1
|
Wang S, Li Z, Chen C, Guo T, Zhao S, Zhao J, Zhang W, Qi Y, Zhang J, Wang Y, Lv Y, Gu C. MACC1 enhances an oncogenic RNA splicing of IRAK1 through interacting with HNRNPH1 in lung adenocarcinoma. J Cell Physiol 2024; 239:e31426. [PMID: 39221900 DOI: 10.1002/jcp.31426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dysregulation of alternative pre-mRNA splicing plays a critical role in the progression of cancers, yet the underlying molecular mechanisms remain largely unknown. It is reported that metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic and predictive marker in many types of cancers, including lung adenocarcinoma. Here, we reveal that the oncogene MACC1 specifically drives the progression of lung adenocarcinoma through its control over cancer-related splicing events. MACC1 depletion inhibits lung adenocarcinoma progression through triggering IRAK1 from its long isoform, IRAK1-L, to the shorter isoform, IRAK1-S. Mechanistically, MACC1 interacts with splicing factor HNRNPH1 to prevent the production of the short isoform of IRAK1 mRNA. Specifically, the interaction between MACC1 and HNRNPH1 relies on the involvement of MACC1's SH3 domain and HNRNPH1's GYR domain. Further, HNRNPH1 can interact with the pre-mRNA segment (comprising exon 11) of IRAK1, thereby bridging MACC1's regulation of IRAK1 splicing. Our research not only sheds light on the abnormal splicing regulation in cancer but also uncovers a hitherto unknown function of MACC1 in tumor progression, thereby presenting a novel potential therapeutic target for clinical treatment.
Collapse
Affiliation(s)
- Shiqing Wang
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chundong Gu
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Liu R, Wang X, Zhou M, Zhai J, Sun J. PSF-lncRNA interaction as a target for novel targeted anticancer therapies. Biomed Pharmacother 2024; 180:117491. [PMID: 39332189 DOI: 10.1016/j.biopha.2024.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.
Collapse
Affiliation(s)
- Ren Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Zhu G, Luo L, He Y, Xiao Y, Cai Z, Tong W, Deng W, Xie J, Zhong Y, Hu Z, Shan R. AURKB targets DHX9 to promote hepatocellular carcinoma progression via PI3K/AKT/mTOR pathway. Mol Carcinog 2024; 63:1814-1826. [PMID: 38874176 DOI: 10.1002/mc.23775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Aurora kinase B (AURKB) is known to play a carcinogenic role in a variety of cancers, but its underlying mechanism in liver cancer is unknown. This study aimed to investigate the role of AURKB in hepatocellular carcinoma (HCC) and its underlying molecular mechanism. Bioinformatics analysis revealed that AURKB was significantly overexpressed in HCC tissues and cell lines, and its high expression was associated with a poorer prognosis in HCC patients. Furthermore, downregulation of AURKB inhibited HCC cell proliferation, migration, and invasion, induced apoptosis, and caused cell cycle arrest. Moreover, AURKB downregulation also inhibited lung metastasis of HCC. AURKB interacted with DExH-Box helicase 9 (DHX9) and targeted its expression in HCC cells. Rescue experiments further demonstrated that AURKB targeting DHX9 promoted HCC progression through the PI3K/AKT/mTOR pathway. Our results suggest that AURKB is significantly highly expressed in HCC and correlates with patient prognosis. Targeting DHX9 with AURKB promotes HCC progression via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of General Surgery, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Laihui Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yongzhu He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of General Surgery, Division of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong Province, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yongqiang Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ziwei Cai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jin Xie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanxin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhigao Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
He Y, Shao Y, Zhou Z, Li T, Gao Y, Liu X, Yuan G, Yang G, Zhang L, Li F. MORC2 regulates RBM39-mediated CDK5RAP2 alternative splicing to promote EMT and metastasis in colon cancer. Cell Death Dis 2024; 15:530. [PMID: 39048555 PMCID: PMC11269669 DOI: 10.1038/s41419-024-06908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Colorectal carcinogenesis and progression are associated with aberrant alternative splicing, yet its molecular mechanisms remain largely unexplored. Here, we find that Microrchidia family CW-type zinc finger 2 (MORC2) binds to RRM1 domain of RNA binding motif protein 39 (RBM39), and RBM39 interacts with site 1 of pre-CDK5RAP2 exon 32 via its UHM domain, resulting in a splicing switch of cyclin-dependent kinase 5 regulatory subunit associated protein 2 (CDK5RAP2) L to CDK5RAP2 S. CDK5RAP2 S promotes invasion of colorectal cancer cells in vitro and metastasis in vivo. Mechanistically, CDK5RAP2 S specifically recruits the PHD finger protein 8 to promote Slug transcription by removing repressive histone marks at the Slug promoter. Moreover, CDK5RAP2 S, but not CDK5RAP2 L, is essential for the promotion of epithelial-mesenchymal transition induced by MORC2 or RBM39. Importantly, high protein levels of MORC2, RBM39 and Slug are strongly associated with metastasis and poor clinical outcomes of colorectal cancer patients. Taken together, our findings uncover a novel mechanism by which MORC2 promotes colorectal cancer metastasis, through RBM39-mediated pre-CDK5RAP2 alternative splicing and highlight the MORC2/RBM39/CDK5RAP2 axis as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Zhihui Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Xue Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Gang Yuan
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Gaoxiang Yang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Lili Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, School of Life Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
5
|
Ronchetti D, Traini V, Silvestris I, Fabbiano G, Passamonti F, Bolli N, Taiana E. The pleiotropic nature of NONO, a master regulator of essential biological pathways in cancers. Cancer Gene Ther 2024; 31:984-994. [PMID: 38493226 PMCID: PMC11257950 DOI: 10.1038/s41417-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
