1
|
Steinmetz T, Thomas J, Reimann L, Himmelreich AK, Schulz SR, Golombek F, Castiglione K, Jäck HM, Brodesser S, Warscheid B, Mielenz D. Identification of TFG- and Autophagy-Regulated Proteins and Glycerophospholipids in B Cells. J Proteome Res 2024; 23:1615-1633. [PMID: 38649144 PMCID: PMC11077586 DOI: 10.1021/acs.jproteome.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Collapse
Affiliation(s)
- Tobit
D. Steinmetz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jana Thomas
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Lena Reimann
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ann-Kathrin Himmelreich
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sebastian R. Schulz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Florian Golombek
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kathrin Castiglione
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Susanne Brodesser
- Cologne
Excellence Cluster on Cellular Stress Responses in Aging-associated
Diseases (CECAD), University of Köln, D-50931 Köln, Germany
| | - Bettina Warscheid
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
- Department
of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Mielenz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| |
Collapse
|
2
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cho O. Post-Radiotherapy Exosomal Non-Coding RNA and Hemograms for Early Death Prediction in Patients with Cervical Cancer. Int J Mol Sci 2023; 25:126. [PMID: 38203297 PMCID: PMC10778718 DOI: 10.3390/ijms25010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Concurrent chemo-radiotherapy (CCRT) is linked with accelerated disease progression and early death (ED) in various cancers. This study aimed to assess the association of plasma levels of exosomal non-coding ribonucleic acid (RNA) (ncRNA) and blood cell dynamics with ED prediction in patients with cervical cancer undergoing CCRT. Using propensity score matching, a comparison of complete blood counts (CBCs) was performed among 370 CCRT-treated patients. Differences in ncRNA and messenger RNA (mRNA) expression before and after CCRT in 84 samples from 42 patients (cohort 2) were represented as logarithmic fold change (log2FC). Networks were constructed to link the CBCs to the RNAs whose expression correlated with ED. From the key RNAs selected using multiple regression of all RNA combinations in the network, CBC dynamics-associated ncRNAs were functionally characterized using an enrichment analysis. Cohort 1 (120 patients) exhibited a correlation between elevated absolute neutrophil counts (ANC) and ED. Cohort 2 exhibited a prevalence of microRNA (miR)-574-3p and long intergenic non-protein coding (LINC)01003 ncRNA, whose expression correlated with ANC and hemoglobin values, respectively. Conversely, acyl-coenzyme A thioesterase 9 (ACOT9) mRNA was relevant to all CBC components. An integrative analysis of post-CCRT ncRNA levels and CBC values revealed that the patients with miR-574-3p-LINC01003-ACOT9 log2FC) < 0 had a better prospect of 30-month disease-specific survival. These findings indicate that miR-574-3p and LINC01003 could serve as ED prognostic biomarkers.
Collapse
Affiliation(s)
- Oyeon Cho
- Gynecologic Cancer Center, Department of Radiation Oncology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Yin X, Liu Z, Wang J. Tetrahydropalmatine ameliorates hepatic steatosis in nonalcoholic fatty liver disease by switching lipid metabolism via AMPK-SREBP-1c-Sirt1 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155005. [PMID: 37562090 DOI: 10.1016/j.phymed.2023.155005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is becoming a global epidemic without effective treatment currently available. NAFLD is characterized by an increase in hepatic de novo lipogenesis (DNL) and inadequate compensatory enhancement in fatty acid oxidation (FAO), which disturbs lipid homeostasis. In NAFLD, lipid metabolism relies heavily on metabolic reprogramming. Moreover, lipid metabolism plays an essential role in switching between lipogenesis and FAO, which is beneficial for the anti-NAFLD therapy. Our recent study demonstrated that the phytochemical tetrahydropalmatine (THP) has positive efficacy in hepatocellular carcinoma (HCC). However, it remains unclear whether the therapeutic benefits of THP are primarily due to delaying the progression of hepatic steatosis to HCC. PURPOSE This work aimed to systemically evaluate the pharmacological functions and underlying mechanisms of THP in NAFLD using both in vitro and in vivo models. METHODS NAFLD models were established using high-fat diet (HFD)-fed mice in vivo and palmitic acid- and oleic acid-challenged hepatocytes in vitro. Metabonomics analysis concomitant with biochemical indices and computational biology assays were performed comprehensively to reveal the key link between the treatment of NAFLD and the AMPK-SREBP-1c-Sirt1 signaling axis. RESULTS Hepatic metabolomics analysis revealed that THP altered lipid metabolism by enhancing FAO and inhibiting glycolysis, tricarboxylic acid cycle, and urea cycle in HFD-fed mice. Analysis of gene expression showed that THP profoundly suppressed hepatic DNL and promoted FAO. THP supplementation not only significantly decreased body/liver