1
|
Isaac R, Bandyopadhyay G, Rohm TV, Kang S, Wang J, Pokhrel N, Sakane S, Zapata R, Libster AM, Vinik Y, Berhan A, Kisseleva T, Borok Z, Zick Y, Telese F, Webster NJG, Olefsky JM. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab 2024; 36:1030-1043.e7. [PMID: 38670107 PMCID: PMC11113091 DOI: 10.1016/j.cmet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa V Rohm
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sion Kang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyue Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sadatsugu Sakane
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asres Berhan
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Casini F, Scaltrito F, Grimaldi MT, Pop TL, Calcaterra V, Zuccotti GV, Pettoello-Mantovani M, Ferrara P, Corsello G, Fabiano V. Use of complementary and alternative medicine in children affected by oncologic, neurologic and liver diseases: a narrative review. Ital J Pediatr 2023; 49:152. [PMID: 37968663 PMCID: PMC10647067 DOI: 10.1186/s13052-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
Complementary and alternative medicine (CAM) consist of a broad group of restorative resources often linked to existing local cultures and established health care systems and are also increasingly used in children with some serious illnesses. In this narrative review, we examine the epidemiology of the use, efficacy, and safety of complementary and alternative medicine in pediatric oncology, neurology, and hepatology. We searched for relevant articles published in Pubmed evaluating CAM use and its efficacy in safety in children affected by oncologic, neurologic and liver diseases. CAM is used to improve the success of conventional therapies, but also to alleviate the pain, discomfort, and suffering resulting from the diseases and their treatment, which are often associated with a significant burden of adverse effects. CAM use must be evaluated in children with neurological, oncological and liver diseases.
Collapse
Affiliation(s)
- Francesca Casini
- Pediatric Department, University of Milan, "V. Buzzi" Children's Hospital, 20154, Milan, Italy
| | - Francesca Scaltrito
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Tudor Lucian Pop
- 2Nd Pediatric Discipline, Department of Mother and Child, Center of Expertise in Pediatric Liver Rare Diseases, Iuliu Hatieganu University of Medicine and Pharmacy2Nd Pediatric ClinicEmergency Clinical Hospital for Children Cluj-Napoca, Cluj-Napoca, Romania
- European Pediatric Association-Union of National European Pediatric Societies and Associations, Berlin, Germany
| | - Valeria Calcaterra
- Pediatric Department, University of Milan, "V. Buzzi" Children's Hospital, 20154, Milan, Italy
- Department of Internal Medicine, University of Pavia, 27100, Pavia, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Department, University of Milan, "V. Buzzi" Children's Hospital, 20154, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Massimo Pettoello-Mantovani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- European Pediatric Association-Union of National European Pediatric Societies and Associations, Berlin, Germany
| | - Pietro Ferrara
- Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
- Operative Research Unit of Pediatrics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Valentina Fabiano
- Pediatric Department, University of Milan, "V. Buzzi" Children's Hospital, 20154, Milan, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy.