NONO is a member of the Drosophila behavior/human splicing (DBHS) family of proteins. NONO is a multifunctional protein that acts as a "molecular scaffold" to carry out versatile biological activities in many aspects of gene regulation, cell proliferation, apoptosis, migration, DNA damage repair, and maintaining cellular circadian rhythm coupled to the cell cycle. Besides these physiological activities, emerging evidence strongly indicates that NONO-altered expression levels promote tumorigenesis. In addition, NONO can undergo various post-transcriptional or post-translational modifications, including alternative splicing, phosphorylation, methylation, and acetylation, whose impact on cancer remains largely to be elucidated. Overall, altered NONO expression and/or activities are a common feature in cancer. This review provides an integrated scenario of the current understanding of the molecular mechanisms and the biological processes affected by NONO in different tumor contexts, suggesting that a better elucidation of the pleiotropic functions of NONO in physiology and tumorigenesis will make it a potential therapeutic target in cancer. In this respect, due to the complex landscape of NONO activities and interactions, we highlight caveats that must be considered during experimental planning and data interpretation of NONO studies.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
6
|
Lu Y, Meng L, Ren R, Wang X, Sui W, Xue F, Xie L, Chen A, Zhao Y, Yang J, Zhang W, Yu X, Xi B, Xu F, Zhang M, Zhang Y, Zhang C. Paraspeckle protein NONO attenuates vascular calcification by inhibiting bone morphogenetic protein 2 transcription. Kidney Int 2024; 105:1221-1238. [PMID: 38417578 DOI: 10.1016/j.kint.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Vascular calcification is a pathological process commonly associated with atherosclerosis, chronic kidney disease, and diabetes. Paraspeckle protein NONO is a multifunctional RNA/DNA binding protein involved in many nuclear biological processes but its role in vascular calcification remains unclear. Here, we observed that NONO expression was decreased in calcified arteries of mice and patients with CKD. We generated smooth muscle-specific NONO-knockout mice and established three different mouse models of vascular calcification by means of 5/6 nephrectomy, adenine diet to induce chronic kidney failure, or vitamin D injection. The knockout mice were more susceptible to the development of vascular calcification relative to control mice, as verified by an increased calcification severity and calcium deposition. Likewise, aortic rings from knockout mice showed more significant vascular calcification than those from control mice ex vivo. In vitro, NONO deficiency aggravated high phosphate-induced vascular smooth muscle cell osteogenic differentiation and apoptosis, whereas NONO overexpression had a protective effect. Mechanistically, we demonstrated that the regulation of vascular calcification by NONO was mediated by bone morphogenetic protein 2 (BMP2). NONO directly bound to the BMP2 promoter using its C-terminal region, exerting an inhibitory effect on the transcription of BMP2. Thus, our study reveals that NONO is a novel negative regulator of vascular calcification, which inhibits osteogenic differentiation of vascular smooth muscle cell and vascular calcification via negatively regulating BMP2 transcription. Hence, NONO may provide a promising target for the prevention and treatment of vascular calcification.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apoptosis/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 2/genetics
- Cell Differentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Osteogenesis/drug effects
- Promoter Regions, Genetic
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/prevention & control
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Transcription, Genetic
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/etiology
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruiqing Ren
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxia Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Yang ZY, Zhao C, Liu SL, Pan LJ, Zhu YD, Zhao JW, Wang HK, Ye YY, Qiang J, Shi LQ, Mei JW, Xie Y, Gong W, Shu YJ, Dong P, Xiang SS. NONO promotes gallbladder cancer cell proliferation by enhancing oncogenic RNA splicing of DLG1 through interaction with IGF2BP3/RBM14. Cancer Lett 2024; 587:216703. [PMID: 38341127 DOI: 10.1016/j.canlet.2024.216703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Li-Jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-di Zhu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing-Wei Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Hua-Kai Wang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yuan-Yuan Ye
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing Qiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Liu-Qing Shi
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia-Wei Mei
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shan-Shan Xiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
10
|
Chen Y, Xu X, Ding K, Tang T, Cai F, Zhang H, Chen Z, Qi Y, Fu Z, Zhu G, Dou Z, Xu J, Chen G, Wu Q, Ji J, Zhang J. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin Cancer Res 2024; 43:39. [PMID: 38303029 PMCID: PMC10835844 DOI: 10.1186/s13046-024-02964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Xiaohui Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Kaikai Ding
- Department of Radiation Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Feng Cai
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Haocheng Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Yangjian Qi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Ganggui Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Jinfang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, Zhejiang, P. R. China.
- Brain Research Institute, Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, 310000, Zhejiang, P. R. China.
| |
Collapse
|
11
|
Nie D, Tang X, Deng H, Yang X, Tao J, Xu F, Liu Y, Wu K, Wang K, Mei Z, Huang A, Tang N. Metabolic Enzyme SLC27A5 Regulates PIP4K2A pre-mRNA Splicing as a Noncanonical Mechanism to Suppress Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305374. [PMID: 38059827 PMCID: PMC10837360 DOI: 10.1002/advs.202305374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Solute carrier family 27 member 5, a key enzyme in fatty acid transport and bile acid metabolism in the liver, is frequently expressed in low quantities in patients with hepatocellular carcinoma, resulting in poor prognosis. However, it is unclear whether SLC27A5 plays non-canonical functions and regulates HCC progression. Here, an unexpected non-canonical role of SLC27A5 is reported: regulating the alternative splicing of mRNA to inhibit the metastasis of HCC independently of its metabolic enzyme activity. Mechanistically, SLC27A5 interacts with IGF2BP3 to prevent its translocation into the nucleus, thereby inhibiting its binding to target mRNA and modulating PIP4K2A pre-mRNA splicing. Loss of SLC27A5 results in elevated levels of the PIP4K2A-S isoform, thus positively regulating phosphoinositide 3-kinase signaling via enhanced p85 stability in HCC. SLC27A5 restoration by AAV-Slc27a5 or IGF2BP3 RNA decoy oligonucleotides exerts an inhibitory effect on HCC metastasis with reduced expression of the PIP4K2A-S isoform. Therefore, PIP4K2A-S may be a novel target for treating HCC with SLC27A5 deficiency.
