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is an important and essential reparative response to injury that, if left uncontrolled, results in the excessive synthesis, deposition, remodeling, and stiffening of the extracellular matrix, which is deleterious to organ function. Thus, the sustained activation of enzymes that catalyze matrix remodeling and cross linking is a fundamental step in the pathology of fibrotic diseases. Recent studies have implicated the amine oxidase lysyl oxidase like-2 (LOXL2) in this process and established significantly elevated expression of LOXL2 as a key component of profibrotic conditions in several organ systems. Understanding the relationship between LOXL2 and fibrosis as well as the mechanisms behind these relationships can offer significant insights for developing novel therapies. Here, we summarize the key findings that demonstrate the link between LOXL2 and fibrosis and inflammation, examine current therapeutics targeting LOXL2 for the treatment of fibrosis, and discuss future directions for experiments and biomedical engineering.
Collapse
Affiliation(s)
- Alan Poe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marta Martinez Yus
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| | - Huilei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Lakshmi Santhanam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Anesthesiology and CCM, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
36
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
37
|
Palladino A, Gee M, Shalhoub V, Kiaei D. Analytical performance of the Enhanced Liver Fibrosis (ELF) Test on the Atellica IM Analyzer. Clin Chim Acta 2023; 548:117461. [PMID: 37390944 DOI: 10.1016/j.cca.2023.117461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The Enhanced Liver Fibrosis (ELFTM) Test comprises 3 direct serum markers of fibrosis-hyaluronic acid (HA), amino-terminal pro-peptide of type III procollagen (PIIINP), and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1)-whose results are combined in an algorithm to generate the ELF score. Outside the U.S., the ELF Test and score are CE marked for assessment of liver fibrosis severity in patients with signs, symptoms, or risk factors of chronic liver disease to support diagnosis of fibrosis staging or prognosis for likelihood of progression to cirrhosis and liver-related clinical events. In the U.S., the FDA granted de novo marketing authorization to aid prognostic evaluation of disease progression (to cirrhosis and liver-related clinical events) in nonalcoholic steatohepatitis patients with advanced liver fibrosis. We describe the analytical performance of the ELF analytes and score on the Atellica® IM Analyzer. METHODS Clinical and Laboratory Standards Institute protocols were followed for detection capability (limits of blank [LoB], detection [LoD], and quantitation [LoQ]), precision, interference, linearity, hook effect, and ELF reference interval. RESULTS All parameters met predetermined requirements: HA (LoB 1.00 ng/mL, LoD 2.00 ng/mL, LoQ 3.00 ng/mL); PIIINP (LoB 0.50 ng/mL, LoD 0.75 ng/mL, LoQ 1.00 ng/mL); TIMP-1 (LoB 3.0 ng/mL, LoD 4.0 ng/mL, LoQ 5.0 ng/mL). Across the 3 assays, repeatability was ≤5.4% CV; within-lab precision was ≤8.5% CV. ELF score repeatability was ≤0.6% CV, within-lab precision ≤1.3% CV, and reproducibility ≤1.1% CV. Good correlation was obtained between the Atellica IM ELF and ADVIA Centaur ELF Tests (y = 1.01x - 0.22, r = 0.997). Assays were linear across analytical measuring ranges. CONCLUSIONS Analytical performance validation results for the ELF Test and ELF score were excellent making the test acceptable for routine clinical use.
Collapse
Affiliation(s)
- Agostino Palladino
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States
| | - Matthew Gee
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States
| | - Victoria Shalhoub
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States
| | - David Kiaei
- Siemens Healthcare Diagnostics Inc., 511 Benedict Ave, Tarrytown, NY, United States.
| |
Collapse
|
38
|
Assis DN, Bowlus CL. Recent Advances in the Management of Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol 2023; 21:2065-2075. [PMID: 37084929 DOI: 10.1016/j.cgh.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by fibroinflammatory damage to the biliary tree, typically in the setting of inflammatory bowel disease, with an increased risk of liver failure and cholangiocarcinoma. A complex pathophysiology, heterogeneity in clinical features, and the rare nature of the disease have contributed to the lack of effective therapy to date. However, recent innovations in the characterization and prognostication of patients with PSC, in addition to new tools for medical management and emerging pharmacologic agents, give rise to the potential for meaningful progress in the next several years. This review summarizes current concepts in PSC and highlights particular areas in need of further study.
