1
|
Gou J, Bi J, Wang K, Lei L, Feng Y, Tan Z, Gao J, Song Y, Kang E, Guan F, Li X. O-GlcNAcylated FTO promotes m6A modification of SOX4 to enhance MDS/AML cell proliferation. Cell Commun Signal 2025; 23:43. [PMID: 39849461 PMCID: PMC11761745 DOI: 10.1186/s12964-025-02058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The decreased O-GlcNAcylation on FTO can result in diminished m6A modification of SRY-related high mobility group box 4 (SOX4). This led to the promotion of cell apoptosis and inhibition of cell proliferation in MDS/AML. The O-GlcNAcylation of FTO stabilized SOX4 transcripts in an m6A-dependent manner, resulting in increased AKT and MAPK phosphorylation and decreased cell apoptosis. Inhibiting FTO O-GlcNAcylation significantly slowed AML progression in vitro, a finding supported by clinical data in MDS/AML patients. In conclusion, our study highlights the crucial role of FTO O-GlcNAcylation in RNA m6A methylation and the progression of MDS/AML, thereby providing a potential therapeutic avenue for these formidable diseases.
Collapse
Affiliation(s)
- Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Jingjing Bi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Kexin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yanli Feng
- Department of Hematology, Provincial People's Hospital, Xi'an, P. R. China
| | - Zengqi Tan
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, P. R. China
| | - Jiaojiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yanan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Enci Kang
- Xi'an Gaoxin No.1 High School, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.
- College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
2
|
Cui X, Chang M, Wang Y, Liu J, Sun Z, Sun Q, Sun Y, Ren J, Li W. Helicobacter pylori reduces METTL14-mediated VAMP3 m 6A modification and promotes the development of gastric cancer by regulating LC3C-mediated c-Met recycling. Cell Death Discov 2025; 11:13. [PMID: 39827141 PMCID: PMC11742886 DOI: 10.1038/s41420-025-02289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Helicobacter pylori (H. pylori) plays an important role in the malignant transformation of the gastric mucosa from chronic inflammation to cancer. However, the mechanisms underlying the epigenetic regulation of gastric carcinogenesis mediated by H. pylori remain unclear. Here, we uncover that H. pylori inhibits METTL14 by upregulating ATF3. METTL14 inhibits gastric cancer (GC) cell proliferation and metastasis in vitro and in vivo. Downregulation of METTL14 inhibits Vesicle-associated membrane protein-3 (VAMP3) by reducing the m6A modification level of VAMP3 mRNA and the stability of IGF2BP2-dependent mRNA. H. pylori also accelerates the malignant progression of GC by regulating VAMP3/LC3C-mediated c-Met recycling. Moreover, the expression of METTL14 and VAMP3 in Hp+ chronic gastritis tissues is much lower than that in Hp- chronic gastritis tissues. METTL14 and VAMP3 expression levels are downregulated notably in cancerous tissues of patients with GC. Therefore, our results show a novel METTL14-VAMP3-LC3C-c-Met signalling axis in the GC development mediated by H. pylori infection, which reveals a novel m6A epigenetic modification mechanism for GC and provides potential prognostic biomarkers for GC progression.
Collapse
Affiliation(s)
- Xixi Cui
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Chang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuqiong Wang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jiayi Liu
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zenghui Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qiyu Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Han T, Tong W, Xie J, Guo X, Zhang L. FOXF2 suppressed esophageal squamous cell carcinoma by reducing M2 TAMs via modulating RNF144A-FTO axis. Int Immunopharmacol 2024; 143:113422. [PMID: 39447407 DOI: 10.1016/j.intimp.2024.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its high invasiveness and low survival. Tumor-associated macrophages (TAMs) are closely associated with the tumor cell proliferation, metastasis and immunosuppression. As a member of the FOX family, forkhead box F2 (FOXF2) was down-regulated in ESCC. However, its role in ESCC and TAMs, as well as the underlying mechanism, remains unclear. We found that differentially expressed genes (DEGs) in ESCC were enriched in proliferation, migration, macrophage and cancer pathways. Among these DEGs, FOXF2 caught our eyes. FOXF2 was down-regulated in ESCC. Overexpression FOXF2 inhibited the proliferation of ESCC cells and the M2 polarization of TAMs, but silenced FOXF2 reversed these results. Notably, FOXF2 promoted the transcription of ring finger protein 144A (RNF144A), which is an E3 ubiquitin ligase, causing the ubiquitination and degradation of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO), an N6-methyladenosine (m6A) demethylase. Furthermore, overexpression of FTO abolished the effects of FOXF2 on TAM polarization. In conclusion, FOXF2 alleviates ESCC via promoting the transcription of RNF144A which results in the ubiquitylation and degradation of FTO. Targeting FOXF2/RNF144A/FOT axis might be a possible strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Junwei Xie
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoqi Guo
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
4
|
Jaafar C, Aguiar RCT. Dynamic multilayered control of m 6A RNA demethylase activity. Proc Natl Acad Sci U S A 2024; 121:e2317847121. [PMID: 39495907 PMCID: PMC11572932 DOI: 10.1073/pnas.2317847121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Similar to DNA and histone, RNA can also be methylated. In its most common form, a N6-methyladenosine (m6A) chemical modification is introduced into nascent messenger ribonucleic acid (mRNA) by a specialized methyltransferase complex and removed by the RNA demethylases, Fat mass and obesity-associated (FTO), and ALKBH5. The fate of m6A-marked mRNA is uniquely diverse, ranging from degradation to stabilization/translation, which has been suggested to be largely dependent on its interaction with the family of YT521-B homology (YTH) domain-containing proteins. Here, we highlight a series of control levers that impinge on the RNA demethylases. We present evidence to indicate that intermediary metabolism and various posttranslation modifications modulate the activity, stability, and the subcellular localization of FTO and ALKBH5, further dispelling the notion that m6A methylation is not a dynamic process. We also discuss how examination of these underappreciated regulatory nodes adds a more nuanced view of the role of FTO and ALKBH5 and should guide their study in cancer and nonmalignant conditions alike.