Collapse
Affiliation(s)
- Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xiaojun Yang
- Department of GastroenterologyThe Chongqing Hospital of Traditional Chinese MedicineChongqing Academy of Traditional Chinese MedicineChongqing400016China
| | - Junji Tao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Zhechuan Mei
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
12
|
Wu Q, Fu X, He X, Liu J, Li Y, Ou C. Experimental prognostic model integrating N6-methyladenosine-related programmed cell death genes in colorectal cancer. iScience 2024; 27:108720. [PMID: 38299031 PMCID: PMC10829884 DOI: 10.1016/j.isci.2023.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Colorectal cancer (CRC) intricacies, involving dysregulated cellular processes and programmed cell death (PCD), are explored in the context of N6-methyladenosine (m6A) RNA modification. Utilizing the TCGA-COADREAD/CRC cohort, 854 m6A-related PCD genes are identified, forming the basis for a robust 10-gene risk model (CDRS) established through LASSO Cox regression. qPCR experiments using CRC cell lines and fresh tissues was performed for validation. The CDRS served as an independent risk factor for CRC and showed significant associations with clinical features, molecular subtypes, and overall survival in multiple datasets. Moreover, CDRS surpasses other predictors, unveiling distinct genomic profiles, pathway activations, and associations with the tumor microenvironment. Notably, CDRS exhibits predictive potential for drug sensitivity, presenting a novel paradigm for CRC risk stratification and personalized treatment avenues.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
13
|
Shi Q, Li X, Liu Y, Chen Z, He X. FLIBase: a comprehensive repository of full-length isoforms across human cancers and tissues. Nucleic Acids Res 2024; 52:D124-D133. [PMID: 37697439 PMCID: PMC10767943 DOI: 10.1093/nar/gkad745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Regulatory processes at the RNA transcript level play a crucial role in generating transcriptome diversity and proteome composition in human cells, impacting both physiological and pathological states. This study introduces FLIBase (www.FLIBase.org), a specialized database that focuses on annotating full-length isoforms using long-read sequencing techniques. We collected and integrated long-read (351 samples) and short-read (12 469 samples) RNA sequencing data from diverse normal and cancerous human tissues and cells. The current version of FLIBase comprises a total of 983 789 full-length spliced isoforms, identified through long-read sequences and verified using short-read exon-exon splice junctions. Of these, 188 248 isoforms have been annotated, while 795 541 isoforms remain unannotated. By overcoming the limitations of short-read RNA sequencing methods, FLIBase provides an accurate and comprehensive representation of full-length transcripts. These comprehensive annotations empower researchers to undertake various downstream analyses and investigations. Importantly, FLIBase exhibits a significant advantage in identifying a substantial number of previously unannotated isoforms and tumor-specific RNA transcripts. These tumor-specific RNA transcripts have the potential to serve as a source of immunogenic recurrent neoantigens. This remarkable discovery holds tremendous promise for advancing the development of tailored RNA-based diagnostic and therapeutic strategies for various types of human cancer.
Collapse
Affiliation(s)
- Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Yu D, Huang CJ, Tucker HO. Established and Evolving Roles of the Multifunctional Non-POU Domain-Containing Octamer-Binding Protein (NonO) and Splicing Factor Proline- and Glutamine-Rich (SFPQ). J Dev Biol 2024; 12:3. [PMID: 38248868 PMCID: PMC10801543 DOI: 10.3390/jdb12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
It has been more than three decades since the discovery of multifunctional factors, the Non-POU-Domain-Containing Octamer-Binding Protein, NonO, and the Splicing Factor Proline- and Glutamine-Rich, SFPQ. Some of their functions, including their participation in transcriptional and posttranscriptional regulation as well as their contribution to paraspeckle subnuclear body organization, have been well documented. In this review, we focus on several other established roles of NonO and SFPQ, including their participation in the cell cycle, nonhomologous end-joining (NHEJ), homologous recombination (HR), telomere stability, childhood birth defects and cancer. In each of these contexts, the absence or malfunction of either or both NonO and SFPQ leads to either genome instability, tumor development or mental impairment.
Collapse
Affiliation(s)
- Danyang Yu
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Ching-Jung Huang
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Haley O. Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| |
Collapse
|
15
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
16
|
Jin Y, Cao J, Cheng H, Hu X. LncRNA POU6F2-AS2 contributes to malignant phenotypes and paclitaxel resistance by promoting SKP2 expression in stomach adenocarcinoma. J Chemother 2023; 35:638-652. [PMID: 36797828 DOI: 10.1080/1120009x.2023.2177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to investigate the role and mechanism of POU6F2-AS2 in the development of gastric cancer. POU6F2-AS2 expression was considerably higher in clinical stomach adenocarcinoma (STAD) tissues and gastric cancer cell lines (MKN-28 and MGC-803) than in neighbouring normal tissues and gastric mucosa epithelial cells (GES-1). POU6F2-AS2 overexpression resulted in a low overall survival probability, progression-free survival probability and post progression survival probability, as well as increased cell viability, migration and invasion of gastric cancer cells, thereby inhibiting apoptosis. Based on RNA pull-down, cycloheximide and MG132 incubation experiments, POU6F2-AS2 promoted SKP2 by stabilizing NONO expression. In addition, in vivo silencing of POU6F2-AS2 in gastric cancer cells can inhibit tumour progression and produce a synergistic antitumour effect when combined with paclitaxel. POU6F2-AS2 is overexpressed in STAD, which is attributed to a bad prognosis. In vitro and in vivo experiments have confirmed that the POU6F2-AS2/NONO/SKP2 axis promotes STAD progression, and that the silencing of POU6F2-AS2 plays a synergistic antitumour effect when combined with paclitaxel. Therefore, POU6F2-AS2 may be potentially developed as a target to inhibit STAD and reduce chemoresistance.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Wu H, Wang J, Hu X, Zhuang C, Zhou J, Wu P, Li S, Zhao RC. Comprehensive transcript-level analysis reveals transcriptional reprogramming during the progression of Alzheimer's disease. Front Aging Neurosci 2023; 15:1191680. [PMID: 37396652 PMCID: PMC10308376 DOI: 10.3389/fnagi.2023.1191680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disorder that has a multi-step disease progression. Differences between moderate and advanced stages of AD have not yet been fully characterized. Materials and methods Herein, we performed a transcript-resolution analysis in 454 AD-related samples, including 145 non-demented control, 140 asymptomatic AD (AsymAD), and 169 AD samples. We comparatively characterized the transcriptome dysregulation in AsymAD and AD samples at transcript level. Results We identified 4,056 and 1,200 differentially spliced alternative splicing events (ASEs) that might play roles in the disease progression of AsymAD and AD, respectively. Our further analysis revealed 287 and 222 isoform switching events in AsymAD and AD, respectively. In particular, a total of 163 and 119 transcripts showed increased usage, while 124 and 103 transcripts exhibited decreased usage in AsymAD and AD, respectively. For example, gene APOA2 showed no expression changes between AD and non-demented control samples, but expressed higher proportion of transcript ENST00000367990.3 and lower proportion of transcript ENST00000463812.1 in AD compared to non-demented control samples. Furthermore, we constructed RNA binding protein (RBP)-ASE regulatory networks to reveal potential RBP-mediated isoform switch in AsymAD and AD. Conclusion In summary, our study provided transcript-resolution insights into the transcriptome disturbance of AsymAD and AD, which will promote the discovery of early diagnosis biomarkers and the development of new therapeutic strategies for patients with AD.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoyuan Hu