Collapse
|
39
|
Yamamura Y, Sakai N, Iwata Y, Lagares D, Hara A, Kitajima S, Toyama T, Miyagawa T, Ogura H, Sato K, Oshima M, Nakagawa S, Tamai A, Horikoshi K, Matsuno T, Yamamoto N, Hayashi D, Toyota Y, Kaikoi D, Shimizu M, Tager AM, Wada T. Myocardin-related transcription factor contributes to renal fibrosis through the regulation of extracellular microenvironment surrounding fibroblasts. FASEB J 2023; 37:e23005. [PMID: 37289107 DOI: 10.1096/fj.202201870r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Fibroblast accumulation and extracellular matrix (ECM) deposition are common critical steps for the progression of organ fibrosis, but the precise molecular mechanisms remain to be fully investigated. We have previously demonstrated that lysophosphatidic acid contributes to organ fibrosis through the production of connective tissue growth factor (CTGF) via actin cytoskeleton-dependent signaling, myocardin-related transcription factor family (MRTF) consisting of MRTF-A and MRTF-B-serum response factor (SRF) pathway. In this study, we investigated the role of the MRTF-SRF pathway in the development of renal fibrosis, focusing on the regulation of ECM-focal adhesions (FA) in renal fibroblasts. Here we showed that both MRTF-A and -B were required for the expressions of ECM-related molecules such as lysyl oxidase family members, type I procollagen and fibronectin in response to transforming growth factor (TGF)-β1 . TGF-β1 -MRTF-SRF pathway induced the expressions of various components of FA such as integrin α subunits (αv , α2 , α11 ) and β subunits (β1 , β3 , β5 ) as well as integrin-linked kinase (ILK). On the other hand, the blockade of ILK suppressed TGF-β1 -induced MRTF-SRF transcriptional activity, indicating a mutual relationship between MRTF-SRF and FA. Myofibroblast differentiation along with CTGF expression was also dependent on MRTF-SRF and FA components. Finally, global MRTF-A deficient and inducible fibroblast-specific MRTF-B deficient mice (MRTF-AKO BiFBKO mice) are protected from renal fibrosis with adenine administration. Renal expressions of ECM-FA components and CTGF as well as myofibroblast accumulation were suppressed in MRTF-AKO BiFBKO mice. These results suggest that the MRTF-SRF pathway might be a therapeutic target for renal fibrosis through the regulation of components forming ECM-FA in fibroblasts.
Collapse
Affiliation(s)
- Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - David Lagares
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiori Nakagawa
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akira Tamai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Keisuke Horikoshi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Matsuno
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoki Yamamoto
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hayashi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitada Toyota
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Daichi Kaikoi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
40
|
Cheng F, Yang F, Wang Y, Zhou J, Qian H, Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J Nanobiotechnology 2023; 21:195. [PMID: 37328872 DOI: 10.1186/s12951-023-01942-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is an extracellular copper-dependent enzyme that plays a central role in fibrosis by catalyzing the crosslinking and deposition of collagen. Therapeutic LOXL2 inhibition has been shown to suppress liver fibrosis progression and promote its reversal. This study investigates the efficacy and underlying mechanisms of human umbilical cord-derived exosomes (MSC-ex) in LOXL2 inhibition of liver fibrosis. MSC-ex, nonselective LOX inhibitor β-aminopropionitrile (BAPN), or PBS were administered into carbon tetrachloride (CCl4)-induced fibrotic livers. Serum LOXL2 and collagen crosslinking were assessed histologically and biochemically. MSC-ex's mechanisms on LOXL2 regulation were investigated in human hepatic stellate cell line LX-2. We found that systemic administration of MSC-ex significantly reduced LOXL2 expression and collagen crosslinking, delaying the progression of CCl4-induced liver fibrosis. Mechanically, RNA-sequencing and fluorescence in situ hybridization (FISH) indicated that miR-27b-3p was enriched in MSC-ex and exosomal miR-27b-3p repressed Yes-associated protein (YAP) expression by targeting its 3' untranslated region in LX-2. LOXL2 was identified as a novel downstream target gene of YAP, and YAP bound to the LOXL2 promoter to positively regulate transcription. Additionally, the miR-27b-3p inhibitor abrogated the anti-LOXL2 abilities of MSC-ex and diminished the antifibrotic efficacy. miR-27b-3p overexpression promoted MSC-ex mediated YAP/LOXL2 inhibition. Thus, MSC-ex may suppress LOXL2 expression through exosomal miR-27b-3p mediated YAP down-regulation. The findings here may improve our understanding of MSC-ex in liver fibrosis alleviation and provide new opportunities for clinical treatment.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
