1
|
Kasahara N, Teratani T, Doi J, Yokota S, Shimodaira K, Kaneko Y, Ohzawa H, Sakuma Y, Sasanuma H, Fujimoto Y, Urahashi T, Yoshitomi H, Yamaguchi H, Kitayama J, Sata N. Controlled release of hydrogel-encapsulated mesenchymal stem cells-conditioned medium promotes functional liver regeneration after hepatectomy in metabolic dysfunction-associated steatotic liver disease. Stem Cell Res Ther 2024; 15:395. [PMID: 39497124 PMCID: PMC11536549 DOI: 10.1186/s13287-024-03993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Globally, prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing, and there is an urgent need to develop innovative therapies that promote liver regeneration following hepatectomy for this disease. Surgical excision is a key therapeutic approach with curative potential for liver tumors. However, hepatic steatosis can lead to delayed liver regeneration and higher post-operative complication risk. Mesenchymal stem cells-conditioned medium (MSC-CM) is considered a rich source of paracrine factors that can repair tissues and restore function of damaged organs. Meanwhile, hydrogels have been widely recognized to load MSC secretome and achieve sustained release. This study aimed to evaluate the therapeutic effect of hydrogel-encapsulated MSC-CM on liver regeneration following partial hepatectomy (PHx) in a rodent model of diet-induced hepatic steatosis. METHODS Male Lewis rats were fed with a methionine and choline-deficient diet. After 3 weeks of feeding, PHx was performed and rats were randomly allocated into two groups that received hydrogel-encapsulated MSC-CM or vehicle via the intra-mesenteric space of the superior mesenteric vein (SMV). RESULTS The regeneration of the remnant liver at 30 and 168 h after PHx was significantly accelerated, and the expressions of proliferating cell nuclear antigen were significantly enhanced in the MSC-CM group. MSC-CM treatment significantly increased hepatic ATP and β-hydroxybutyrate content at 168 h after PHx, indicating that MSC-CM fosters regeneration not only in volume but also in functionality. The number of each TUNEL- and cleaved caspase-3 positive nuclei in hepatocytes at 9 h after PHx were significantly decreased in the MSC-CM group, suggesting that MSC-CM suppressed apoptosis. MSC-CM increased serum immunoregulatory cytokine interleukin-10 and interleukin-13 at 30 h after PHx. Additionally, mitotic figures and cyclin D1 expression decreased and hepatocyte size increased in the MSC-CM group, implying that this mode of regeneration was mainly through cell hypertrophy rather than cell division. CONCLUSIONS MSC-CM represents a novel therapeutic approach for patients with MASLD requiring PHx.
Collapse
Affiliation(s)
- Naoya Kasahara
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takumi Teratani
- Division of Translational Research, Jichi Medical University, Shimotsuke, Japan.
| | - Junshi Doi
- Department of Surgery, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | | | | | - Yuki Kaneko
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideki Sasanuma
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yasuhiro Fujimoto
- Department of Transplant Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Taizen Urahashi
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hideyuki Yoshitomi
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | | | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
2
|
Zhao X, Xu Y, Feng J, Chen C, Gao Y, Deng Y. Comprehensive analysis of miRNAs-lncRNAs-mRNAs modules and ceRNA network in acute liver failure: Hsa-miR3175 and C-reactive protein determination. Int J Biol Macromol 2024; 276:133919. [PMID: 39029818 DOI: 10.1016/j.ijbiomac.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Acute liver failure (ALF), also known as fulminant hepatitis, coagulation disorders, and worsening mental status. It has a poor prognosis and high mortality rate. Among these, the top 10 upregulated genes included GKA-DPA1, IGLL5, PLA2G7, CCL5, IGLJ, GUSBP11, RHOBT1, IGLL3P, CCL18, and ADRBK2. On the other hand, the top 10 downregulated genes were SLC6A1, PID1, AVPR1A, PP1R1A, ST3GAL6, TPST, ERO1LB, SLCO4C1, and KLF15. Furthermore, the DEGs were found to be enriched in processes related to LIAO metastasis and creighton endocrine therapy resistance. To explore the interactions among the DEGs, we constructed a PPI network. This network revealed 16 hub genes that play crucial roles in ALF pathogenesis. Within this network, hsa-mir-375 and hsa-mir-650 were identified as central nodes, indicating their potential importance in ALF. By identifying and analyzing the transcriptional-level ceRNA network, we have provided valuable insights into the etiology of ALF.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Junqi Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Chen Chen
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200120, China.