- H. Milton Stewart School of Industrial and Systems Engineering, College of Engineering, Geogia Institute of Technology, Atlanta, GA, United States
| | - Cheng Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jianxin Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Peiru Wu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Institute for Clinical Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert Chunhua Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
- School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Rothzerg E, Feng W, Song D, Li H, Wei Q, Fox A, Wood D, Xu J, Liu Y. Single-Cell Transcriptome Analysis Reveals Paraspeckles Expression in Osteosarcoma Tissues. Cancer Inform 2022; 21:11769351221140101. [PMID: 36507075 PMCID: PMC9730017 DOI: 10.1177/11769351221140101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear paraspeckles are subnuclear bodies contracted by nuclear-enriched abundant transcript 1 (NEAT1) long non-coding RNA, localised in the interchromatin space of mammalian cell nuclei. Paraspeckles have been critically involved in tumour progression, metastasis and chemoresistance. To this date, there are limited findings to suggest that paraspeckles, NEAT1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) directly or indirectly play roles in osteosarcoma progression. Herein, we analysed NEAT1, paraspeckle proteins (SFPQ, PSPC1 and NONO) and hnRNP members (HNRNPK, HNRNPM, HNRNPR and HNRNPD) gene expression in 6 osteosarcoma tumour tissues using the single-cell RNA-sequencing method. The normalised data highlighted that the paraspeckles transcripts were highly abundant in osteoblastic OS cells, except NEAT1, which was highly expressed in myeloid cell 1 and 2 subpopulations.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Wenyu Feng
- Department of Orthopaedics, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hengyuan Li
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia,Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning, China,Yun Liu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
20
|
Hu W, Wu Y, Shi Q, Wu J, Kong D, Wu X, He X, Liu T, Li S. Systematic characterization of cancer transcriptome at transcript resolution. Nat Commun 2022; 13:6803. [PMID: 36357395 PMCID: PMC9649690 DOI: 10.1038/s41467-022-34568-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Transcribed RNAs undergo various regulation and modification to become functional transcripts. Notably, cancer transcriptome has not been fully characterized at transcript resolution. Herein, we carry out a reference-based transcript assembly across >1000 cancer cell lines. We identify 498,255 transcripts, approximately half of which are unannotated. Unannotated transcripts are closely associated with cancer-related hallmarks and show clinical significance. We build a high-confidence RNA binding protein (RBP)-transcript regulatory network, wherein most RBPs tend to regulate transcripts involved in cell proliferation. We identify numerous transcripts that are highly associated with anti-cancer drug sensitivity. Furthermore, we establish RBP-transcript-drug axes, wherein PTBP1 is experimentally validated to affect the sensitivity to decitabine by regulating KIAA1522-a6 transcript. Finally, we establish a user-friendly data portal to serve as a valuable resource for understanding cancer transcriptome diversity and its potential clinical utility at transcript level. Our study substantially extends cancer RNA repository and will facilitate anti-cancer drug discovery.
Collapse
Affiliation(s)
- Wei Hu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Yangjun Wu
- grid.452404.30000 0004 1808 0942Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Qili Shi
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jingni Wu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Deping Kong
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Xiaohua Wu
- grid.452404.30000 0004 1808 0942Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Xianghuo He
- grid.11841.3d0000 0004 0619 8943Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Teng Liu
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China ,grid.440657.40000 0004 1762 5832Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000 China
| | - Shengli Li
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| |
Collapse
|
21
|
Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022; 13:1007006. [PMID: 36225557 PMCID: PMC9548564 DOI: 10.3389/fphar.2022.1007006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers with limited therapeutic options. Melatonin, a neuroendocrine hormone produced primarily by the pineal gland, demonstrates an anti-cancer effect on a myriad of cancers including HCC. However, whether melatonin could suppress tumor growth through regulating RNA alternative splicing remains largely unknown. Here we demonstrated that melatonin could inhibit the growth of HCC. Mechanistically, melatonin induced transcriptional alterations of genes, which are involved in DNA replication, DNA metabolic process, DNA repair, response to wounding, steroid metabolic process, and extracellular matrix functions. Importantly, melatonin controlled numerous cancer-related RNA alternative splicing events, regulating mitotic cell cycle, microtubule-based process, kinase activity, DNA metabolic process, GTPase regulator activity functions. The regulatory effect of melatonin on alternative splicing is partially mediated by melatonin receptor MT1. Specifically, melatonin regulates the splicing of IKBKG (NEMO), an essential modulator of NF-κB. In brief, melatonin increased the production of the long isoform of NEMO-L with exon 5 inclusion, thereby inhibiting the growth of HepG2 cells. Collectively, our study provides a novel mechanism of melatonin in regulating RNA alternative splicing, and offers a new perspective for melatonin in the inhibition of cancer progression.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| |
Collapse
|
22
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Zhang F, Sun J, Tang X, Liang Y, Jiao Q, Yu B, Dai Z, Yuan X, Li J, Yan J, Zhang Z, Fan S, Wang M, Hu H, Zhang C, Lv XB. Stabilization of SAMHD1 by NONO is crucial for Ara-C resistance in AML. Cell Death Dis 2022; 13:590. [PMID: 35803902 PMCID: PMC9270467 DOI: 10.1038/s41419-022-05023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
Cytarabine (Ara-C) is the first-line drug for the treatment of acute myelogenous leukemia (AML). However, resistance eventually develops, decreasing the efficacy of Ara-C in AML patients. The expression of SAMHD1, a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, has been reported to be elevated in Ara-C-resistant AML patients and to play a crucial role in mediating Ara-C resistance in AML. However, the mechanism by which SAMHD1 is upregulated in resistant AML remains unknown. In this study, NONO interacted with and stabilized SAMHD1 by inhibiting DCAF1-mediated ubiquitination/degradation of SAMHD1. Overexpression of NONO increased SAMHD1 expression and reduced the sensitivity of AML cells to Ara-C, and downregulation of NONO had the opposite effects. In addition, the DNA-damaging agents DDP and adriamycin (ADM) reduced NONO/SAMHD1 expression and sensitized AML cells to Ara-C. More importantly, NONO was upregulated in Ara-C-resistant AML cells, resulting in increased SAMHD1 expression in resistant AML cells, and DDP and ADM treatment resensitized resistant AML cells to Ara-C. This study revealed the mechanism by which SAMHD1 is upregulated in Ara-C-resistant AML cells and provided novel therapeutic strategies for Ara-C-resistant AML.