Collapse
Affiliation(s)
- Carine Jaafar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
| | - Ricardo C. T. Aguiar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
- South Texas Veterans Health Care System, Audie Murphy Veterans Affairs Hospital, San Antonio, TX78229
| |
Collapse
|
5
|
Yan X, Qi Y, Yao X, Yin L, Wang H, Fu J, Wan G, Gao Y, Zhou N, Ye X, Liu X, Chen X. N6-methyladenosine regulators in hepatocellular carcinoma: investigating the precise definition and clinical applications of biomarkers. Biol Direct 2024; 19:103. [PMID: 39511687 PMCID: PMC11542411 DOI: 10.1186/s13062-024-00554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Accurately identifying effective biomarkers and translating them into clinical practice have significant implications for improving clinical outcomes in hepatocellular carcinoma (HCC). In this study, our objective is to explore appropriate methods to improve the accuracy of biomarker identification and investigate their clinical value. METHODS Concentrating on the N6-methyladenosine (m6A) modification regulators, we utilized dozens of multi-omics HCC datasets to analyze the expression patterns and genetic features of m6A regulators. Through the integration of big data analysis with function experiments, we have redefined the biological roles of m6A regulators in HCC. Based on the key regulators, we constructed m6A risk models and explored their clinical value in estimating prognosis and guiding personalized therapy for HCC. RESULTS Most m6A regulators exhibit abnormal expression in HCC, and their expression is influenced by copy number variations (CNV) and DNA methylation. Large-scale data analysis has revealed the biological roles of many key m6A regulators, and these findings are well consistent with experimental results. The m6A risk models offer significant prognostic value. Moreover, they assist in reassessing the therapeutic potential of drugs such as sorafenib, gemcitabine, CTLA4 and PD1 blockers in HCC. CONCLUSIONS Our findings suggest that the mutual validation of big data analysis and functional experiments may facilitate the precise identification and definition of biomarkers, and our m6A risk models may have the potential to guide personalized chemotherapy, targeted treatment, and immunotherapy decisions in HCC.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, 201203, China
| | - Xinyue Yao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lulu Yin
- Department of Nursing, The People's Hospital of Suiyang, Zunyi, China
| | - Hao Wang
- Department of Surgery, The People's Hospital of Suiyang, Zunyi, China
| | - Ji Fu
- Department of Surgery, Suiyang County Traditional Chinese Medicine Hospital, Zunyi, China
| | - Guo Wan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanqun Gao
- Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinxin Ye
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
6
|
Lin Y, Lin P, Lu Y, Zheng J, Zheng Y, Huang X, Zhao X, Cui L. Post-Translational Modifications of RNA-Modifying Proteins in Cellular Dynamics and Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406318. [PMID: 39377984 PMCID: PMC11600222 DOI: 10.1002/advs.202406318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Indexed: 11/28/2024]
Abstract
RNA-modifying proteins, classified as "writers," "erasers," and "readers," dynamically modulate RNA by adding, removing, or interpreting chemical groups, thereby influencing RNA stability, functionality, and interactions. To date, over 170 distinct RNA chemical modifications and more than 100 RNA-modifying enzymes have been identified, with ongoing research expanding these numbers. Although significant progress has been made in understanding RNA modification, the regulatory mechanisms that govern RNA-modifying proteins themselves remain insufficiently explored. Post-translational modifications (PTMs) such as phosphorylation, ubiquitination, and acetylation are crucial in modulating the function and behavior of these proteins. However, the full extent of PTM influence on RNA-modifying proteins and their role in disease development remains to be fully elucidated. This review addresses these gaps by offering a comprehensive analysis of the roles PTMs play in regulating RNA-modifying proteins. Mechanistic insights are provided into how these modifications alter biological processes, contribute to cellular function, and drive disease progression. In addition, the current research landscape is examined, highlighting the therapeutic potential of targeting PTMs on RNA-modifying proteins for precision medicine. By advancing understanding of these regulatory networks, this review seeks to facilitate the development of more effective therapeutic strategies and inspire future research in the critical area of PTMs in RNA-modifying proteins.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Pei Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Ye Lu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Yucheng Zheng
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xiangyu Huang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xinyuan Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Li Cui
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
- School of DentistryUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
7
|
Li S, Mehal WZ, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2105-2119. [PMID: 38809498 PMCID: PMC11545962 DOI: 10.1007/s11427-023-2494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 05/30/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern associated with high risk of metabolic syndrome, and has impacted a substantial segment of the population. The disease spectrum ranges from simple fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is increasingly becoming a prevalent indication for liver transplantation. The existing therapeutic options for NAFLD, NASH, and HCC are limited, underscoring the urgent need for innovative treatment strategies. Insights into gene expression, particularly RNA modifications such as N6 methyladenosine (m6A), hold promising avenues for interventions. These modifications play integral roles in RNA metabolism and cellular functions, encompassing the entire NAFLD-NASH-HCC progression. This review will encompass recent insights on diverse RNA modifications, including m6A, pseudouridine (ψ), N1-methyladenosine (m1A), and 5-methylcytidine (m5C) across various RNA species. It will uncover their significance in crucial aspects such as steatosis, inflammation, fibrosis, and tumorigenesis. Furthermore, prospective research directions and therapeutic implications will be explored, advancing our comprehensive understanding of the intricate interconnected nature of these pathological conditions.
Collapse
Affiliation(s)
- Simiao Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Fu XT, Qie JB, Chen JF, Gao Z, Li XG, Feng SR, Dong EF, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Wu WX, Gao Q, Zhou J, Li T, Fan J, Ding ZB. Inhibition of SIRT1 relieves hepatocarcinogenesis via alleviating autophagy and inflammation. Int J Biol Macromol 2024; 278:134120. [PMID: 39074701 DOI: 10.1016/j.ijbiomac.2024.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways. In a thioacetamide-induced hepatocellular carcinoma mouse model, we found that SIRT1 expression was highly increased with increased autophagy and excessive macrophage inflammatory response. Next, we established a Hepa 1-6 cells and macrophage co-culture system in vitro to model the alteration of tumor microenvironment, and found that the medium from CCl4-treated or SIRT1-overexpressing Hepa 1-6 cells triggered the polarization of macrophage M1, and the culture medium derived from M1 macrophage promoted Hepa 1-6 cells growth and intracellular oxidative stress. The progression of liver fibrosis in the CCl4-induced liver fibrosis mouse model showed that inhibition of SIRT1 alleviated inflammatory response and ameliorated liver fibrosis. These findings suggest that SIRT1-regulated autophagy and inflammation are oncogenic in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jing-Bo Qie
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - En-Fu Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
9
|
Mi J, Wang Y, He S, Qin X, Li Z, Zhang T, Huang W, Wang R. LncRNA HOTAIRM1 promotes radioresistance in nasopharyngeal carcinoma by modulating FTO acetylation-dependent alternative splicing of CD44. Neoplasia 2024; 56:101034. [PMID: 39128424 PMCID: PMC11367117 DOI: 10.1016/j.neo.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC); however, almost 20% of patients experience treatment failure due to radioresistance. Therefore, understanding the mechanisms of radioresistance is imperative. HOTAIRM1 is deregulated in various human cancers, yet its role in NPC radioresistance are largely unclear. METHODS This study investigated the association between HOTAIRM1 and radioresistance using CCK8, flow cytometry, and comet assays. Additionally, xenograft mice and patient-derived xenografts (PDX) models were employed to elucidate the biological functions of HOTAIRM1, and transcriptomic RNA sequencing was utilized to identify its target genes. RESULTS Our study revealed an upregulation of HOTAIRM1 levels in radioresistant NPC cell lines and tissues. Furthermore, a positive correlation was noted between high HOTAIRM1 expression and increased NPC cell proliferation, reduced apoptosis, G2/M cell cycle arrest, and diminished cellular DNA damage following radiotherapy. HOTAIRM1 modulates the acetylation and stability of the FTO protein, and inhibiting FTO elevates the m6A methylation level of CD44 precursor transcripts in NPC cells. Additionally, silencing the m6A reading protein YTHDC1 was found to increase the expression of CD44V. HOTAIRM1 enhances NPC cell resistance to ferroptosis and irradiation through the HOTAIRM1-FTO-YTHDC1-CD44 axis. Mechanistically, HOTAIRM1 interacts with the FTO protein and induces m6A demethylation of the CD44 transcript. The absence of m6A modification in the CD44 transcript prevents its recognition by YTHDC1, resulting in the transition from CD44S to CD44V. An abundance of CD44V suppresses ferroptosis induced by irradiation and contributes to NPC radioresistance. CONCLUSIONS In conclusion, the results in this study support the idea that HOTAIRM1 stimulates CD44 alternative splicing via FTO-mediated demethylation, thereby attenuating ferroptosis induced by irradiation and promoting NPC radioresistance.