| |
Collapse
|
3
|
Wang K, Chen H, Qin S, Chen S, Zhang Q, Chen J, Di D, Su G, Yuan Y. Co-delivery of pirfenidone and siRNA in ZIF-based nanoparticles for dual inhibition of hepatic stellate cell activation in liver fibrotic therapy. Colloids Surf B Biointerfaces 2023; 231:113567. [PMID: 37797465 DOI: 10.1016/j.colsurfb.2023.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatic fibrosis, as a destructive liver disease, occurs due to activated hepatic stellate cells (HSCs) producing excessive extracellular matrix deposition. If left untreated, it could further deteriorate into cirrhosis and hepatoma with high morbidity and mortality. Currently, to break the dilemma of poor targeting efficiency on HSCs and limited effect of monotherapy, it is urgent to explore a precise and efficient treatment against liver fibrosis. In the present work, a novel multifunctional nanoplatform based on vitamin A (VA) modified zeolitic imidazolate framework-8 (ZIF-8) nanoparticles was designed for co-delivery of chemical drug (Pirfenidone) and genetic drug (TGF-β1 siRNA) to achieve HSCs targeting mediated synergistic chemo-gene therapy against liver fibrosis. With the large specific surface area and acid-responsive degradation characteristics, ZIF-8 nanoparticles have great advantages to achieve high loading efficiency of Pirfenidone and enable acid-reactive drug release. After complexing siRNA, the prepared chemo-gene drug co-delivered nanocomplex (GP@ZIF-VL) proved excellent serum stability and effectively protected siRNA from degradation. Importantly, in vitro cell uptake and in vivo biodistribution demonstrated that VA functionalization markedly enhanced the delivery efficiency of GP@ZIF-VL nanocomplex into HSCs. As expected, GP@ZIF-VL significantly reduced extracellular matrix deposition and ameliorated hepatic fibrosis, as evidenced by decreased levels of liver enzymes in serum and a reduction in the hydroxyproline content in liver tissue. Therefore, GP@ZIF-VL nanocomplex displayed a bright future on the treatment of liver fibrosis with HSCs-targeting mediated chemo-gene synergetic therapy.
Collapse
Affiliation(s)
- Kaili Wang
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Si Qin
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Shuhui Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Qian Zhang
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Donghua Di
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Guangyue Su
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Yue Yuan
- Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Mishra AK, Neha S, Rani L, Jain A, Dewangan HK, Sahoo PK. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model. J Drug Deliv Sci Technol 2023; 86:104580. [DOI: 10.1016/j.jddst.2023.104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
5
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
6
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
7
|
The effect of silymarin on liver enzymes and antioxidant status in trauma patients in the intensive care unit: a randomized double blinded placebo-controlled clinical trial. Clin Exp Hepatol 2021; 7:149-155. [PMID: 34295981 PMCID: PMC8284169 DOI: 10.5114/ceh.2021.107067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/24/2021] [Indexed: 01/09/2023] Open
Abstract
Aim of the study This study was conducted to investigate the positive effect of silymarin on liver enzymes and antioxidant status in trauma patients with elevated liver enzymes due to trauma-induced liver injury, admitted to the intensive care unit. Material and methods This one-year, randomized, double-blinded, placebo-controlled clinical trial was conducted on 90 trauma patients. The participants were assigned to either receiving Livergol tablets containing 140 mg of silymarin or 140 mg of placebo three times daily for 14 days. Liver enzymes, including aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), were measured at baseline and days 3, 7, 9 and 14 after intervention. Also, antioxidant markers were measured at baseline and day 14 after treatment. Results Receiving silymarin supplement significantly lowered the liver enzymes, compared to placebo (p < 0.05). The mean serum level of malondialdehyde (MDA) was significantly decreased and the mean serum levels of total antioxidant capacity (TAC) and thiol groups were significantly increased in the silymarin group from baseline to day 14. In the placebo group, mean serum levels of MDA and thiol groups were significantly increased, while serum level of TAC was not significantly changed at day 14, compared to baseline. Also, the mean serum level of MDA was significantly lower, while the serum levels of thiol groups and TAC were significantly higher in the silymarin group. Conclusions Silymarin supplementation significantly improved some antioxidant markers (TAC and thiol) and decreased liver enzymes in patients with trauma-induced liver injury.