weight gain and serum indices but also ameliorated hepatic steatosis. Simultaneously, impaired lipotoxicity was observed in vivo and in vitro after THP supplementation, protecting against steatosis-driven injury. Metabolic phenotype assays showed that THP promoted switching from glycolysis inhibition to FAO enhancement in steatotic cells, resulting in reprogramming lipid metabolism. Mechanistically, THP accelerated lipid oxidation by activating AMPK-SREBP-1c-Sirt1 axis signaling. Applying molecular docking combined with surface plasmon resonance and cellular thermal shift assay target engagement, as well as siRNA assays, AMPKα was confirmed as a direct molecular target of THP. CONCLUSION In summary, THP ameliorates hepatic steatosis in NAFLD by switching lipid metabolism via the AMPK-SREBP-1c-Sirt1 pathway. This work provides an attractive phytochemical component for therapy against hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, China.
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, United States of America.
| |
Collapse
|
5
|
Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, Wong Gutierrez D, Airola MV, Herring LE, Coleman RA, Klett EL, Cohen S. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev Cell 2023; 58:1250-1265.e6. [PMID: 37290445 PMCID: PMC10525032 DOI: 10.1016/j.devcel.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M So
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan T Wine
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Wong Gutierrez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Haczeyni F, Steensels S, Stein BD, Jordan JM, Li L, Dartigue V, Sarklioglu SS, Qiao J, Zhou XK, Dannenberg AJ, Iyengar NM, Yu H, Cantley LC, Ersoy BA. Submitochondrial Protein Translocation Upon Stress Inhibits Thermogenic Energy Expenditure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539294. [PMID: 37205525 PMCID: PMC10187325 DOI: 10.1101/2023.05.04.539294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria-rich brown adipocytes dissipate cellular fuel as heat by thermogenic energy expenditure (TEE). Prolonged nutrient excess or cold exposure impair TEE and contribute to the pathogenesis of obesity, but the mechanisms remain incompletely understood. Here we report that stress-induced proton leak into the matrix interface of mitochondrial innermembrane (IM) mobilizes a group of proteins from IM into matrix, which in turn alter mitochondrial bioenergetics. We further determine a smaller subset that correlates with obesity in human subcutaneous adipose tissue. We go on to show that the top factor on this short list, acyl-CoA thioesterase 9 (ACOT9), migrates from the IM into the matrix upon stress where it enzymatically deactivates and prevents the utilization of acetyl-CoA in TEE. The loss of ACOT9 protects mice against the complications of obesity by maintaining unobstructed TEE. Overall, our results introduce aberrant protein translocation as a strategy to identify pathogenic factors. One-Sentence Summary Thermogenic stress impairs mitochondrial energy utilization by forcing translocation of IM-bound proteins into the matrix.
Collapse
|
7
|
Ling M, Tang C, Yang X, Yu N, Song Y, Ding W, Sun Y, Yan R, Wang S, Li X, Gao H, Zhang Z, Xing Y. Integrated metabolomics and phosphoproteomics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers. Exp Cell Res 2023; 427:113566. [PMID: 37004949 DOI: 10.1016/j.yexcr.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Aging is characterized by a general decline in cellular function, which ultimately affects whole body homeostasis. This study aimed to investigate the effects and underlying mechanisms of exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-exos) on the livers of naturally aging mice. METHOD Twenty-two-month-old C57BL6 mice were used as a natural aging animal model, divided into a saline-treated wild-type aged control group (WT-AC) and a hUCMSC-exo-treated group (WT-AEX), and then detected by morphology, metabolomics and phosphoproteomics. RESULTS Morphological analysis showed that hUCMSC-exos ameliorated structural disorder and decreased markers of senescence and genome instability in aging livers. Metabolomics showed that hUCMSC-exos decreased the contents of saturated glycerophospholipids, palmitoyl-glycerols and eicosanoid derivatives associated with lipotoxicity and inflammation, consistent with the decreased phosphorylation of metabolic enzymes, such as propionate-CoA ligase (Acss2), at S267 detected by phosphoproteomics. Moreover, phosphoproteomics indicated that hUCMSC-exos reduced the phosphorylation of proteins participating in nuclear transport and cancer signaling, such as heat shock protein HSP90-beta (Hsp90ab1) at S226 and nucleoprotein TPR (Tpr) at S453 and S379, while increasing those involved in intracellular communication, such as calnexin (Canx) at S563 and PDZ domain-containing protein 8 (Pdzd8). Finally, phosphorylated HSP90β and Tpr were verified predominantly in hepatocytes. CONCLUSION HUCMSC-exos improved metabolic reprogramming and genome stability mainly associated with phosphorylated HSP90β in hepatocytes in natural aging livers. This work provides a comprehensive resource of biological data by omics to support future investigations of hUCMSC-exos in aging.