Collapse
Affiliation(s)
- Feifei Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jun Sun
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiaofeng Tang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Yiping Liang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Quanhui Jiao
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Bo Yu
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhengzai Dai
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Xuhui Yuan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jiayu Li
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jinhua Yan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhiping Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Song Fan
- grid.412536.70000 0004 1791 7851Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120 China
| | - Min Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Haiyan Hu
- grid.412528.80000 0004 1798 5117Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiao-Bin Lv
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| |
Collapse
|
24
|
Shi Q, Liu T, Hu W, Chen Z, He X, Li S. SRTdb: an omnibus for human tissue and cancer-specific RNA transcripts. Biomark Res 2022; 10:27. [PMID: 35473935 PMCID: PMC9044872 DOI: 10.1186/s40364-022-00377-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022] Open
Abstract
The production of functional mature RNA transcripts from genes undergoes various pre-transcriptional regulation and post-transcriptional modifications. Accumulating studies demonstrated that gene transcription carries out in tissue and cancer type-dependent ways. However, RNA transcript-level specificity analysis in large-scale transcriptomics data across different normal tissue and cancer types is lacking. We applied reference-based de novo transcript assembly and quantification of 27,741 samples across 33 cancer types, 29 tissue types, and 25 cancer cell line types. We totally identified 231,836 specific RNA transcripts (SRTs) across various tissue and cancer types, most of which are found independent of specific genes. Almost half of tumor SRTs are also tissue-specific but in different tissues. Furthermore, we found that 10 ~ 20% of tumor SRTs in most tumor types were testis-specific. The SRT database (SRTdb) was constructed based on these resources. Taking liver cancer as an example, we showed how SRTdb resource is utilized to optimize the identification of RNA transcripts for more precision diagnosis of particular cancers. Our results provide a useful resource for exploring transcript specificity across various cancer and tissue types, and boost the precision medicine for tumor patients.
Collapse
Affiliation(s)
- Qili Shi
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Teng Liu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Wei Hu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
25
|
Lv W, Jia Y, Wang J, Duan Y, Wang X, Liu T, Hao S, Liu L. Long non-coding RNA SNHG10 upregulates BIN1 to suppress the tumorigenesis and epithelial-mesenchymal transition of epithelial ovarian cancer via sponging miR-200a-3p. Cell Death Dis 2022; 8:60. [PMID: 35149697 PMCID: PMC8837780 DOI: 10.1038/s41420-022-00825-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most frequent and fatal gynecologic malignant tumors resulting in an unsatisfying prognosis. Long non-coding RNAs (lncRNAs) play pivotal roles in the tumorigenesis and progression of EOC. However, the profile of lncRNAs involved in EOC remains to be expanded to further improve clinical treatment strategy. In present study, we identified a novel tumor-suppressive lncRNA small nucleolar RNA host gene 10 (SNHG10) in EOC. Kaplan–Meier analysis and COX proportional hazard progression model showed that low expression of SNHG10 was correlated with a poor prognosis of EOC patients. Overexpressing SNHG10 suppressed the proliferation, colony formation, migration, and invasion of EOC cells. Furthermore, SNHG10 was predicted to sponge miR-200a-3p in EOC cells according to the LncBase v.2 experimental module. Then, the binding of SNHG10 and miR-200a-3p was confirmed by performing quantitative real-time PCR (qRT-PCR) and luciferase reporter assays. RNA immunoprecipitation (RIP) showed that SNHG10 and miR-200a-3p occupied the same Ago2 protein to form an RNA-induced silencing complex (RISC). By overlapping the results from the bioinformatics algorithms, tumor-suppressor bridging integrator-1 (BIN1) was found to be a main downstream target of the SNHG10/miR-200a-3p axis. Low expression of BIN1 in EOC tissues was detected by using immunohistochemistry (IHC). Besides, BIN1 and SNHG10 expression was positively correlated in EOC tissues. By performing miRNA rescue experiments, a SNHG10/miR-200a-3p/BIN1 axis and its promoting effects on malignant behaviors and epithelial–mesenchymal transition (EMT) process were verified in EOC cells. Moreover, SNHG10 overexpression significantly suppressed the tumorigenesis and EMT of EOC cells in vivo. Altogether, SNHG10 sponges miR-200a-3p to upregulate BIN1 and thereby exerting its tumor-suppressive effects in EOC. Therefore, the SNHG10/miR-200a-3p/BIN1 axis may act as a potential predictive biomarker and therapeutic target for treating EOC.
Collapse
Affiliation(s)
- Wei Lv
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Yuqing Duan
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Xuexiao Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Shuwei Hao
- Department of Gynecology, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, 050035, Shijiazhuang, China. .,International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, 050017, Shijiazhuang, China.