| |
Collapse
|
41
|
Vizier R, Garnier AR, Dias A, Moreau M, Claron M, Collin B, Denat F, Bellaye PS, Goncalves V. SPECT Imaging of Lysyl Oxidase-like 2 in a Model of Idiopathic Pulmonary Fibrosis. Mol Pharm 2023. [PMID: 37307296 DOI: 10.1021/acs.molpharmaceut.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive imaging of idiopathic pulmonary fibrosis (IPF) remains a challenge. The aim of this study was to develop an antibody-based radiotracer targeting Lysyl Oxidase-like 2 (LOXL2), an enzyme involved in the fibrogenesis process, for SPECT/CT imaging of pulmonary fibrosis. The bifunctional chelator DOTAGA-PEG4-NH2 was chemoenzymatically conjugated to the murine antibody AB0023 using microbial transglutaminase, resulting in a degree of labeling (number of chelators per antibody) of 2.3. Biolayer interferometry confirmed that the binding affinity of DOTAGA-AB0023 to LOXL2 was preserved with a dissociation constant of 2.45 ± 0.04 nM. DOTAGA-AB0023 was then labeled with 111In and in vivo experiments were carried out in a mice model of progressive pulmonary fibrosis induced by intratracheal administration of bleomycin. [111In]In-DOTAGA-AB0023 was injected in three groups of mice (control, fibrotic, and treated with nintedanib). SPECT/CT images were recorded over 4 days p.i. and an ex vivo biodistribution study was performed by gamma counting. A significant accumulation of the tracer in the lungs of the fibrotic mice was observed at D18 post-bleomycin. Interestingly, the tracer uptake was found selectively upregulated in fibrotic lesions observed on CT scans. Images of mice that received the antifibrotic drug nintedanib from D8 up to D18 showed a decrease in [111In]In-DOTAGA-AB0023 lung uptake associated with a decrease in pulmonary fibrosis measured by CT scan. In conclusion, we report the first radioimmunotracer targeting the protein LOXL2 for nuclear imaging of IPF. The tracer showed promising results in a preclinical model of bleomycin-induced pulmonary fibrosis, with high lung uptake in fibrotic areas, and accounted for the antifibrotic activity of nintedanib.
Collapse
Affiliation(s)
- Romane Vizier
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Anaïs-Rachel Garnier
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Alexandre Dias
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Michael Claron
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Bertrand Collin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de Médecine Nucléaire, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon Cedex, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| |
Collapse
|
42
|
Liang Y, Wang J, Xu C, Han W, Wu S, Wu Y, Zhang J, Liu J, Zhang Z, Shi J, Zhang K. Remodeling Collagen Microenvironment in Liver Using a Biomimetic Nano-Regulator for Reversal of Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300127. [PMID: 37088730 PMCID: PMC10288244 DOI: 10.1002/advs.202300127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Liver fibrosis is a progressive histological manifestation that happens in almost all chronic liver diseases. An unabated liver fibrosis may eventually develop into liver cirrhosis or hepatocellular carcinoma. Yet, the strategy for reversal of liver fibrosis is still limited. Herein, a biomimetic nano-regulator (P-ZIF8-cirDNAzyme) is developed to affect both collagen synthesis and degradation in liver to remodel collagen microenvironment. It is found that Zn (II) interference can efficiently inhibit collagen synthesis in activated hepatic stellate cells (aHSC) by inactivating proline 4 hydroxylase and affecting many fibrosis-related signaling pathways. Meanwhile, Zn (II)-dependent circular DNAzymes (cirDNAzymes) are used to efficiently silence tissue inhibitors of metalloproteinase-1, accelerating the degradation of collagen. They act in concert to recover the balance between collagen deposition and degradation. Additionally, ZIF-8-cirDNAzyme is coated by platelet membrane (PM) for precisely targeting aHSC via PM's inflammatory tropism and CD62p-CD44 interaction. In carbon tetrachloride-induced fibrotic mice, P-ZIF-8-cirDNAzyme shows a potent anti-fibrotic effect, greatly reducing the expression of collagen by 73.12% and restoring liver function nearly to normal. This work proposes a prospective platform enabling ion interference and gene silencing, collectively acting in aHSC for reversal of liver fibrosis.