Collapse
Affiliation(s)
- Jinglin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Yiru Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Siyi He
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Xinling Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Zhixun Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China.
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Ma M, Yi L, Pei Y, Zhang Q, Tong C, Zhao M, Chen Y, Zhu J, Zhang W, Yao F, Yang P, Zhang P. USP26 as a hepatitis B virus-induced deubiquitinase primes hepatocellular carcinogenesis by epigenetic remodeling. Nat Commun 2024; 15:7856. [PMID: 39251623 PMCID: PMC11385750 DOI: 10.1038/s41467-024-52201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Despite recent advances in systemic therapy for hepatocellular carcinoma (HCC), the prognosis of hepatitis B virus (HBV)-induced HCC patients remains poor. By screening a sgRNA library targeting human deubiquitinases, we find that ubiquitin-specific peptidase 26 (USP26) deficiency impairs HBV-positive HCC cell proliferation. Genetically engineered murine models with Usp26 knockout confirm that Usp26 drives HCC tumorigenesis. Mechanistically, we find that the HBV-encoded protein HBx binds to the promoter and induces the production of USP26, which is an X-linked gene exclusively expressed in the testis. HBx consequently promotes the association of USP26 with SIRT1 to synergistically stabilize SIRT1 by deubiquitination, which promotes cell proliferation and impedes cell apoptosis to accelerate HCC tumorigenesis. In patients with HBV-positive HCC, USP26 is robustly induced, and its levels correlate with SIRT1 levels and poor prognosis. Collectively, our study highlights a causative link between HBV infection, deubiquitinase induction and development of HCC, identifying a druggable target, USP26.
Collapse
Affiliation(s)
- Mengru Ma
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lian Yi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifei Pei
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qimin Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Tong
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manyu Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peijing Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
11
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
12
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
13
|
Liu JX, Zhang X, Xu WH, Hao XD. The role of RNA modifications in hepatocellular carcinoma: functional mechanism and potential applications. Front Immunol 2024; 15:1439485. [PMID: 39229278 PMCID: PMC11368726 DOI: 10.3389/fimmu.2024.1439485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with a poor prognosis. The molecular mechanisms underlying its development remain unclear. Recent studies have highlighted the crucial role of RNA modifications in HCC progression, which indicates their potential as therapeutic targets and biomarkers for managing HCC. In this review, we discuss the functional role and molecular mechanisms of RNA modifications in HCC through a review and summary of relevant literature, to explore the potential therapeutic agents and biomarkers for diagnostic and prognostic of HCC. This review indicates that specific RNA modification pathways, such as N6-methyladenosine, 5-methylcytosine, N7-methylguanosine, and N1-methyladenosine, are erroneously regulated and are involved in the proliferation, autophagy, innate immunity, invasion, metastasis, immune cell infiltration, and drug resistance of HCC. These findings provide a new perspective for understanding the molecular mechanisms of HCC, as well as potential targets for the diagnosis and treatment of HCC by targeting specific RNA-modifying enzymes or recognition proteins. More than ten RNA-modifying regulators showed the potential for use for the diagnosis, prognosis and treatment decision utility biomarkers of HCC. Their application value for HCC biomarkers necessitates extensive multi-center sample validation in the future. A growing number of RNA modifier inhibitors are being developed, but the lack of preclinical experiments and clinical studies targeting RNA modification in HCC poses a significant obstacle, and further research is needed to evaluate their application value in HCC treatment. In conclusion, this review provides an in-depth understanding of the complex interplay between RNA modifications and HCC while emphasizing the promising potential of RNA modifications as therapeutic targets and biomarkers for managing HCC.