| |
Collapse
|
26
|
Meng Y, Li S, Zhang Q, Ben S, Zhu Q, Du M, Gu D. LncRNA‐422 suppresses the proliferation and growth of colorectal cancer cells by targeting SFPQ. Clin Transl Med 2022; 12:e664. [PMID: 35075799 PMCID: PMC8787101 DOI: 10.1002/ctm2.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yixuan Meng
- Department of Oncology Nanjing First Hospital Nanjing Medical University Nanjing China
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Shuwei Li
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Qiuyi Zhang
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Shuai Ben
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Qiuyuan Zhu
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Genetic Toxicology The Key Laboratory of Modern Toxicology of Ministry of Education Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Mulong Du
- Department of Environmental Genomics Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment Collaborative Innovation Center for Cancer Personalized Medicine Nanjing Medical University Nanjing China
- Department of Biostatistics Center for Global Health School of Public Health Nanjing Medical University Nanjing China
| | - Dongying Gu
- Department of Oncology Nanjing First Hospital Nanjing Medical University Nanjing China
| |
Collapse
|
27
|
A Pyroptosis-Based Prognostic Model for Immune Microenvironment Estimation of Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:8109771. [PMID: 35047095 PMCID: PMC8763514 DOI: 10.1155/2022/8109771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Background Hepatocellular carcinoma (HCC), an aggressive malignant tumor, has a high incidence and unfavorable prognosis. Recently, the synergistic effect of pyroptosis in antitumor therapy and regulation of tumor immune microenvironment has made it possible to become a novel therapeutic method, but its potential mechanism still needs further exploration. Methods Differentially expressed genes with prognostic value in Liver Hepatocellular Carcinoma Project of The Cancer Genome Atlas (TCGA-LIHC) cohort were screened and incorporated into the risk signature by Cox proportional hazards regression model and least absolute shrinkage and selection operator. Kaplan-Meier (KM) curves and receiver operating characteristic (ROC) curves were applied to conduct survival comparisons and estimate prediction ability. The dataset of Liver Cancer-RIKEN, Japan Project from International Cancer Genome Consortium (ICGC-LIRI-JP) cohort was used to verify the reliability of the signature. Correlation analysis between clinicopathological characteristics, immune infiltration, drug sensitivities, and risk scores was conducted. Functional annotation analyses were performed for the genes differentially expressed between high-risk and low-risk groups. Results A risk signature consisting of 6 pyroptosis-related genes in HCC was developed and validated. KM curves and ROC curves revealed its considerable predictive accuracy. Higher risk scores meant more advanced grade, higher alpha-fetoprotein level, and stronger invasive ability. Overexpressed genes in high-risk population were more enriched in the immune-associated pathways, and these patients might be more sensitive to immune checkpoint inhibitors instead of Sorafenib. Intriguingly, 6 identified genes were promising to be prognostic biomarkers and therapeutic targets of HCC. Conclusions The signature may have crucial clinical significance in predicting survival prognosis, immune infiltration, and drug efficacy based on pyroptosis-related genes.
Collapse
|
28
|
Liu Y, Xu S, Huang Y, Liu S, Xu Z, Wei M, Liu J. MARCH6 promotes Papillary Thyroid Cancer development by destabilizing DHX9. Int J Biol Sci 2021; 17:3401-3412. [PMID: 34512155 PMCID: PMC8416720 DOI: 10.7150/ijbs.60628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
Membrane-associated ring-CH-type finger (MARCH) proteins belong to the E3 ubiquitin ligase family, which regulates protein stability by increasing ubiquitination. Recent evidence has shown that some MARCH proteins play important roles in cancer development. However, the role of MARCH6 in tumorigenesis, including thyroid tumorigenesis, remains unknown. In this study, we determined that MARCH6 was upregulated in the majority of primary papillary thyroid cancers (PTCs) at both the mRNA and protein levels. Gain-of-function and loss-of-function studies demonstrated that MARCH6 suppressed apoptosis and promoted cell cycle progression, cell proliferation, growth, migration and tumorigenesis in thyroid cancer cells. Mechanistically, MARCH6 interacted with and downregulated DHX9. Knockdown of DHX9 enhanced the proliferative and migratory abilities of thyroid cancer cells. The inhibitory effect of MARCH6 knockdown on thyroid cancer cell growth and migration was also reversed by DHX9 silencing. In addition, MARCH6 activated the AKT/mTOR signaling pathway in a manner dependent on the downregulation of DHX9. Overall, MARCH6 functions as a potential oncogene in thyroid cancer by destabilizing DHX9 and activating AKT/mTOR signaling.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Siyuan Xu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ying Huang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhengang Xu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Minghui Wei
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
29
|
Bi O, Anene CA, Nsengimana J, Shelton M, Roberts W, Newton-Bishop J, Boyne JR. SFPQ promotes an oncogenic transcriptomic state in melanoma. Oncogene 2021; 40:5192-5203. [PMID: 34218270 PMCID: PMC8376646 DOI: 10.1038/s41388-021-01912-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The multifunctional protein, splicing factor, proline- and glutamine-rich (SFPQ) has been implicated in numerous cancers often due to interaction with coding and non-coding RNAs, however, its role in melanoma remains unclear. We report that knockdown of SFPQ expression in melanoma cells decelerates several cancer-associated cell phenotypes, including cell growth, migration, epithelial to mesenchymal transition, apoptosis, and glycolysis. RIP-seq analysis revealed that the SFPQ-RNA interactome is reprogrammed in melanoma cells and specifically enriched with key melanoma-associated coding and long non-coding transcripts, including SOX10, AMIGO2 and LINC00511 and in most cases SFPQ is required for the efficient expression of these genes. Functional analysis of two SFPQ-enriched lncRNA, LINC00511 and LINC01234, demonstrated that these genes independently contribute to the melanoma phenotype and a more detailed analysis of LINC00511 indicated that this occurs in part via modulation of the miR-625-5p/PKM2 axis. Importantly, analysis of a large clinical cohort revealed that elevated expression of SFPQ in primary melanoma tumours may have utility as a prognostic biomarker. Together, these data suggest that SFPQ is an important driver of melanoma, likely due to SFPQ-RNA interactions promoting the expression of numerous oncogenic transcripts.