Collapse
|
8
|
Blundell R, Azzopardi JI. Chronic liver diseases. INFLUENCE OF NUTRIENTS, BIOACTIVE COMPOUNDS, AND PLANT EXTRACTS IN LIVER DISEASES 2021:129-139. [DOI: 10.1016/b978-0-12-816488-4.00005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Li X, Shao S, Li H, Bi Z, Zhang S, Wei Y, Bai J, Zhang R, Ma X, Ma B, Zhang L, Xie C, Ning W, Zhou H, Yang C. Byakangelicin protects against carbon tetrachloride-induced liver injury and fibrosis in mice. J Cell Mol Med 2020; 24:8623-8635. [PMID: 32643868 PMCID: PMC7412405 DOI: 10.1111/jcmm.15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a disease caused by long-term damage that is related to a number of factors. The current research on the treatment of liver fibrosis mainly focuses on the activation of hepatic stellate cell, in addition to protecting liver cells. byakangelicin has certain anti-inflammatory ability, but its effect on liver fibrosis is unclear. This study aims to explore whether byakangelicin plays a role in the development of liver fibrosis and to explore its mechanism. We determined that byakangelicin has a certain ability to resist fibrosis and reduce liver cell damage in a model of carbon tetrachloride-induced liver fibrosis in mice. Thereafter, we performed further verification in vitro. The signalling pathways of two important pro-fibrotic cytokines, transforming growth factor-β and platelet-derived growth factor, were studied. Results showed that byakangelicin can inhibit related pathways. According to the hepatoprotective effect of byakangelicin observed in animal experiments, we studied the effect of byakangelicin on 4-HNE-induced hepatocyte (HepG2) apoptosis and explored its related pathways. The results showed that byakangelicin could attenuate 4-HNE-induced hepatocyte apoptosis via inhibiting ASK-1/JNK signalling. In conclusion, byakangelicin could improve carbon tetrachloride-induced liver fibrosis and liver injury by inhibiting hepatic stellate cell proliferation and activation and suppressing hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuaibo Shao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shanshan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yiying Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiakun Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoyang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bowei Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
10
|
Ceccherini E, Cecchettini A, Morales MA, Rocchiccioli S. The Potentiality of Herbal Remedies in Primary Sclerosing Cholangitis: From In Vitro to Clinical Studies. Front Pharmacol 2020; 11:813. [PMID: 32587513 PMCID: PMC7298067 DOI: 10.3389/fphar.2020.00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis is a complex pathological condition, characterized by chronic inflammation and fibrosis of the biliary epithelium. Without proper clinical management, progressive bile ducts and liver damage lead to cirrhosis and, ultimately, to liver failure. The known limited role of current drugs for treating this cholangiopathy has driven researchers to assess alternative therapeutic options. Some herbal remedies and their phytochemicals have shown anti-fibrotic properties in different experimental models of hepatic diseases and, occasionally, in clinical trials in primary sclerosing cholangitis patients; however their mechanism of action is not completely understood. This review briefly examines relevant studies focusing on the potential anti-fibrotic properties of Silybum marianum, Curcuma longa, Salvia miltiorrhiza, and quercetin. Each natural product is individually reviewed and the possible mechanisms of action discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
11
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
12
|
Jiang M, He K, Qiu T, Sun J, Liu Q, Zhang X, Zheng H. Tumor-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment. Int J Pharm 2020; 581:119239. [PMID: 32194211 DOI: 10.1016/j.ijpharm.2020.119239] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
We induced changes in the tumor microenvironment (TME) through the synergistic actions of two drugs used in breast cancer therapy. The anti-fibrotic drug silibinin (SLB) targets tumor-associated fibroblasts and exerts immune-mediated anti-cancer effects. IPI-549, an efficient and highly selective phosphoinositide-3-kinase-gamma (PI3Kγ) inhibitor, was applied to alter the balance of immunosuppressive cells by inhibiting PI3Kγ molecules; it also promotes anti-tumor immunity. We developed nanoparticle formulations to encapsulate both drugs into the targeting carrier aminoethyl anisamide-polyethylene glycol-polycaprolactone (AEAA-PEG-PCL) respectively. The drugs were intravenously delivered in mice and resulted in an increase in anti-tumor efficacy and apoptotic tumor tissue compared with either IPI-549 or SLB alone in 4T1 breast cancer cell-derived tumors. Furthermore, a significant reduction in regulatory T (Treg) cells and myeloid suppressor cells (MDSCs) was observed. A normalized TME structure was also observed, including angiogenesis suppression, antifibrotic effects and the inhibition of collagen formation in the tumor tissue, significantly enhancing the anti-tumor effects. In summary, this combination strategy may offer an alternative treatment for breast cancer.