Collapse
Affiliation(s)
- Jin-Xiu Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
15
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
16
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
18
|
Xiao B, Zhu Y, Liu M, Chen M, Huang C, Xu D, Wang F, Sun S, Huang J, Sun N, Yang F. miR-340-3p-modified bone marrow mesenchymal stem cell-derived exosomes inhibit ferroptosis through METTL3-mediated m 6A modification of HMOX1 to promote recovery of injured rat uterus. Stem Cell Res Ther 2024; 15:224. [PMID: 39075530 PMCID: PMC11287883 DOI: 10.1186/s13287-024-03846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Ferroptosis is associated with the pathological progression of hemorrhagic injury and ischemia-reperfusion injury. According to our previous study, exosomes formed through bone marrow mesenchymal stem cells modified with miR-340-3p (MB-exos) can restore damaged endometrium. However, the involvement of ferroptosis in endometrial injury and the effect of MB-exos on ferroptosis remain elusive. METHODS The endometrial injury rat model was developed. Exosomes were obtained from the supernatants of bone marrow mesenchymal stromal cells (BMSCs) and miR-340/BMSCs through differential centrifugation. We conducted RNA-seq analysis on endometrial tissues obtained from the PBS and MB-exos groups. Ferroptosis was induced in endometrial stromal cells (ESCs) by treating them with erastin or RSL3, followed by treatment with B-exos or MB-exos. We assessed the endometrial total m6A modification level after injury and subsequent treatment with B-exos or MB-exos by methylation quantification assay. We performed meRIP-qPCR to analyze m6A modification-regulated endogenous mRNAs. RESULTS We reveal that MB-exos facilitate the injured endometrium to recover by suppressing ferroptosis in endometrial stromal cells. The injured endometrium showed significantly upregulated N6-methyladenosine (m6A) modification levels; these levels were attenuated by MB-exos through downregulation of the methylase METTL3. Intriguingly, METTL3 downregulation appears to repress ferroptosis by stabilizing HMOX1 mRNA, thereby potentially elucidating the mechanism through which MB-exos inhibit ferroptosis in ESCs. We identified YTHDF2 as a critical m6A reader protein that contributes to HMOX1 mRNA degradation. YTHDF2 facilitates HMOX1 mRNA degradation by identifying the m6A binding site in the 3'-untranslated regions of HMOX1. In a rat model, treatment with MB-exos ameliorated endometrial injury-induced fibrosis by inhibiting ferroptosis in ESCs. Moreover, METTL3 short hairpin RNA-mediated inhibition of m6A modification enhanced the inhibitory effect of MB-exos on ferroptosis in endometrial injury. CONCLUSIONS Thus, these observations provide new insights regarding the molecular mechanisms responsible for endometrial recovery promotion by MB-exos and highlight m6A modification-dependent ferroptosis inhibition as a prospective therapeutic target to attenuate endometrial injury.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Yiqing Zhu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meng Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meiting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Chao Huang
- Department of Anatomy, Institute of Biomedical Engineering, Naval Medical University, Shanghai, 200433, China
| | - Dabing Xu
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Shuhan Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Ningxia Sun
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
19
|
Zhang H, Chen Q, Han H, Guo C, Jiang X, Xia Y, Zhang Y, Zhou L, Zhang J, Tian X, Mao L, Qiu J, Zou Z, Chen C. SUMOylation modification of FTO facilitates oxidative damage response of arsenic by IGF2BP3 in an m6A-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134440. [PMID: 38723480 DOI: 10.1016/j.jhazmat.2024.134440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.
Collapse
Affiliation(s)
- Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Huifang Han
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Changxin Guo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
20
|
Lin Q, Chen W, Tan J, Qian S, Su H, Zhao L, Yuan L, Ruan J, Huang X, Zhou H. Association of RAN and RANBP2 Gene Polymorphisms With Glioma Susceptibility in Chinese Children. Cancer Rep (Hoboken) 2024; 7:e2136. [PMID: 39041645 PMCID: PMC11264102 DOI: 10.1002/cnr2.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Glioma is the most prevalent pediatric central nervous system malignancy. RAN, member RAS oncogene family (RAN), is a key signaling molecule that regulates the polymerization of microtubules during mitosis. RAN binding protein 2 (RANBP2) is involved in DNA replication, mitosis, metabolism, and tumorigenesis. The effects of RAN and RANBP2 gene polymorphisms on glioma susceptibility in Chinese children are currently unknown. AIMS This study aimed to evaluate the association between RAN and RANBP2 gene polymorphisms and glioma susceptibility in Chinese children. METHODS AND RESULTS We recruited 191 patients with glioma and 248 children without cancer for this case-control study. Polymerase chain reaction-based TaqMan was applied to gene sequencing and typing. Logistic regression model-calculated odds ratio and 95% confidence interval were used to verify whether the gene polymorphisms (RAN rs56109543 C>T, rs7132224 A>G, rs14035 C>T, and RANBP2 rs2462788 C>T) influence glioma susceptibility. Based on age, gender, tumor subtype, and clinical stage, stratified analyses of risk and protective genotypes were conducted. p values for mutant genotype analyses were all >0.05, indicating no significant correlation between these gene polymorphisms and glioma risk. CONCLUSION RAN and RANBP2 gene polymorphisms were not found to be statistically significantly associated with glioma susceptibility in Chinese children. Other potential functional gene polymorphism loci of RAN and RANBP2 will need to be evaluated in the search for novel glioma biomarkers.
Collapse
Affiliation(s)
- Qianru Lin
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Wei Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child HealthGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiating Tan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Sifan Qian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Huarong Su
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Liang Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of WenzhouThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
21
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Chen H, Zhang G, Peng Y, Wu Y, Han X, Xie L, Xu H, Chen G, Liu B, Xu T, Pang M, Hu C, Fan H, Bi Y, Hua Y, Zhou Y, Luo S. Danggui Shaoyao San protects cyclophosphamide-induced premature ovarian failure by inhibiting apoptosis and oxidative stress through the regulation of the SIRT1/p53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117718. [PMID: 38181933 DOI: 10.1016/j.jep.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.
Collapse
Affiliation(s)
- Hongmei Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Guanghong Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine/Post- Doctoral Research Station, Guangzhou, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, 529599, China
| | - Yiming Bi
- Department of Acupuncture and Moxibustion, The Affliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Songping Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
23
|
Liu J, Chen L, Guo X, Zhao B, Jiang J. Emerging role of N6-methyladenosine RNA modification in regulation of SARS-CoV-2 infection and virus-host interactions. Biomed Pharmacother 2024; 173:116231. [PMID: 38484561 DOI: 10.1016/j.biopha.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 03/27/2024] Open
Abstract
Since December 2019, the infection caused by Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) has posed an enormous threat to human health security worldwide. Constant mutation of viral genome and varying therapeutic responses of patients infected with this virus prompted efforts to uncover more novel regulators in the pathogenesis. The involvement of N6-methyladenosine, a modified form of RNA, plays a crucial role in viral replication, viral pathogenicity, and intricate signaling pathways connected with immune responses. This review discusses research advances revealing the regulation of the life cycle of SARS-CoV-2 and antiviral responses of host cells by RNA m6A modification, highlights the biological functions of N6-methyladenosine components in SARS-CoV-2 infection and virus-host interactions, and outlines current challenges and future directions for exploring the potential clinical value of m6A modification in COVID-19.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Lingli Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiongmin Guo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China.
| |
Collapse
|
24
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Ma H, Hong Y, Xu Z, Weng Z, Yang Y, Jin D, Chen Z, Yue J, Zhou X, Xu Z, Fei F, Li J, Song W. N 6-methyladenosine (m 6A) modification in hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116365. [PMID: 38452654 DOI: 10.1016/j.biopha.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers of human, the tumor-related death of which ranks third among the common malignances. N6-methyladenosine (m6A) methylation, the most abundant internal modification of RNA in mammals, participates in the metabolism of mRNA and interrelates with ncRNAs. In this paper, we overviewed the complex function of m6A regulators in HCC, including regulating the tumorigenesis, progression, prognosis, stemness, metabolic reprogramming, autophagy, ferroptosis, drug resistance and tumor immune microenvironment (TIME). Furthermore, we elucidated the interplay between m6A modification and non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Finally, we summarized the potential of m6A regulators as diagnostic biomarkers. What's more, we reviewed the inhibitors targeting m6A enzymes as promising therapeutic targets of HCC. We aimed to help understand the function of m6A methylation in HCC systematically and comprehensively so that more effective strategies for HCC treatment will be developed.