| |
Collapse
|
3
|
Fabris L, Campello E, Cadamuro M, Simioni P. The evil relationship between liver fibrosis and cardiovascular disease in metabolic dysfunction-associated fatty liver disease (MAFLD): Looking for the culprit. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166763. [PMID: 37951510 DOI: 10.1016/j.bbadis.2023.166763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 11/14/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), the hepatic component of the metabolic syndrome caused by insulin resistance, is a major public health problem, affecting about the 25 % of the general population in Western countries. Morbidity and mortality of MAFLD patients is increased primarily due to cardiovascular disease (CVD). Liver fibrosis, the byproduct of hepatic repair, is the main determinant of MAFLD progression and the strongest predictor for overall mortality. Since the mechanistic relationship between MAFLD, fibrosis, insulin resistance and the cardiometabolic risk is far to be clear, deciphering the functional link of hepatic fibrogenesis with genetic factors and hypercoagulability in MAFLD-associated CVD may hold translational potential for risk profiling and innovative therapeutic targeting.
Collapse
Affiliation(s)
- L Fabris
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Molecular Medicine (DMM), University of Padua, Padua, Italy; Digestive Disease Section, Liver Center, Yale University, New Haven, CT, USA.
| | - E Campello
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - M Cadamuro
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - P Simioni
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Feng R, Tong C, Lin T, Liu H, Shao C, Li Y, Sticht C, Kan K, Li X, Liu R, Wang S, Wang S, Munker S, Niess H, Meyer C, Liebe R, Ebert MP, Dooley S, Wang H, Ding H, Weng HL. Insulin Determines Transforming Growth Factor β Effects on Hepatocyte Nuclear Factor 4α Transcription in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:52-70. [PMID: 37820926 DOI: 10.1016/j.ajpath.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-β. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-β did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-β incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.
Collapse
Affiliation(s)
- Rilu Feng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chenhao Tong
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yujia Li
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaofeng Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sai Wang
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Stefan Munker
- Department of Medicine II, Liver Centre Munich, University Hospital, Campus Großhadern, Ludwig-Maximilians-University Munich, Munich, Germany; Liver Centre Munich, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Biobank of the Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph Meyer
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hong-Lei Weng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Ruiz-Margáin A, Pohlmann A, Lanzerath S, Langheinrich M, Campos-Murguía A, Román-Calleja BM, Schierwagen R, Klein S, Uschner FE, Brol MJ, Torre-Delgadillo A, Flores-García NC, Praktiknjo M, Macías Rodríguez RU, Trebicka J. Myostatin is associated with the presence and development of acute-on-chronic liver failure. JHEP Rep 2023; 5:100761. [PMID: 37554924 PMCID: PMC10405090 DOI: 10.1016/j.jhepr.2023.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) has been linked to different pathophysiological mechanisms, including systemic inflammation and mitochondrial dysfunction. Sarcopenia has also been proposed as a potential mechanism; myostatin is a key factor inducing sarcopenia. Therefore, this study aimed to evaluate the association of myostatin levels with the development of ACLF and mortality in patients with cirrhosis. METHODS We performed a prospective cohort study, including both outpatient and hospitalized patients with cirrhosis. Clinical, biochemical, and nutritional parameters were evaluated, and the development of acute decompensation (AD) or ACLF during follow-up was recorded. ACLF was defined according to the EASL-CLIF criteria. Receiver-operating characteristic, Kaplan-Meier and Cox regression analyses were performed. RESULTS A total of 186 patients with the whole spectrum of cirrhosis were included; mean age was 53.4 ± 14 years, mean Child-Pugh score was 8 ± 2.5 and mean MELD score was 15 ± 8. There was a stepwise decrease in myostatin levels from a compensated stage to AD and ACLF. Myostatin correlated positively with nutritional markers and negatively with severity scores. The prevalence of sarcopenia was 73.6%. During follow-up, 27.9% of patients developed AD and 25.8% developed ACLF. Most episodes were grade 2-3, mainly (62.5%) precipitated by infections. The most common organ failures observed were in the liver (63.3%) and the kidney (64.6%). Receiver-operating characteristic analysis yielded <1,280 pg/ml as the best serum myostatin cut-off for the prediction of ACLF. In Kaplan-Meier curves and multivariate analysis, myostatin levels remained independently associated with the incidence of ACLF and survival. CONCLUSIONS There is a progressive decrease in myostatin levels as cirrhosis progresses, demonstrating an association of sarcopenia with the development of ACLF and increased mortality. IMPACT AND IMPLICATIONS Myostatin is a muscle hormone, it is decreased in patients with muscle loss and is a marker of impaired muscle function. In this study we show that myostatin levels are decreased in patients with cirrhosis, with lower levels in patients with acute decompensation and acute-on chronic liver failure (ACLF). Low myostatin levels in cirrhosis predict the development of ACLF and mortality independently of liver disease severity and sex.