Collapse
Affiliation(s)
- Min Jiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Kaiyong He
- Hubei Institute for Drug Control, Wuhan 430070, China
| | - Tong Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jiahui Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
13
|
Piotrowska-Kempisty H, Nowicki M, Jodynis-Liebert J, Kurpik M, Ewertowska M, Adamska T, Oszmiański J, Kujawska M. Assessment of Hepatoprotective Effect of Chokeberry Juice in Rats Treated Chronically with Carbon Tetrachloride. Molecules 2020; 25:molecules25061268. [PMID: 32168847 PMCID: PMC7144002 DOI: 10.3390/molecules25061268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to compare the protective effects of chokeberry juice and silymarin against chemical-induced liver fibrosis in rats. Liver fibrosis was induced by CCl4 administered two days a week for six weeks. Two groups of rats were co-treated with chokeberry juice, 10 mL/kg/day. or silymarin as a positive control, 100 mg/kg/day for six weeks. Hepatic lipid peroxidation was suppressed by 50% and the activity of hepatic antioxidant enzymes was increased by 19%–173% in rats co-treated with CCl4 and substances tested as compared to rats administered CCl4 alone. Hepatic hydroxyproline was decreased by 24% only in rats treated with silymarin. The messenger RNA (mRNA) expression levels of fibrosis-related molecules, procollagen I, α-SMA, TIMP-1, TGFβ, and TNFα, which were significantly increased in the liver of CCl4-treated rats, were not modulated by substances tested. Histological evaluation revealed a slight protective effect of silymarin against fibrosis. However, in CCl4 + chokeberry-treated rats, the density of vacuolated hepatocytes was significantly lower than that in silymarin administered animals. Chokeberry juice did not demonstrate an antifibrotic effect in the applied experimental model of fibrosis, and the effect of the known antifibrotic agent, silymarin, was very limited.
Collapse
Affiliation(s)
- Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Teresa Adamska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Cereal Technology, Environmental and Life Science University, 51-630 Wrocław, Poland;
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (H.P.-K.); (J.J.-L.); (M.K.); (M.E.); (T.A.)
- Correspondence: ; Tel.: +48-61-847-20-81 (ext. 156)
| |
Collapse
|
14
|
Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, Tappenbeck N, Tietze L, Christ B, Frank M, Vogelmann R, Ebert MPA, Dooley S. Human skin-derived ABCB5 + stem cell injection improves liver disease parameters in Mdr2KO mice. Arch Toxicol 2019; 93:2645-2660. [PMID: 31435712 DOI: 10.1007/s00204-019-02533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-β family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Vanessa Hartwig
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Bedair Dewidar
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Ganss
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | | | - Lysann Tietze
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Bruno Christ
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Markus Frank
- Department of Pediatrics and Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roger Vogelmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Philip Alexander Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
15
|
Vivekanandan L, Sheik H, Singaravel S, Thangavel S. Ameliorative effect of silymarin against linezolid-induced hepatotoxicity in methicillin-resistant Staphylococcus aureus (MRSA) infected Wistar rats. Biomed Pharmacother 2018; 108:1303-1312. [PMID: 30372832 DOI: 10.1016/j.biopha.2018.09.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Linezolid has a better choice for eradication of methicillin-resistant Staphylococcus aureus (MRSA) infections, but its use is limited because of linezolid-induced hepatotoxicity, myelosuppression, and lactic acidosis. This research elucidated the role of silymarin against hepatoxicity of linezolid therapy in MRSA infected Wistar rats. The rats were rendered neutropenic by an intraperitoneal injection of cyclophosphamide injection. The neutropenic rats were injected subcutaneously with 106 CFU/ml of MRSA. The rats were divided into 6 groups. Normal control, Infected, Infected animals treated with linezolid 50 mg/kg/twice/day and Infected animals treated with linezolid and different dose of silymarin 25, 50, and 100 mg/kg/twice/day for 14 days. On the 15th day, the blood, liver, kidney, and bone marrow were collected for biochemical and histopathological examination. The MRSA was confirmed by PCR assay. The minimum inhibitory concentration of linezolid was 0.5-2 μg/ml. The linezolid induced liver damage was confirmed by elevation of marker enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), Lactate dehydrogenase (LDH) levels, serum bilirubin, lactate, and histopathological studies of the liver. The linezolid treated rats also showed myelosuppression, lactic acidosis, oxidative stress and decreased intestinal alkaline phosphatase (IAP). The silymarin administration exhibited marked hepatoprotective effect by significantly lowering the liver marker enzymes, serum parameters, and cytological findings reflect the hepatoprotection. Additionally, Silymarin showed protection against myelosuppression and lactic acidosis evidenced by bone marrow smear and serum lactate estimation. Antioxidant effect of silymarin was confirmed by decreased levels of lipid peroxidation, restored the enzymatic and non-enzymatic antioxidants of the liver nearer to normal. The present study indicates that the silymarin could be a better herbal therapeutic agent which protects against the linezolid induced hepatotoxicity in MRSA infected rats.