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Wang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Chenlu Xu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Wenshuai Han
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Sixuan Wu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Yonghua Wu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jingge Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
43
|
Ma HY, Li Q, Wong WR, N'Diaye EN, Caplazi P, Bender H, Huang Z, Arlantico A, Jeet S, Wong A, Emson C, Brightbill H, Tam L, Newman R, Roose-Girma M, Sandoval W, Ding N. LOXL4, but not LOXL2, is the critical determinant of pathological collagen cross-linking and fibrosis in the lung. SCIENCE ADVANCES 2023; 9:eadf0133. [PMID: 37235663 DOI: 10.1126/sciadv.adf0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic disease characterized by excessive deposition of (myo)fibroblast produced collagen fibrils in alveolar areas of the lung. Lysyl oxidases (LOXs) have been proposed to be the central enzymes that catalyze the cross-linking of collagen fibers. Here, we report that, while its expression is increased in fibrotic lungs, genetic ablation of LOXL2 only leads to a modest reduction of pathological collagen cross-linking but not fibrosis in the lung. On the other hand, loss of another LOX family member, LOXL4, markedly disrupts pathological collagen cross-linking and fibrosis in the lung. Furthermore, knockout of both Loxl2 and Loxl4 does not offer any additive antifibrotic effects when compared to Loxl4 deletion only, as LOXL4 deficiency decreases the expression of other LOX family members including Loxl2. On the basis of these results, we propose that LOXL4 is the main LOX activity underlying pathological collagen cross-linking and lung fibrosis.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Qingling Li
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Hannah Bender
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Robert Newman
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
44
|
Iyer JS, Pokkalla H, Biddle-Snead C, Carrasco-Zevallos O, Lin M, Shanis Z, Le Q, Juyal D, Pouryahya M, Pedawi A, Hoffman S, Elliott H, Leidal K, Myers RP, Chung C, Billin AN, Watkins TR, Resnick M, Wack K, Glickman J, Burt AD, Loomba R, Sanyal AJ, Montalto MC, Beck AH, Taylor-Weiner A, Wapinski I. AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.20.23288534. [PMID: 37162870 PMCID: PMC10168404 DOI: 10.1101/2023.04.20.23288534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response.
Collapse
Affiliation(s)
| | | | | | - Oscar Carrasco-Zevallos
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is Johnson & Johnson, New Brunswick, NJ, USA
| | | | | | | | | | - Maryam Pouryahya
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is AstraZeneca, Gaithersburg, MD, USA
| | - Aryan Pedawi
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is Atomwise, San Francisco, CA, USA
| | | | - Hunter Elliott
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is BigHat Biosciences, San Mateo, CA, USA
| | - Kenneth Leidal
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is Genesis Therapeutics, Burlingame, CA, USA
| | - Robert P. Myers
- Gilead Sciences, Inc., Foster City, CA, USA
- Affiliation shown is that during the time of study; current affiliation is OrsoBio, Inc., Palo Alto, CA, USA
| | - Chuhan Chung
- Gilead Sciences, Inc., Foster City, CA, USA
- Affiliation shown is that during the time of study; current affiliation is Inipharm, San Diego, CA, USA
| | | | | | - Murray Resnick
- PathAI, Boston, MA, USA
- Affiliation shown is that during the time of study; current affiliation is Rhode Island Hospital and The Miriam Hospital, Providence, RI, USA
| | | | | | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA
| | - Arun J. Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, VCU School of Medicine, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
45
|