Collapse
Affiliation(s)
- Mingying Ling
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Congmin Tang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Xuechun Yang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China; College of Clinical Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Wenjing Ding
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Shaopeng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, 250101, Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yanqiu Xing
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
8
|
Wang B, Zhang H, Chen YF, Hu LQ, Tian YY, Tong HW, Wang G, Chen C, Yuan P. Acyl-CoA thioesterase 9 promotes tumour growth and metastasis through reprogramming of fatty acid metabolism in hepatocellular carcinoma. Liver Int 2022; 42:2548-2561. [PMID: 36004563 DOI: 10.1111/liv.15409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
Acyl-CoA thioesterase 9 (ACOT9) is a critical regulator of cellular utilization of fatty acids by catalysing the hydrolysis of acyl-CoA thioesters to non-esterified fatty acid and coenzyme A (CoA). Recently, ACOT9 was reported to participate in the pathogenesis of non-alcoholic liver disease (NAFLD), which arises from aberrant lipid metabolism and serves as a risk factor for hepatocellular carcinoma (HCC). However, the functions of ACOT9 in carcinogenesis and aberrant lipid metabolism in HCC remain unexplored. Here, we found that ACOT9 expression is significantly elevated in HCC at least partially due to the down-regulation of miR-449c-3p. Upregulation of ACOT9 is closely associated with poor prognosis for patients with HCC. Knockdown of ACOT9 expression in HCC cells significantly decreased cell proliferation, colony formation, migration and invasion, mainly through suppression of G1-to-S cell cycle transition and epithelial-to-mesenchymal transition (EMT). By contrast, forced ACOT9 expression promoted HCC growth and metastasis. In addition, we found that ACOT9 reprogrammed lipid metabolism in HCC cells by increasing de novo lipogenesis. Furthermore, we demonstrated that increased lipogenesis was involved in ACOT9-promoted HCC growth and metastasis. Altogether, we demonstrate that ACOT9 plays a critical oncogenic role in the promotion of tumour growth and metastasis by reprogramming lipid metabolism in HCC, indicating ACOT9 as a potential therapeutic target in treatment of HCC.
Collapse
Affiliation(s)
- Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Zhang
- Department of Ultrasound Diagnosis, Xi'an Children's Hospital, Xi'an, China
| | - Ya F Chen
- Department of Human Movement Science, Xi'an Physical Education University, Xi'an, China
| | - Long Q Hu
- Department of Interventional Radiology and Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yi Y Tian
- Department of Physiology, Medical College of Yan'an University, Xi'an, China
| | - Hong W Tong
- Department of Anesthesiology, Yan'an People's Hospital, Xi'an, China
| | - Gang Wang
- Department of Human Movement Science, Xi'an Physical Education University, Xi'an, China
| | - Chong Chen
- Department of Thyroid and Breast Surgery, Air Force 986(th) Hospital, Air Force Medical University, Xi'an, China.,Department of General Surgery, Air Force 986(th) Hospital, Air Force Medical University, Xi'an, China
| | - Peng Yuan
- Department of Interventional Radiology and Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Department of Nuclear Medicine, Air Force Medical University, Xi'an, China
| |
Collapse
|
9
|
Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, Suemizu H, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40:111321. [PMID: 36103835 DOI: 10.1016/j.celrep.2022.111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.