Collapse
Affiliation(s)
- Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
- Liver Fibrosis and Nutrition Lab (LFN-Lab), Mexico
- MICTLÁN Network: Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases-research Network, Mexico
| | | | - Silke Lanzerath
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Alejandro Campos-Murguía
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Berenice M. Román-Calleja
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
- Liver Fibrosis and Nutrition Lab (LFN-Lab), Mexico
- MICTLÁN Network: Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases-research Network, Mexico
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Sabine Klein
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | | | | | - Aldo Torre-Delgadillo
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Nayelli C. Flores-García
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Michael Praktiknjo
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Ricardo U. Macías Rodríguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
- Liver Fibrosis and Nutrition Lab (LFN-Lab), Mexico
- MICTLÁN Network: Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases-research Network, Mexico
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
6
|
Barkin JM, Jin-Smith B, Torok K, Pi L. Significance of CCNs in liver regeneration. J Cell Commun Signal 2023:10.1007/s12079-023-00762-x. [PMID: 37202628 DOI: 10.1007/s12079-023-00762-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.
Collapse
Affiliation(s)
- Joshua M Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Kendle Torok
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
7
|
Wang S, Feng R, Wang SS, Liu H, Shao C, Li Y, Link F, Munker S, Liebe R, Meyer C, Burgermeister E, Ebert M, Dooley S, Ding H, Weng H. FOXA2 prevents hyperbilirubinaemia in acute liver failure by maintaining apical MRP2 expression. Gut 2023; 72:549-559. [PMID: 35444014 DOI: 10.1136/gutjnl-2022-326987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan Shan Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Christoph Meyer
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Honglei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
9
|
Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
YAP affects the efficacy of liver progenitor cells transplantation in CCl4-induced acute liver injury. Biochem Biophys Res Commun 2022; 634:129-137. [DOI: 10.1016/j.bbrc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
11
|
Feng R, Kan K, Sticht C, Li Y, Wang S, Liu H, Shao C, Munker S, Niess H, Wang S, Meyer C, Liebe R, Ebert MP, Dooley S, Ding H, Weng H. A hierarchical regulatory network ensures stable albumin transcription under various pathophysiological conditions. Hepatology 2022; 76:1673-1689. [PMID: 35257388 DOI: 10.1002/hep.32414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS It remains unknown how patients with liver failure maintain essential albumin levels. Here, we delineate a hierarchical transcription regulatory network that ensures albumin expression under different disease conditions. APPROACH AND RESULTS We examined albumin levels in liver tissues and serum in 157 patients, including 84 with HCC, 38 decompensated cirrhosis, and 35 acute liver failure. Even in patients with liver failure, the average serum albumin concentrations were 30.55 g/L. In healthy subjects and patients with chronic liver diseases, albumin was expressed in hepatocytes. In patients with massive hepatocyte loss, albumin was expressed in liver progenitor cells (LPCs). The albumin gene (ALB) core promoter possesses a TATA box and nucleosome-free area, which allows constitutive RNA polymerase II binding and transcription initiation. Chromatin immunoprecipitation assays revealed that hepatocyte nuclear factor 4 alpha (HNF4α), CCAAT/enhancer-binding protein alpha (C/EBPα), and forkhead box A2 (FOXA2) bound to the ALB enhancer. Knockdown of either of these factors reduced albumin expression in hepatocytes. FOXA2 acts as a pioneer factor to support HNF4α and C/EBPα. In hepatocytes lacking HNF4α and C/EBPα expression, FOXA2 synergized with retinoic acid receptor (RAR) to maintain albumin transcription. RAR nuclear translocation was induced by retinoic acids released by activated HSCs. In patients with massive hepatocyte loss, LPCs expressed HNF4α and FOXA2. RNA sequencing and quantitative PCR analyses revealed that lack of HNF4α and C/EBPα in hepatocytes increased hedgehog ligand biosynthesis. Hedgehog up-regulates FOXA2 expression through glioblastoma family zinc finger 2 binding to the FOXA2 promoter in both hepatocytes and LPCs. CONCLUSIONS A hierarchical regulatory network formed by master and pioneer transcription factors ensures essential albumin expression in various pathophysiological conditions.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Kejia Kan
- Department of SurgeryMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Yujia Li
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Shanshan Wang
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany.,Beijing Institute of HepatologyBeijing You'an HospitalCapital Medical UniversityBeijingChina