Collapse
Affiliation(s)
- O Bi
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Nsengimana
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
30
|
Razpotnik R, Nassib P, Kunej T, Rozman D, Režen T. Identification of Novel RNA Binding Proteins Influencing Circular RNA Expression in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:7477. [PMID: 34299096 PMCID: PMC8307310 DOI: 10.3390/ijms22147477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are increasingly recognized as having a role in cancer development. Their expression is modified in numerous cancers, including hepatocellular carcinoma (HCC); however, little is known about the mechanisms of their regulation. The aim of this study was to identify regulators of circRNAome expression in HCC. Using publicly available datasets, we identified RNA binding proteins (RBPs) with enriched motifs around the splice sites of differentially expressed circRNAs in HCC. We confirmed the binding of some of the candidate RBPs using ChIP-seq and eCLIP datasets in the ENCODE database. Several of the identified RBPs were found to be differentially expressed in HCC and/or correlated with the overall survival of HCC patients. According to our bioinformatics analyses and published evidence, we propose that NONO, PCPB2, PCPB1, ESRP2, and HNRNPK are candidate regulators of circRNA expression in HCC. We confirmed that the knocking down the epithelial splicing regulatory protein 2 (ESRP2), known to be involved in the maintenance of the adult liver phenotype, significantly changed the expression of candidate circRNAs in a model HCC cell line. By understanding the systemic changes in transcriptome splicing, we can identify new proteins involved in the molecular pathways leading to HCC development and progression.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Petra Nassib
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia;
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| |
Collapse
|
31
|
Wang S, Han H, Meng J, Yang W, Lv Y, Wen X. Long non-coding RNA SNHG1 suppresses cell migration and invasion and upregulates SOCS2 in human gastric carcinoma. Biochem Biophys Rep 2021; 27:101052. [PMID: 34179518 PMCID: PMC8214191 DOI: 10.1016/j.bbrep.2021.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Gastric carcinoma (GC) is one of the most common malignancies and the third leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. In this study, we investigated the clinical significance and function of lncRNA SNHG1 in GC. SNHG1 was significantly downregulated in GC tumor tissues compared with adjacent noncancerous tissues. Overexpression of SNHG1 in BGC-823 cells remarkably inhibited not only cell proliferation, migration, invasion in vitro, but also tumorigenesis and lung metastasis in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Conversely, inhibition of SNHG1 by transfection of siRNA in AGS cells resulted in opposite phenotype changes. Mechanically, SNHG1 was found interacted with ILF3, NONO and SFPQ. RNA-seq combined with bioinformatic analysis identified a serial of downstream genes of SNHG1, including SOCS2, LOXL2, LTBP3, LTBP4. Overexpression of SNHG1 induced SOCS2 expression whereas knockdown of SNHG1 decreased SOCS2 expression. In addition, knockdown of SNHG1 promoted the activation of JAK2/STAT signaling pathway. Taken together, our data suggested that SNHG1 suppressed aggressive phenotype of GC cells and regulated SOCS2/JAK2/STAT pathway. SNHG1 was significantly downregulated in GC tumor tissues. SNHG1 suppressed proliferation and migration of GC cells. SNHG1 localized in nucleus of GC cells and interacted with ILF3, NONO and SFPQ. SNHG1 regulate SOCS2 expression in GC cell lines and JAK2/STAT signaling pathway in AGS cells.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Haibo Han
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Junling Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Wei Yang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Yunwei Lv
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Xianzi Wen
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| |
Collapse
|
32
|
Nuclear scaffold protein p54 nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene 2021; 40:4167-4183. [PMID: 34079086 PMCID: PMC8211563 DOI: 10.1038/s41388-021-01848-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia and related oxidative stress are closely related to the development and treatment of hepatocellular carcinoma (HCC). However, the mechanism mediated by hypoxia in HCC has not yet been elucidated. Here, we found multifunction scaffold protein p54nrb/NONO exerted pleiotropic effects to regulate hypoxia transcription signals, thereby enhancing the progression of liver cancer. Extensive analysis of clinical data demonstrated that NONO was significantly upregulated and represented as a poor prognostic indicator of HCC. The crucial role of NONO in driving angiogenesis and glycolysis, two well-known cancer phenotypes mediated by hypoxia, was examined in vitro an in vivo. Mechanistically, NONO interacted with and stabilized both HIF-1 and HIF-2 complexes thus activating the transcription of hypoxia-induced genes. Besides, NONO bound pre-mRNA and subsequent mRNA of these genes to facilitate them splicing and mRNA stability, respectively. Thus, NONO knockout seriously disrupted the expression of a cluster of HIF-1/2 targets and impeded hypoxia-enhanced progression in HCC. In conclusion, NONO functioned as a multipurpose scaffold that interacted with HIF-1/2 complex and their downstream transcripts to facilitate the expression of hypoxia-induced genes, allowing malignant proliferation, indicating that NONO might be a potential therapeutic target for HCC.
Collapse
|
33
|
Zhang F, Tang X, Fan S, Liu X, Sun J, Ju C, Liang Y, Liu R, Zhou R, Yu B, Zhang C, Zhang Z, Kang T, Huang G, Lv XB. Targeting the p300/NONO axis sensitizes melanoma cells to BRAF inhibitors. Oncogene 2021; 40:4137-4150. [PMID: 34017080 DOI: 10.1038/s41388-021-01834-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023]
Abstract
BRAF inhibitors (BRAFi) that target BRAF V600E kinase, a driver mutation found in 50% of melanomas, show a significant antitumor response, but the common emergence of acquired resistance remains a challenge. Abnormal expression of RAF isoforms CRAF and ARAF reactivates pERK1/2, which plays crucial roles in the acquisition of resistance of melanoma cells. However, the mechanisms of dysregulation of RAF isoforms in resistant melanoma cells remain unknown. Here, we identified NONO interacted with and stabilized both CRAF and ARAF in melanoma cells, and that NONO was acetylated at 198K by p300 acetyltransferase, which stabilized NONO via antagonizing its ubiquitination/degradation mediated by RNF8. The upregulation of both p300 and NONO promoted the rebound of pERK1/2 and the subsequent resistance of melanoma cells to BRAFi, and the activation of ERK1/2 in turn induced p300 to form a positive feedback loop in resistant melanoma cells. There was a positive correlation between p300 and NONO in resistant melanoma cells and clinical samples, and p300 inhibitor C646 overcame the resistance of resistant melanoma cells to BRAF inhibitors in vitro and in vivo. Our findings reveal that targeting the positive feedback loop of p300-NONO-CRAF/ARAF-pERK1/2 may be excellent strategies to overcome the resistance of BRAF inhibitors for melanoma patients.