Collapse
Affiliation(s)
- Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Hong
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dandan Jin
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyou Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yue
- Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
26
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
27
|
Lan L, Peng S, Zhang R, He H, Yang Y, Xi B, Zhang J. Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study. Front Aging Neurosci 2024; 16:1341374. [PMID: 38384936 PMCID: PMC10879412 DOI: 10.3389/fnagi.2024.1341374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Vascular depression (VaD) is a depressive disorder closely associated with cerebrovascular disease and vascular risk factors. It remains underestimated owing to challenging diagnostics and limited information regarding the pathophysiological mechanisms of VaD. The purpose of this study was to analyze the proteomic signatures and identify the potential biomarkers with diagnostic significance in VaD. Methods Deep profiling of the serum proteome of 35 patients with VaD and 36 controls was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Functional enrichment analysis of the quantified proteins was based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Reactome databases. Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD. Results There were 29 up-regulated and 31 down-regulated proteins in the VaD group compared to the controls (|log2FC| ≥ 0.26, p ≤ 0.05). Enrichment pathways analyses showed that neurobiological processes related to synaptic vesicle cycle and axon guidance may be dysregulated in VaD. Extrinsic component of synaptic vesicle membrane was the most enriched term in the cellular components (CC) terms. 19 candidate proteins were filtered for further modeling. A nomogram was developed with the combination of HECT domain E3 ubiquitin protein ligase 3 (HECTD3), Nidogen-2 (NID2), FTO alpha-ketoglutarate-dependent dioxygenase (FTO), Golgi membrane protein 1 (GOLM1), and N-acetylneuraminate lyase (NPL), which could be used to predict VaD risk with favorable efficacy. Conclusion This study offers a comprehensive and integrated view of serum proteomics and contributes to a valuable proteomics-based diagnostic model for VaD.
Collapse
Affiliation(s)
- Liuyi Lan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ran Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Bing Xi
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Xu Q, Ren N, Ren L, Yang Y, Pan J, Shang H. RNA m6A methylation regulators in liver cancer. Cancer Cell Int 2024; 24:1. [PMID: 38166832 PMCID: PMC10763310 DOI: 10.1186/s12935-023-03197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is one of the most common cancers in the world and a primary cause of cancer-related death. In recent years, despite the great development of diagnostic methods and targeted therapies for liver cancer, the incidence and mortality of liver cancer are still on the rise. As a universal post-transcriptional modification, N6-methyladenosine (m6A) modification accomplishes a dynamic and reversible m6A modification process, which is executed by three types of regulators, methyltransferases (called writers), demethylases (called erasers) and m6A-binding proteins (called readers). Many studies have shown that m6A RNA methylation has an important impact on RNA metabolism, whereas its regulation exception is bound up with the occurrence of human malignant tumors. Aberrant methylation of m6A RNA and the expression of related regulatory factors may be of the essence in the pathogenesis and progression of liver cancer, yet the precise molecular mechanism remains unclear. In this paper, we review the current research situations of m6A methylation in liver cancer. Among the rest, we detail the mechanism by which methyltransferases, demethylases and m6A binding proteins regulate the occurrence and development of liver cancer by modifying mRNA. As well as the potential effect of m6A regulators in hepatocarcinogenesis and progression. New ideas and approaches will be given to the prevention and treatment of liver cancer through the following relevant research results.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Hongkai Shang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.
- Department of Gynecology, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
31
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Qian L, Liang Z, Wang Z, Wang J, Li X, Zhao J, Li Z, Chen L, Liu Y, Ju Y, Li C, Meng S. Cellular gp96 upregulates AFP expression by blocking NR5A2 SUMOylation and ubiquitination in hepatocellular carcinoma. J Mol Cell Biol 2023; 15:mjad027. [PMID: 37204028 DOI: 10.1093/jmcb/mjad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Alpha-fetoprotein (AFP) is the most widely used biomarker for the diagnosis of hepatocellular carcinoma (HCC). However, a substantial proportion of HCC patients have either normal or marginally increased AFP levels in serum, and the underlying mechanisms are not fully understood. In the present study, we provided in vitro and in vivo evidence that heat shock protein gp96 promoted AFP expression at the transcriptional level in HCC. NR5A2 was identified as a key transcription factor for the AFP gene, and its stability was enhanced by gp96. A further mechanistic study by co-immunoprecipitation, GST pull-down, and molecular docking showed gp96 and the SUMO E3 ligase RanBP2 competitively binding to NR5A2 at the sites spanning from aa 507 to aa 539. The binding of gp96 inhibited SUMOylation, ubiquitination, and subsequent degradation of NR5A2. In addition, clinical analysis of HCC patients indicated that gp96 expression in tumors was positively correlated with serum AFP levels. Therefore, our study uncovered a novel mechanism that gp96 regulates the stability of its client proteins by directly affecting their SUMOylation and ubiquitination. These findings will help in designing more accurate AFP-based HCC diagnosis and progression monitoring approaches.