Collapse
Affiliation(s)
- Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Sandra Steensels
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Clifton G Fulmer
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Briana Zeck
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Meredith Pittman
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Neil D Theise
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | | | - Markus Grompe
- Yecuris Corporation, Tualatin, OR 97062, USA; Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Baran A Ersoy
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA.
| |
Collapse
|
10
|
Tao Y, Jiang Q, Wang Q. Adipose tissue macrophages in remote modulation of hepatic glucose production. Front Immunol 2022; 13:998947. [PMID: 36091076 PMCID: PMC9449693 DOI: 10.3389/fimmu.2022.998947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic glucose production (HGP) is fine-regulated via glycogenolysis or gluconeogenesis to maintain physiological concentration of blood glucose during fasting-feeding cycle. Aberrant HGP leads to hyperglycemia in obesity-associated diabetes. Adipose tissue cooperates with the liver to regulate glycolipid metabolism. During these processes, adipose tissue macrophages (ATMs) change their profiles with various physio-pathological settings, producing diverse effects on HGP. Here, we briefly review the distinct phenotypes of ATMs under different nutrition states including feeding, fasting or overnutrition, and detail their effects on HGP. We discuss several pathways by which ATMs regulate hepatic gluconeogenesis or glycogenolysis, leading to favorable or unfavorable metabolic consequences. Furthermore, we summarize emerging therapeutic targets to correct metabolic disorders in morbid obesity or diabetes based on ATM-HGP axis. This review puts forward the importance and flexibility of ATMs in regulating HGP, proposing ATM-based HGP modulation as a potential therapeutic approach for obesity-associated metabolic dysfunction.
Collapse
|
11
|
Ferreira I, Machado de Oliveira R, Carvalho AS, Teshima A, Beck HC, Matthiesen R, Costa-Silva B, Macedo MP. Messages from the Small Intestine Carried by Extracellular Vesicles in Prediabetes: A Proteomic Portrait. J Proteome Res 2022; 21:910-920. [PMID: 35263542 PMCID: PMC8982452 DOI: 10.1021/acs.jproteome.1c00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) mediate communication in physiological and pathological conditions. In the pathogenesis of type 2 diabetes, inter-organ communication plays an important role in its progress and metabolic surgery leads to its remission. Moreover, gut dysbiosis is emerging as a diabetogenic factor. However, it remains unclear how the gut senses metabolic alterations and whether this is transmitted to other tissues via EVs. Using a diet-induced prediabetic mouse model, we observed that protein packaging in gut-derived EVs (GDE), specifically the small intestine, is altered in prediabetes. Proteins related to lipid metabolism and to oxidative stress management were more abundant in prediabetic GDE compared to healthy controls. On the other hand, proteins related to glycolytic activity, as well as those responsible for the degradation of polyubiquitinated composites, were depleted in prediabetic GDE. Together, our findings show that protein packaging in GDE is markedly modified during prediabetes pathogenesis, thus suggesting that prediabetic alterations in the small intestine are translated into modified GDE proteomes, which are dispersed into the circulation where they can interact with and influence the metabolic status of other tissues. This study highlights the importance of the small intestine as a tissue that propagates prediabetic metabolic dysfunction throughout the body and the importance of GDE as the messengers. Data are available via ProteomeXchange with identifier PXD028338.
Collapse
Affiliation(s)
- Inês Ferreira
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal.,Bioengineering─Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, University of Lisbon, Lisbon 1049-001, Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rita Machado de Oliveira
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Ana Sofia Carvalho
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Akiko Teshima
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense 5000, Denmark
| | - Rune Matthiesen
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal
| | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria Paula Macedo
- Chronic Diseases Research Centre, CEDOC, NOVA Medical School, (NMS/FCM), Lisbon 1169-056, Portugal.,APDP-ERC Portuguese Diabetes Association Education and Research Centre, Lisbon 1250-189, Portugal.,Departament of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
12
|
Dysregulation of S-adenosylmethionine Metabolism in Nonalcoholic Steatohepatitis Leads to Polyamine Flux and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23041986. [PMID: 35216100 PMCID: PMC8878801 DOI: 10.3390/ijms23041986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease worldwide, with 25% of these patients developing nonalcoholic steatohepatitis (NASH). NASH significantly increases the risk of cirrhosis and decompensated liver failure. Past studies in rodent models have shown that glycine-N-methyltransferase (GNMT) knockout results in rapid steatosis, fibrosis, and hepatocellular carcinoma progression. However, the attenuation of GNMT in subjects with NASH and the molecular basis for its impact on the disease process is still unclear. To address this knowledge gap, we show the reduction of GNMT protein levels in the liver of NASH subjects compared to healthy controls. To gain insight into the impact of decreased GNMT in the disease process, we performed global label-free proteome studies on the livers from a murine modified amylin diet-based model of NASH. Histological and molecular characterization of the animal model demonstrate a high resemblance to human disease. We found that a reduction of GNMT leads to a significant increase in S-adenosylmethionine (AdoMet), an essential metabolite for transmethylation reactions and a substrate for polyamine synthesis. Further targeted proteomic and metabolomic studies demonstrated a decrease in GNMT transmethylation, increased flux through the polyamine pathway, and increased oxidative stress production contributing to NASH pathogenesis.