Collapse
Affiliation(s)
- Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
34
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
36
|
Tian S, Liu J, Sun K, Liu Y, Yu J, Ma S, Zhang M, Jia G, Zhou X, Shang Y, Han Y. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 10:597996. [PMID: 33575212 PMCID: PMC7870868 DOI: 10.3389/fonc.2020.597996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Evidence from prevailing studies show that hepatocellular carcinoma (HCC) is among the top cancers with high mortality globally. Gene regulation at post-transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important mechanism that modifies various biological behaviors of HCC. Currently, it is not fully understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct and validate an RBP-related model to predict the prognosis of HCC patients. METHODS Differently expressed RBPs were identified in HCC patients based on the GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative bioinformatics analyses were performed to select hub genes. Gene expression patterns were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to develop a prognostic model. Then, the performance of the prognostic model was assessed using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis. Moreover, data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Finally, a nomogram combining clinicopathological parameters and prognostic model was established for the individual prediction of survival probability. RESULTS The prognostic risk model was finally constructed based on two RBPs (BOP1 and EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-risk group relative to the high-risk group. Moreover, higher risk score was associated with advanced pathological grade and late clinical stage. Besides, the risk score was found to be an independent prognosis factor based on multivariate analysis. Nomogram including the risk score and clinical stage proved to perform better in predicting patient prognosis. CONCLUSIONS The RBP-related prognostic model established in this study may function as a prognostic indicator for HCC, which could provide evidence for clinical decision making.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Keshuai Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
37
|
Yin XK, Wang YL, Wang F, Feng WX, Bai SM, Zhao WW, Feng LL, Wei MB, Qin CL, Wang F, Chen ZL, Yi HJ, Huang Y, Xie PY, Kim T, Wang YN, Hou JW, Li CW, Liu Q, Fan XJ, Hung MC, Wan XB. PRMT1 enhances oncogenic arginine methylation of NONO in colorectal cancer. Oncogene 2021; 40:1375-1389. [PMID: 33420374 PMCID: PMC7892343 DOI: 10.1038/s41388-020-01617-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Arginine methylation is an important posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs). However, the role of PRMTs in colorectal cancer (CRC) progression is not well understood. Here we report that non-POU domain-containing octamer-binding protein (NONO) is overexpressed in CRC tissue and is a potential marker for poor prognosis in CRC patients. NONO silencing resulted in decreased proliferation, migration, and invasion of CRC cells, whereas overexpression had the opposite effect. In a xenograft model, tumors derived from NONO-deficient CRC cells were smaller than those derived from wild-type (WT) cells, and PRMT1 inhibition blocked CRC xenograft progression. A mass spectrometry analysis indicated that NONO is a substrate of PRMT1. R251 of NONO was asymmetrically dimethylated by PRMT1 in vitro and in vivo. Compared to NONO WT cells, NONO R251K mutant-expressing CRC cells showed reduced proliferation, migration, and invasion, and PRMT1 knockdown or pharmacological inhibition abrogated the malignant phenotype associated with NONO asymmetric dimethylation in both KRAS WT and mutant CRC cells. Compared to adjacent normal tissue, PRMT1 was highly expressed in the CRC zone in clinical specimens, which was correlated with poor overall survival in patients with locally advanced CRC. These results demonstrate that PRMT1-mediated methylation of NONO at R251 promotes CRC growth and metastasis, and suggest that PRMT1 inhibition may be an effective therapeutic strategy for CRC treatment regardless of KRAS mutation status.
Collapse
Affiliation(s)
- Xin-Ke Yin
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Yun-Long Wang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Fei Wang
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107 PR China
| | - Wei-Xing Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Shao-Mei Bai
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Wan-Wen Zhao
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Li-Li Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Ming-Biao Wei
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Cao-Litao Qin
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Fang Wang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Zhi-Li Chen
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Hong-Jun Yi
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Yan Huang
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Pei-Yi Xie
- grid.12981.330000 0001 2360 039XDepartment of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Taewan Kim
- grid.508211.f0000 0004 6004 3854Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055 PR China ,grid.261331.40000 0001 2285 7943The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| | - Ying-Nai Wang
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun-Wei Hou
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Chia-Wei Li
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Quentin Liu
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044 PR China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 PR China
| | - Xin-Juan Fan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Mien-Chie Hung
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical University, Taichung, 404 Taiwan ,grid.252470.60000 0000 9263 9645Department of Biotechnology, Asia University, Taichung, 413 Taiwan
| | - Xiang-Bo Wan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Medical Engineering, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| |
Collapse
|
38
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
39
|
Guo F, Xing L. RNA helicase A as co-factor for DNA viruses during replication. Virus Res 2020; 291:198206. [PMID: 33132162 DOI: 10.1016/j.virusres.2020.198206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022]
Abstract
RNA helicase A (RHA) is a ubiquitously expressed DExH-box helicase enzyme that is involved in a wide range of biological processes including transcription, translation, and RNA processing. A number of RNA viruses recruit RHA to the viral RNA to facilitate virus replication. DNA viruses contain a DNA genome and replicate using a DNA-dependent DNA polymerase. RHA has also been reported to associate with some DNA viruses during replication, in which the enzyme acts on the viral RNA or protein products. As shown for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, RHA has potential to allow the virus to control a switch in cellular gene expression to modulate the antiviral response. While the study of the interaction of RHA with DNA viruses is still at an early stage, preliminary evidence indicates that the underlying molecular mechanisms are diverse. We now review the current status of this emerging field.
Collapse
Affiliation(s)
- Fan Guo
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China.
| |
Collapse
|
40
|
Ding H, Liu J, Wang C, Su Y. NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA. Cancer Cell Int 2020; 20:425. [PMID: 32884448 PMCID: PMC7461318 DOI: 10.1186/s12935-020-01520-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dysregulation of fatty acid (FA) metabolism is involved in hepatocellular carcinoma (HCC) development. Non-POU domain-containing octamer binding protein (NONO), known as the component of nuclear paraspeckles, has recently been found to promote HCC progression. In this study, we investigated the functions of NONO in regulating de novo FA synthesis and its underling mechanism during HCC development. Methods The roles of NONO in HCC development by applying gene function loss analysis in HCC cells were detected by quantitative real-time polymerase chain reaction, cell proliferation, and cell invasion assays. The underlying mechanism of NONO in HCC development was examined by western blotting, subcellular fractionation, RNA-binding protein immunoprecipitation-sequencing, chromatin immunoprecipitation, co-immunoprecipitation and mass spectrometry. The effect of NONO on tumorigenesis in vivo was performed with a subcutaneous xenograft mouse model of HCC. Results NONO promotes HCC progression by interacting with and increasing ATP-citrate lyase (ACLY) mRNA to enhance FA biosynthesis. Furthermore, NONO promotes ACLY expression through enhancing nuclear ACLY mRNA stability in Diethylnitrosamine-stimulated HCC cells, not related to nuclear paraspeckles. Moreover, we find that NONO/SFPQ (Splicing factor proline and glutamine rich) heterodimer is essential for NONO interacting with ACLY mRNA in DEN stimulated HCC cells. In addition, NONO, Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) and ACLY expressions contribute HCC development in mice and are related to poor survival. Conclusion NONO promotes HCC progression by enhancing FA biosynthesis through interacting with ACLY mRNA and provide a novel potential target for HCC therapy.
Collapse
Affiliation(s)
- Hongda Ding
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Junpeng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Caibin Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 China
| |
Collapse
|