Collapse
Affiliation(s)
- Liyuan Qian
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Liang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jiuru Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH 43210, USA
| | - Lizhao Chen
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongai Liu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Ying Ju
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfei Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
33
|
Yang Q, Xie Z, Lai B, Cheng G, Liao B, Wan J, Deng M. Identification and verification of atrial fibrillation hub genes caused by primary mitral regurgitation. Medicine (Baltimore) 2023; 102:e35851. [PMID: 37960721 PMCID: PMC10637477 DOI: 10.1097/md.0000000000035851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
In the clinic, atrial fibrillation (AF) is a common arrhythmia. Despite constant innovation in treatments for AF, they remain limited by a lack of knowledge of the underlying mechanism responsible for AF. In this study, we examined the molecular mechanisms associated with primary mitral regurgitation (MR) in AF using several bioinformatics techniques. Limma was used to identify differentially expressed genes (DEGs) associated with AF using microarray data from the GSE115574 dataset. WGCNA was used to identify significant module genes. A functional enrichment analysis for overlapping genes between the DEGs and module genes was done and several AF hub genes were identified from a protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were generated to evaluate the validity of the hub genes. We examined 306 DEGs and 147 were upregulated and 159 were downregulated. WGCNA analysis revealed black and ivory modules that contained genes associated with AF. Functional enrichment analysis revealed various biological process terms related to AF. The AUCs for the 8 hub genes screened by the PPI network analysis were > 0.7, indicating satisfactory diagnostic accuracy. The 8 AF-related hub genes included SYT13, VSNL1, GNAO1, RGS4, RALYL, CPLX1, CHGB, and CPLX3. Our findings provide novel insight into the molecular mechanisms of AF and may lead to the development of new treatments.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zixin Xie
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Banghui Lai
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Gang Cheng
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Mingbin Deng
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan Province, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
35
|
Jiang Y, Miao X, Wu Z, Xie W, Wang L, Liu H, Gong W. Targeting SIRT1 synergistically improves the antitumor effect of JQ-1 in hepatocellular carcinoma. Heliyon 2023; 9:e22093. [PMID: 38045194 PMCID: PMC10692793 DOI: 10.1016/j.heliyon.2023.e22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Bromodomain and extraterminal domain protein inhibitors have shown therapeutic promise in hepatocellular carcinoma. However, resistance to bromodomain and extraterminal domain protein inhibitors has emerged in preclinical trials, presenting an immense clinical challenge, and the mechanisms are unclear. In this study, we found that overexpression of SIRT1 induced by JQ-1, a bromodomain and extraterminal domain protein inhibitor, may confer resistance to JQ-1 in hepatocellular carcinoma. SIRT1 protein expression was higher in hepatocellular carcinoma tissues than in normal tissues, and this phenotype was correlated with a poor prognosis. Cotreatment with JQ-1 and the SIRT1 inhibitor EX527 synergistically suppressed proliferation and blocked cell cycle progression in hepatocellular carcinoma cells. Combined administration of JQ-1 and EX527 successfully reduced the tumor burden in vivo. In addition, JQ-1 mediated AMPK/p-AMPK axis activation to upregulate SIRT1 protein expression and enhanced autophagy to inhibit cell apoptosis. Activation of AMPK could alleviate the antitumor effect of the combination of JQ-1 and EX527 on hepatocellular carcinoma cells. Furthermore, inhibition of SIRT1 further enhanced the antitumor effect of JQ-1 by blocking protective autophagy in hepatocellular carcinoma. Our study proposes a novel and efficacious therapeutic strategy of a BET inhibitor combined with a SIRT1 inhibitor for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Department of Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weixun Xie
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Wu W, Huang C. SUMOylation and DeSUMOylation: Prospective therapeutic targets in cancer. Life Sci 2023; 332:122085. [PMID: 37722589 DOI: 10.1016/j.lfs.2023.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The SUMO family is a type of ubiquitin-like protein modification molecule. Its protein modification mechanism is similar to that of ubiquitination: both involve modifier-activating enzyme E1, conjugating enzyme E2 and substrate-specific ligase E3. However, polyubiquitination can lead to the degradation of substrate proteins, while poly-SUMOylation only leads to the degradation of substrate proteins through the proteasome pathway after being recognized by ubiquitin as a signal factor. There are currently five reported subtypes in the SUMO family, namely SUMO1-5. As a reversible dynamic modification, intracellular sentrin/SUMO-specific proteases (SENPs) mainly regulate the reverse reaction pathway of SUMOylation. The SUMOylation modification system affects the localization, activation and turnover of proteins in cells and participates in regulating most nuclear and extranuclear molecular reactions. Abnormal expression of proteins related to the SUMOylation pathway is commonly observed in tumors, indicating that this pathway is closely related to tumor occurrence, metastasis and invasion. This review mainly discusses the composition of members in the protein family related to SUMOylation pathways, mutual connections between SUMOylation and other post-translational modifications on proteins as well as therapeutic drugs developed based on these pathways.
Collapse
Affiliation(s)
- Wenyan Wu
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
37
|
Nan Y, Liu S, Luo Q, Wu X, Zhao P, Chang W, Zhang R, Li Y, Liu Z. m 6A demethylase FTO stabilizes LINK-A to exert oncogenic roles via MCM3-mediated cell-cycle progression and HIF-1α activation. Cell Rep 2023; 42:113273. [PMID: 37858471 DOI: 10.1016/j.celrep.2023.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is implicated in cancer progression, yet its role in regulating long noncoding RNAs during cancer progression remains unclear. Here, we report that the m6A demethylase fat mass and obesity-associated protein (FTO) stabilizes long intergenic noncoding RNA for kinase activation (LINK-A) to promote cell proliferation and chemoresistance in esophageal squamous cell carcinoma (ESCC). Mechanistically, LINK-A promotes the interaction between minichromosome maintenance complex component 3 (MCM3) and cyclin-dependent kinase 1 (CDK1), increasing MCM3 phosphorylation. This phosphorylation facilitates the loading of the MCM complex onto chromatin, which promotes cell-cycle progression and subsequent cell proliferation. Moreover, LINK-A disrupts the interaction between MCM3 and hypoxia-inducible factor 1α (HIF-1α), abrogating MCM3-mediated HIF-1α transcriptional repression and promoting glycolysis and chemoresistance. These results elucidate the mechanism by which FTO-stabilized LINK-A plays oncogenic roles and identify the FTO/LINK-A/MCM3/HIF-1α axis as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
38
|
Xu K, Wu T, Xia P, Chen X, Yuan Y. Alternative splicing: a bridge connecting NAFLD and HCC. Trends Mol Med 2023; 29:859-872. [PMID: 37487782 DOI: 10.1016/j.molmed.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most important risk factor for hepatocellular carcinoma (HCC). Understanding the progression of benign diseases to HCC is crucial for early prevention and reversal of malignant transformation. Alternative splicing (AS) of RNA plays a role in the pathogenicity, initiation, and transformation of liver disease. We summarize the changes or mutations in the activity of splicing factors in NAFLD and HCC, as well as the impact of AS mediated by epigenetic modifications such as DNA methylation, RNA methylation, histone modification, and protein phosphorylation on liver cell fate. We also summarize therapeutic methods and drugs that are helpful for treating NAFLD, HCC, and the early stages of NAFLD progression to HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Tiangen Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
39
|
Yang L, Tian S, Zheng X, Zhang M, Zhou X, Shang Y, Han Y. N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. J Gastroenterol 2023; 58:718-733. [PMID: 37380929 DOI: 10.1007/s00535-023-02008-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Epigenetic modification occurring in RNA has become the hotspot of the field. N6-methyladenosine (m6A) methylation is the most abundant RNA internal modification mainly occurring at the consensus motif DR (m6A) CH (D = A/G/U, R = A/G, H = A/C/U) in the 3'-UTR particularly the region near stop codons. The life cycle of m6A methylation includes "writers," "erasers," and "readers", which are responsible for the addition, removal, and recognition of m6A, respectively. m6A modification has been reported changing RNA secondary structure or modulating the stability, localization, transport, and translation of mRNAs to play crucial roles in various physiological and pathological conditions. Liver, as the largest metabolic and digestive organ, modulates vital physiological functions, and its dysfunction gives rise to the occurrence of various diseases. Despite the advanced intervening measures, mortality due to liver diseases is continuously high. Recent studies have explored the roles of m6A RNA methylation in the pathogenesis of liver diseases, providing new insights for studying the molecular mechanism of liver diseases. In the review, we extensively summarize the life cycle of m6A methylation, as well as its function and relevant mechanisms in liver fibrosis (LF), nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatitis virus infection, and hepatocellular carcinoma (HCC), and eventually we explore the potential of m6A as a treatment option for these liver diseases.