Collapse
|
13
|
Chen Q, Zhang W, Cai J, Ni Y, Xiao L, Zhang J. Transcriptome analysis in comparing carcass and meat quality traits of Jiaxing Black Pig and Duroc × Duroc × Berkshire × Jiaxing Black Pig crosses. Gene 2022; 808:145978. [PMID: 34592352 DOI: 10.1016/j.gene.2021.145978] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
This study compares two typical strains: Chinese local excellent meat quality of Jiaxing Black (JXB) Pig and quadratic crossbred pig strain Duroc × Duroc × Berkshire × Jiaxing Black (DDBJ). It was found that between the two pig strains, carcass traits and meat quality traits differed significantly. This is exemplified by the leanness and dressing out percent of DDBJ that were significantly higher than JXB pigs of the same age (P < 0.05) and the better growth rate of DDBJ pigs as to JXB pigs was shown by quantifying muscle proliferation and differentiation of longissimus dorsi muscle employing Hematoxylin and Eosin staining of longissimus dorsi muscle. Nutrients such as inosinic acid, intramuscular fat, and free amino acids in the longissimus dorsi muscle were significantly higher in JXB pigs than DDBJ pigs (p < 0.0001); saturated fatty acids were higher in JXB than in DDBJ pigs (p = 0.0097); essential amino acids and fresh taste amino acids (serine, glutamic acid, proline, glycine, alanine) of JXB pigs was higher than that of DDBJ pigs (p < 0.0001) and amino acids in longissimus dorsi muscle of JXB pigs surpasses the amino acid concentration of DDBJ pigs (p < 0.0001), thus showing the superiority of JXB in terms of meat quality. However, the content of polyunsaturated fatty acids, which is responsible for poor meat quality, was significantly higher in the longissimus dorsi muscle of DDBJ pig than JXB pigs (p < 0.0001); RNA-seq analysis of 5 biological replicates from two of the strains was performed. The screening of 164 up-regulated genes and 183 down-regulated genes found in longissimus dorsi muscle of DDBJ was done and the results identified differentially expressed genes related to muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and inosine synthesis. In conclusion, the study identified functional genes, elucidated the mechanisms associated with carcass quality traits, meat quality traits and other related traits, and provided means of genetic enhancement to improve meat quality traits and carcass traits in Chinese commercial pigs.
Collapse
Affiliation(s)
- Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Ni
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixia Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Park G, Jung S, Wellen KE, Jang C. The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:809-822. [PMID: 34017059 PMCID: PMC8178320 DOI: 10.1038/s12276-021-00614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023] Open
Abstract
Imbalance between fat production and consumption causes various metabolic disorders. Nonalcoholic fatty liver disease (NAFLD), one such pathology, is characterized by abnormally increased fat synthesis and subsequent fat accumulation in hepatocytes1,2. While often comorbid with obesity and insulin resistance, this disease can also be found in lean individuals, suggesting specific metabolic dysfunction2. NAFLD has become one of the most prevalent liver diseases in adults worldwide, but its incidence in both children and adolescents has also markedly increased in developed nations3,4. Progression of this disease into nonalcoholic steatohepatitis (NASH), cirrhosis, liver failure, and hepatocellular carcinoma in combination with its widespread incidence thus makes NAFLD and its related pathologies a significant public health concern. Here, we review our understanding of the roles of dietary carbohydrates (glucose, fructose, and fibers) and the gut microbiota, which provides essential carbon sources for hepatic fat synthesis during the development of NAFLD.