Trauner M, Chung C, Sterling K, Liu X, Lu X, Xu J, Tempany-Afdhal C, Goodman ZD, Färkkilä M, Tanaka A, Trivedi P, Kowdley KV, Bowlus CL, Levy C, Myers RP. PRIMIS: design of a pivotal, randomized, phase 3 study evaluating the safety and efficacy of the nonsteroidal farnesoid X receptor agonist cilofexor in noncirrhotic patients with primary sclerosing cholangitis. BMC Gastroenterol 2023; 23:75. [PMID: 36922785 PMCID: PMC10015541 DOI: 10.1186/s12876-023-02653-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic progressive liver disease leading to biliary fibrosis and cirrhosis. Cilofexor is a nonsteroidal farnesoid X receptor agonist that demonstrated significant improvements in liver biochemistry and markers of cholestasis in patients with PSC in a phase 2 study. We describe here the rationale, design, and implementation of the phase 3 PRIMIS trial, the largest placebo-controlled trial in PSC. METHODS Adults with large-duct PSC without cirrhosis are randomized 2:1 to receive oral cilofexor 100 mg once daily or placebo for up to 96 weeks during the blinded phase. Patients completing the blinded phase are eligible to receive open-label cilofexor 100 mg daily for up to 96 weeks. The primary objective is to evaluate whether cilofexor reduces the risk of fibrosis progression compared with placebo. Liver biopsy is performed at screening and Week 96 of the blinded phase for histologic assessment of fibrosis. The primary endpoint-chosen in conjunction with guidance from the U.S. Food and Drug Administration-is the proportion of patients with ≥ 1-stage increase in fibrosis according to Ludwig histologic classification at week 96. Secondary objectives include evaluation of changes in liver biochemistry, serum bile acids, liver fibrosis assessed by noninvasive methods, health-related quality of life, and safety of cilofexor. CONCLUSION The phase 3 PRIMIS study is the largest randomized, double-blind, placebo-controlled trial in PSC to date and will allow for robust evaluation of the efficacy and safety of cilofexor in noncirrhotic patients with large-duct PSC. TRIAL REGISTRATION ClinicalTrials.gov NCT03890120; registered 26/03/2019.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | - Kate Sterling
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Xiangyu Liu
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Xiaomin Lu
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA.
| | - Jun Xu
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Clare Tempany-Afdhal
- Department of Radiology, Ferenc Jolesz National Center for Image Guided Therapy, Brigham and Women's Hospital, 75 Francis St, L1 Rm 050, Boston, MA, 02115, USA
| | - Zachary D Goodman
- Hepatic Pathology Consultation and Research, Inova Fairfax Hospital, 8110 Gatehouse Rd, Falls Church, VA, 22042, USA
| | - Martti Färkkilä
- Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Palak Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, ITM Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TT, UK
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 NE 45 Pl #212, Seattle, WA, 98105, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, UC Davis School of Medicine, 4150 V Street, Sacramento, CA, 95817, USA
| | - Cynthia Levy
- Schiff Center for Liver Diseases, University of Miami, Jackson Medical Towers, 1500 NW 12 Ave, Suite 1101 ET, Miami, FL, 33136, USA
| | | |
Collapse
|
46
|
Prognostic modeling in biliary diseases. Curr Opin Gastroenterol 2023; 39:89-94. [PMID: 36821456 DOI: 10.1097/mog.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW To discuss the prognostic models for the cholestatic diseases focusing on primary sclerosing cholangitis and primary biliary cholangitis. RECENT FINDINGS Noninvasive prognostic models that outperform alkaline phosphatase and Mayo Risk Score have been developed to predict clinically significant events, such as transplant free survival or hepatic decompensation. Models for primary sclerosing cholangitis (PSC) include UK-PSC, Primary Sclerosing Cholangitis Risk Estimate Tool, and Amsterdam Oxford models. Models for primary biliary cirrhosis (PBC) include UK-PBC, Global primary biliary cholangitis group score (GLOBE) and Paris II scores. Other models have incorporated elastography with or without findings on magnetic resonance imaging. SUMMARY Noninvasive prognostic models can inform patients about their risk for clinical outcomes and serve as surrogate intermediate outcomes to determine efficacy of novel agents in clinical trials.