Collapse
Affiliation(s)
- Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
40
|
Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m 6A modification in cancer. Nat Rev Clin Oncol 2023; 20:507-526. [PMID: 37221357 DOI: 10.1038/s41571-023-00774-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
41
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Wang Y, Wang Y, Patel H, Chen J, Wang J, Chen ZS, Wang H. Epigenetic modification of m 6A regulator proteins in cancer. Mol Cancer 2023; 22:102. [PMID: 37391814 PMCID: PMC10311752 DOI: 10.1186/s12943-023-01810-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). Aberrant m6A modifications are associated with cancer occurrence, development, progression, and prognosis. Numerous studies have established that aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
43
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
44
|
Wang S, Gao S, Ye W, Li Y, Luan J, Lv X. The emerging importance role of m6A modification in liver disease. Biomed Pharmacother 2023; 162:114669. [PMID: 37037093 DOI: 10.1016/j.biopha.2023.114669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
N6-methyladenosine (m6A) modification, as one of the most common types of inner RNA modification in eukaryotes, plays a multifunctional role in normal and abnormal biological processes. This type of modification is modulated by m6A writer, eraser and reader, which in turn impact various processes of RNA metabolism, such as RNA processing, translation, nuclear export, localization and decay. The current academic view holds that m6A modification exerts a crucial role in the post-transcriptional modulation of gene expression, and is involved in multiple cellular functions, developmental and disease processes. However, the potential molecular mechanism and specific role of m6A modification in the development of liver disease have not been fully elucidated. In our review, we summarized the latest research progress on m6A modification in liver disease, and explored how these novel findings reshape our knowledge of m6A modulation of RNA metabolism. In addition, we also illustrated the effect of m6A on liver development and regeneration to prompt further exploration of the mechanism and role of m6A modification in liver physiology and pathology, providing new insights and references for the search of potential therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
45
|
Wang Z, Pan B, Qiu J, Zhang X, Ke X, Shen S, Wu X, Yao Y, Tang N. SUMOylated IL-33 in the nucleus stabilizes the transcription factor IRF1 in hepatocellular carcinoma cells to promote immune escape. Sci Signal 2023; 16:eabq3362. [PMID: 36917642 DOI: 10.1126/scisignal.abq3362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Interleukin-33 (IL-33) functions both as a secreted cytokine and as a nuclear factor, with pleiotropic roles in cancer and immunity. Here, we explored its role in hepatocellular carcinoma (HCC) and identified that a posttranslational modification altered its nuclear activity and promoted immune escape for HCC. IL-33 abundance was overall decreased but more frequently localized to the nucleus in patient HCC tissues than in normal liver tissues. In human and mouse HCC cells in culture and in vivo, IL-33 overexpression inhibited proliferation and repressed the abundance of programmed death ligand 1 (PD-L1) at the transcriptional level by promoting the ubiquitin-dependent degradation of interferon regulatory factor 1 (IRF1). However, this interaction was disrupted by SUMOylation of IL-33 at Lys54 mediated by the E3 ligase RanBP2. IL-33 SUMOylation correlated with its nuclear localization in HCC cells and tumors. An increase in SUMOylated IL-33 in HCC cells in cocultures and in vivo stabilized IRF1 and increased PD-L1 abundance and chemokine IL-8 secretion, which prevented the activation of cytotoxic T cells and promoted the M2 polarization of macrophages, respectively. Mutating the SUMOylation site in IL-33 reversed these effects and suppressed tumor growth. These findings indicate that SUMOylation of nuclear IL-33 in HCC cells impairs antitumor immunity.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoling Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Shuling Shen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001 China.,Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou 350122, China
| |
Collapse
|
46
|
Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab 2023; 34:66-84. [PMID: 36586778 DOI: 10.1016/j.tem.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal transcriptional modifications. Evidence has highlighted changes in m6A in metabolic disorders and various metabolic diseases. However, the precise mechanisms of these m6A changes in such conditions are not understood. Macrophages are crucial for the innate immune system and exert either beneficial or harmful roles in metabolic disease. Notably, m6A was found to be closely related to macrophage phenotype and dysfunction. In this review, we summarize m6A in macrophage function from the perspective of macrophage development, activation, and polarization, pyroptosis, and metabolic disorders. Furthermore, we discuss how m6A-mediated macrophage function affects metabolic diseases, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Finally, we discuss challenges and prospects for m6A in macrophage and metabolic diseases with the aim of providing guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China
| | - HaoJun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Min Yang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
47
|
circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53. Cell Oncol 2023; 46:677-695. [PMID: 36705889 DOI: 10.1007/s13402-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Circular RNAs (circRNAs) play important roles in tumour progression. This study aimed to explore the mechanism of hsa_circ_0067717 (termed circRNA_0067717) promoting paclitaxel resistance in nasopharyngeal carcinoma (NPC). METHODS We assayed CNE-1 and HNE-2 parental cell lines and the corresponding paclitaxel-resistant NPC cell lines using circRNA microarrays. RNA pull-down assay, RNA immunoprecipitation, and RNA fluorescence in situ hybridization were used to identify the molecular mechanisms. RESULTS Here, we confirm that circRNA_0067717 is significantly upregulated in NPC paclitaxel-resistant cells and is associated with paclitaxel resistance in NPC. Mechanistically, circRNA_0067717 functions as a scaffold for TRIM41 protein (a ubiquitin E3 ligase) and p53 protein. In nasopharyngeal carcinoma paclitaxel-resistant cells, the highly expressed circRNA_0067717 can bind to more TRIM41 and p53 protein, promoting TRIM41-induced p53 ubiquitination and degradation, resulting in a decrease in p53 protein level. Moreover, the 1-176 nt area of circRNA_0067717 and the 301-425 nt region of circRNA_0067717 are the binding sites for p53 and TRIM41, respectively. The resistance of NPC cells to paclitaxel can be reduced by blocking these binding regions of circRNA_0067717. CONCLUSION We demonstrate that circRNA_0067717 acts as a scaffold for TRIM41 and p53, enhancing paclitaxel chemoresistance in NPC by promoting TRIM41-induced p53 degradation via ubiquitination.