| | - Hui Liu
- Department of PathologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Chen Shao
- Department of PathologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Stefan Munker
- Department of Medicine IIUniversity HospitalLudwig-Maximilians-University MunichMunichGermany.,Liver Centre MunichUniversity HospitalLudwig-Maximilians-UniversityMunichGermany
| | - Hanno Niess
- Department of General, Visceral, and Transplant SurgeryLudwig-Maximilians-University MunichMunichGermany.,Biobank of the Department of GeneralVisceral and Transplant SurgeryLudwig-Maximilians-UniversityMunichGermany
| | - Sai Wang
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Christoph Meyer
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious DiseasesHeinrich Heine UniversityDüsseldorfGermany.,Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
| | - Matthias P Ebert
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty MannheimHeidelberg UniversityMannheimGermany.,Clinical Cooperation Unit Healthy MetabolismCenter of Preventive Medicine and Digital HealthMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Steven Dooley
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| | - Huiguo Ding
- Department of Gastroenterology and HepatologyBeijing You'an HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Honglei Weng
- Department of Medicine IIMedical Faculty MannheimUniversity Medical Center MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
12
|
Huang H, Jiang J, Chen R, Lin Y, Chen H, Ling Q. The role of macrophage TAM receptor family in the acute-to-chronic progression of liver disease: From friend to foe? Liver Int 2022; 42:2620-2631. [PMID: 35900248 DOI: 10.1111/liv.15380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Hepatic macrophages, the key cellular components of the liver, emerge as essential players in liver inflammation, tissue repair and subsequent fibrosis, as well as tumorigenesis. Recently, the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl and MerTK, was found to be a pivotal modulator of macrophages. Activation of macrophage TAM receptor signalling promotes the efferocytosis of apoptotic cells and skews the polarization of macrophages. After briefly reviewing the mechanisms of TAM receptor signalling in macrophage polarization, we focus on their role in liver diseases from acute injury to chronic inflammation, fibrosis and then to tumorigenesis. Notably, macrophage TAM receptor signalling seems to be a two-edged sword for liver diseases. On one hand, the activation of TAM receptor signalling inhibits inflammation and facilitates tissue repair during acute liver injury. On the other hand, continuous activation of the signalling contributes to the process of chronic inflammation into fibrosis and tumorigenesis by evoking hepatic stellate cells and inhibiting anti-tumour immunity. Therefore, targeting macrophage TAM receptors and clarifying its downstream pathways will be exciting prospects for the precaution and treatment of liver diseases, particularly at different stages or statuses.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Hui Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
13
|
Yang B, Lu L, Zhou D, Fan W, Barbier-Torres L, Steggerda J, Yang H, Yang X. Regulatory network and interplay of hepatokines, stellakines, myokines and adipokines in nonalcoholic fatty liver diseases and nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:1007944. [PMID: 36267567 PMCID: PMC9578007 DOI: 10.3389/fendo.2022.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.
Collapse
Affiliation(s)
- Bing Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Zhou
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Justin Steggerda
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Liver Progenitor Cells in Massive Hepatic Necrosis-How Can a Patient Survive Acute Liver Failure? Biomolecules 2022; 12:biom12010066. [PMID: 35053214 PMCID: PMC8773550 DOI: 10.3390/biom12010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Massive hepatic necrosis is the most severe lesion in acute liver failure, yet a portion of patients manage to survive and recover from this high-risk and harsh disease syndrome. The mechanisms underlying recovery remain largely unknown to date. Recent research progress highlights a key role of liver progenitor cells, the smallest biliary cells, in the maintenance of liver homeostasis and thus survival. These stem-like cells rapidly proliferate and take over crucial hepatocyte functions in a severely damaged liver. Hence, the new findings not only add to our understanding of the huge regenerative capability of the liver, but also provide potential new targets for the pharmacological management of acute liver failure in clinical practice.
Collapse
|
15
|
Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules 2021; 11:biom11121907. [PMID: 34944550 PMCID: PMC8699389 DOI: 10.3390/biom11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes' regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.
Collapse
|