Collapse
|
47
|
Nevens F, Trauner M, Manns MP. Primary biliary cholangitis as a roadmap for the development of novel treatments for cholestatic liver diseases †. J Hepatol 2023; 78:430-441. [PMID: 36272496 DOI: 10.1016/j.jhep.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
The discovery of nuclear receptors and transporters has contributed to the development of new drugs for the treatment of cholestatic liver diseases. Particular progress has been made in the development of second-line therapies for PBC. These new drugs can be separated into compounds primarily targeting cholestasis, molecules targeting fibrogenesis and molecules with immune-mediated action. Finally, drugs aimed at symptom relief (pruritus and fatigue) are also under investigation. Obeticholic acid is currently the only approved second-line therapy for PBC. Drugs in the late phase of clinical development include peroxisome proliferator-activated receptor agonists, norursodeoxycholic acid and NADPH oxidase 1/4 inhibitors.
Collapse
Affiliation(s)
- Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital KU Leuven, Belgium; Centre of ERN RARE-LIVER.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Austria; Centre of ERN RARE-LIVER
| | - Michael P Manns
- Hannover Medical School, Hannover, Germany; Centre of ERN RARE-LIVER
| |
Collapse
|
48
|
Bowlus CL, Arrivé L, Bergquist A, Deneau M, Forman L, Ilyas SI, Lunsford KE, Martinez M, Sapisochin G, Shroff R, Tabibian JH, Assis DN. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2023; 77:659-702. [PMID: 36083140 DOI: 10.1002/hep.32771] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Christopher L Bowlus
- Division of Gastroenterology , University of California Davis Health , Sacramento , California , USA
| | | | - Annika Bergquist
- Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| | - Mark Deneau
- University of Utah , Salt Lake City , Utah , USA
| | - Lisa Forman
- University of Colorado , Aurora , Colorado , USA
| | - Sumera I Ilyas
- Mayo Clinic College of Medicine and Science , Rochester , Minnesota , USA
| | - Keri E Lunsford
- Rutgers University-New Jersey Medical School , Newark , New Jersey , USA
| | - Mercedes Martinez
- Vagelos College of Physicians and Surgeons , Columbia University , New York , New York , USA
| | | | | | - James H Tabibian
- David Geffen School of Medicine at UCLA , Los Angeles , California , USA
| | - David N Assis
- Yale School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
49
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
50
|
Ezhilarasan D, Najimi M. Intercellular communication among liver cells in the perisinusoidal space of the injured liver: Pathophysiology and therapeutic directions. J Cell Physiol 2023; 238:70-81. [PMID: 36409708 DOI: 10.1002/jcp.30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatic stellate cells (HSCs) in the perisinusoidal space are surrounded by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and other resident immune cells. In the normal liver, HSCs communicate with these cells to maintain normal liver functions. However, after chronic liver injury, injured hepatocytes release several proinflammatory mediators, reactive oxygen species, and damage-associated molecular patterns into the perisinusoidal space. Consequently, such alteration activates quiescent HSCs to acquire a myofibroblast-like phenotype and express high amounts of transforming growth factor-β1, angiopoietins, vascular endothelial growth factors, interleukins 6 and 8, fibril forming collagens, laminin, and E-cadherin. These phenotypic and functional transdifferentiation lead to hepatic fibrosis with a typical abnormal extracellular matrix synthesis and disorganization of the perisinusoidal space of the injured liver. Those changes provide a favorable environment that regulates tumor cell proliferation, migration, adhesion, and survival in the perisinusoidal space. Such tumor cells by releasing transforming growth factor-β1 and other cytokines, will, in turn, activate and deeply interact with HSCs via a bidirectional loop. Furthermore, hepatocellular carcinoma-derived mediators convert HSCs and macrophages into protumorigenic cell populations. Thus, the perisinusoidal space serves as a critical hub for activating HSCs and their interactions with other cell types, which cause a variety of liver diseases such as hepatic inflammation, fibrosis, cirrhosis, and their complications, such as portal hypertension and hepatocellular carcinoma. Therefore, targeting the crosstalk between activated HSCs and tumor cells/immune cells in the tumor microenvironment may also support a promising therapeutic strategy.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|