Collapse
|
48
|
Phan T, Nguyen VH, Su R, Li Y, Qing Y, Qin H, Cho H, Jiang L, Wu X, Chen J, Fakih M, Diamond DJ, Goel A, Melstrom LG. Targeting fat mass and obesity-associated protein mitigates human colorectal cancer growth in vitro and in a murine model. Front Oncol 2023; 13:1087644. [PMID: 36874096 PMCID: PMC9981948 DOI: 10.3389/fonc.2023.1087644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Colorectal cancer (CRC) remains a significant cause of cancer related mortality. Fat mass and obesity-associated protein (FTO) is a m6A mRNA demethylase that plays an oncogenic role in various malignancies. In this study we evaluated the role of FTO in CRC tumorigenesis. Methods Cell proliferation assays were conducted in 6 CRC cell lines with the FTO inhibitor CS1 (50-3200 nM) (± 5-FU 5-80 mM) and after lentivirus mediated FTO knockdown. Cell cycle and apoptosis assays were conducted in HCT116 cells (24 h and 48 h, 290 nM CS1). Western blot and m6A dot plot assays were performed to assess CS1 inhibition of cell cycle proteins and FTO demethylase activity. Migration and invasion assays of shFTO cells and CS1 treated cells were performed. An in vivo heterotopic model of HCT116 cells treated with CS1 or with FTO knockdown cells was performed. RNA-seq was performed on shFTO cells to assess which molecular and metabolic pathways were impacted. RT-PCR was conducted on select genes down-regulated by FTO knockdown. Results We found that the FTO inhibitor, CS1 suppressed CRC cell proliferation in 6 colorectal cancer cell lines and in the 5-Fluorouracil resistant cell line (HCT116-5FUR). CS1 induced cell cycle arrest in the G2/M phase by down regulation of CDC25C and promoted apoptosis of HCT116 cells. CS1 suppressed in vivo tumor growth in the HCT116 heterotopic model (p< 0.05). Lentivirus knockdown of FTO in HCT116 cells (shFTO) mitigated in vivo tumor proliferation and in vitro demethylase activity, cell growth, migration and invasion compared to shScr controls (p< 0.01). RNA-seq of shFTO cells compared to shScr demonstrated down-regulation of pathways related to oxidative phosphorylation, MYC and Akt/ mTOR signaling pathways. Discussion Further work exploring the targeted pathways will elucidate precise downstream mechanisms that can potentially translate these findings to clinical trials.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Vu H Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, United States
| | - Rui Su
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Yangchan Li
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Ying Qing
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Hanjun Qin
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Hyejin Cho
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiwei Wu
- Beckman Research Institute, The Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, United States
| | - Jianjun Chen
- Beckman Research Institute, Department of Systems Biology, City of Hope National Medical Center, Monrovia, CA, United States
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, United States
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope National Medical Center, Monrovia, CA, United States
| | - Laleh G Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
49
|
SRSF10 stabilizes CDC25A by triggering exon 6 skipping to promote hepatocarcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:353. [PMID: 36539837 PMCID: PMC9764681 DOI: 10.1186/s13046-022-02558-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Alternative splicing (AS) events are extensively involved in the progression of diverse tumors, but how serine/arginine-rich splicing Factor 10 (SRSF10) behaves in hepatocellular carcinoma (HCC) has not been sufficiently studied. We aimed to determine SRSF10 associated AS mechanisms and their effects on HCC progression. METHODS The expression of SRSF10 in HCC tissues was examined, and the in vitro and in vivo functions of SRSF10 were investigated. The downstream AS targets were screened using RNA sequencing. The interaction between SRSF10 protein and exclusion of cell division cycle 25 A (CDC25A) mRNA was identified using RNA immunoprecipitation and crosslinking immunoprecipitation q-PCR. The effects of SRSF10 on CDC25A posttranslational modification, subcellular distribution, and protein stability were verified through coimmunoprecipitation, immunofluorescence, and western blotting. RESULTS SRSF10 was enriched in HCC tissues and facilitated HCC proliferation, cell cycle, and invasion. RNA sequencing showed that SRSF10 promotes exon 6 exclusion of CDC25A pre-mRNA splicing. As a crucial cell cycle mediator, the exon-skipped isoform CDC25A(△E6) was identified to be stabilized and retained in the nucleus due to the deletion of two ubiquitination (Lys150, Lys169) sites in exon 6. The stabilized isoform CDC25A(△E6) derived from AS had stronger cell cycle effects on HCC tumorigenesis, and playing a more significant role than the commonly expressed longer variant CDC25A(L). Interestingly, SRSF10 activated the carcinogenesis role of CDC25A through Ser178 dephosphorylation to cause nuclear retention. Moreover, CDC25A(△E6) was verified to be indispensable for SRSF10 to promote HCC development in vitro and in vivo. CONCLUSIONS We reveal a regulatory pattern whereby SRSF10 contributes to a large proportion of stabilized CDC25A(△E6) production, which is indispensable for SRSF10 to promote HCC development. Our findings uncover AS mechanisms such as CDC25A that might serve as potential therapeutic targets to treat HCC.
Collapse
|
50
|
Kong F, Wang K, Wang L. Systematic analysis of the expression profile and prognostic significance of m6A regulators and PD-L1 in hepatocellular carcinoma. Discov Oncol 2022; 13:131. [PMID: 36434140 PMCID: PMC9700556 DOI: 10.1007/s12672-022-00595-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis. N6-methyladenosine (m6A) modification has dual biological functions in RNA modification and plays an important role in HCC. METHODS The GEO, TCGA, ONCOMINE, UALCAN, GEPIA, Kaplan-Meier plotter, cBioPortal for Cancer Genomics, STRING and TIMER2 databases were used for bioinformatic analyses. Quantitative polymerase chain reaction and western blotting were used to detect the expression of m6A regulators in HCC tissues. RESULTS The transcription of m6A regulators was upregulated in patients with HCC, and overexpression of YTHDF1/2, YTHDC1, RBM15 and METTL3 was significantly correlated with clinical stages of HCC. In addition, downregulation of ZC3H13 and METTL14 and upregulation of other m6A regulators were associated with a poor prognosis. A high mutation rate (89%) of m6A regulators was also observed in patients with HCC, and mutations in methylation regulators were associated with poor overall survival and disease-free survival. Finally, the expression of the YTHDF family was significantly associated with immune infiltration in the HCC microenvironment. CONCLUSION m6A regulators and programmed death-ligand 1 may play an important role in the tumorigenesis and immune invasion and escape of HCC and may be risk factors affecting the survival of patients with HCC.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Kunpeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, ZheJiang, China.
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, ZheJiang, China.
| |
Collapse
|