Collapse
Affiliation(s)
- Grace Park
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Xu CL, Chen L, Li D, Chen FT, Sha ML, Shao Y. Acyl-CoA Thioesterase 8 and 11 as Novel Biomarkers for Clear Cell Renal Cell Carcinoma. Front Genet 2020; 11:594969. [PMID: 33362855 PMCID: PMC7758486 DOI: 10.3389/fgene.2020.594969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is essentially a metabolic disorder characterized by reprogramming of several metabolic pathways. Acyl-coenzyme A thioesterases (ACOTs) are critical enzymes involved in fatty acid metabolism; however, the roles of ACOTs in ccRCC remain unclear. This study explored ACOTs expressions and their diagnostic and prognostic values in ccRCC. Methods Three online ccRCC datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were utilized to measure the expressions of ACOTs in paired normal and tumor tissues. Receiver operating characteristic (ROC) curves were depicted to assess the diagnostic values of ACOTs in ccRCC. Quantitative real-time PCR and immunohistochemical analysis were performed to validate the ACOT11 expression in ccRCC cell lines and clinical samples. Survival curves and Cox regression analysis were used to evaluate the predictive values of ACOTs in clinical outcome of ccRCC patients. Functional enrichment analyses and correlation analysis were carried out to predict the potential roles of ACOT8 in tumorigenesis and progression of ccRCC. Results ACOT1/2/8/11/13 were found to be significantly downregulated in ccRCC samples. In particular, ACOT11 was decreased in almost every matched normal-tumor pair, and had extremely high diagnostic value as shown by ROC curve analysis (AUC = 0.964). The expression of ACOT11 was further verified in ccRCC cell lines and clinical samples at mRNA and protein levels. Furthermore, clinical correlation analysis and survival analysis indicated that ACOT8 was correlated with disease progression and was an independent predictor of unfavorable outcome in ccRCC. Moreover, functional analyses suggested potential roles of ACOT8 in the regulation of oxidative phosphorylation (OXPHOS), and correlation analysis revealed an association between ACOT8 and ferroptosis-related genes in ccRCC. Conclusion Our study revealed that ACOT11 and ACOT8 are promising biomarkers for diagnosis and prognosis of ccRCC, respectively, and ACOT8 may affect ccRCC development and progression through the regulation of OXPHOS and ferroptosis. These findings may provide new strategies for precise diagnosis and personalized therapy of ccRCC.
Collapse
Affiliation(s)
- Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lei Sha
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Curtis D. Analysis of exome-sequenced UK Biobank subjects implicates genes affecting risk of hyperlipidaemia. Mol Genet Metab 2020; 131:277-283. [PMID: 32747172 DOI: 10.1016/j.ymgme.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Rare genetic variants in LDLR, APOB and PCSK9 are known causes of familial hypercholesterolaemia and it is expected that rare variants in other genes will also have effects on hyperlipidaemia risk although such genes remain to be identified. The UK Biobank consists of a sample of 500,000 volunteers and exome sequence data is available for 50,000 of them. 11,490 of these were classified as hyperlipidaemia cases on the basis of having a relevant diagnosis recorded and/or taking lipid-lowering medication while the remaining 38,463 were treated as controls. Variants in each gene were assigned weights according to rarity and predicted impact and overall weighted burden scores were compared between cases and controls, including population principal components as covariates. One biologically plausible gene, HUWE1, produced statistically significant evidence for association after correction for testing 22,028 genes with a signed log10 p value (SLP) of -6.15, suggesting a protective effect of variants in this gene. Other genes with uncorrected p < .001 are arguably also of interest, including LDLR (SLP = 3.67), RBP2 (SLP = 3.14), NPFFR1 (SLP = 3.02) and ACOT9 (SLP = -3.19). Gene set analysis indicated that rare variants in genes involved in metabolism and energy can influence hyperlipidaemia risk. Overall, the results provide some leads which might be followed up with functional studies and which could be tested in additional data sets as these become available. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK; Centre for Psychiatry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
17
|
Jiang X, Ding WX. Acyl Coenzyme A Thioesterase 9: A Novel Target for Nonalcoholic Fatty Liver Disease by Shuttling Mitochondrial Short-Chain Fatty Acids? Hepatology 2020; 72:797-800. [PMID: 32614087 PMCID: PMC7722112 DOI: 10.1002/hep.31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/07/2022]
Affiliation(s)
- Xiaoxiao Jiang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|