Collapse
Affiliation(s)
- Lalitha Vivekanandan
- Department of Pharmacology, Nandha College of Pharmacy and Research Institute, Erode 638052, Tamilnadu, India.
| | - Hajasherief Sheik
- Department of Pharmacology, Nandha College of Pharmacy and Research Institute, Erode 638052, Tamilnadu, India
| | - Sengottuvelu Singaravel
- Department of Pharmacology, Nandha College of Pharmacy and Research Institute, Erode 638052, Tamilnadu, India
| | - Sivakumar Thangavel
- Department of Pharmacology, Nandha College of Pharmacy and Research Institute, Erode 638052, Tamilnadu, India
| |
Collapse
|
16
|
Olive oil combined with Lycium barbarum polysaccharides attenuates liver apoptosis and inflammation induced by carbon tetrachloride in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Gharbia S, Balta C, Herman H, Rosu M, Váradi J, Bácskay I, Vecsernyés M, Gyöngyösi S, Fenyvesi F, Voicu SN, Stan MS, Cristian RE, Dinischiotu A, Hermenean A. Enhancement of Silymarin Anti-fibrotic Effects by Complexation With Hydroxypropyl (HPBCD) and Randomly Methylated (RAMEB) β-Cyclodextrins in a Mouse Model of Liver Fibrosis. Front Pharmacol 2018; 9:883. [PMID: 30150935 PMCID: PMC6099081 DOI: 10.3389/fphar.2018.00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Silymarin (Sy) shows limited water solubility and poor oral bioavailability. Water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) β-cyclodextrins were designed to enhance anti-fibrotic efficiency of silymarin in CCl4-induced liver fibrosis in mice. Experimental fibrosis was induced by intraperitoneal injection with 2 ml/kg CCl4 (20% v/v) twice a week, for 7 weeks. Mice were orally treated with 50 mg/kg of Sy-HPBCD, Sy-RAMEB and free silymarin. For assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after 2 weeks of recovery time. The CCl4 administration increased hepatic oxidative stress, augmented the expression of transforming growth factor-β1 (TGF-β1) and Smad 2/3, and decreased Smad 7 expression. Furthermore, increased α-smooth muscle actin (α-SMA) expression indicated activation of hepatic stellate cells (HSCs), while up-regulation of collagen I (Col I) and matrix metalloproteinases (MMPs) expression led to an altered extracellular matrix enriched in collagen, confirmed as well by trichrome staining and electron microscopy analysis. Treatment with Sy-HPBCD and Sy-RAMEB significantly reduced liver injury, attenuating oxidative stress, restoring antioxidant balance in the hepatic tissue, and significantly decreasing collagen deposits in the liver. The levels of pro-fibrogenic markers' expression were also significantly down-regulated, whereas in the group for spontaneous regression of fibrosis, they remained significantly higher, even at 2 weeks after CCl4 administration was discontinued. The recovery was significantly lower for free silymarin group compared to silymarin/β cyclodextrins co-treatments. Sy-HPBCD was found to be the most potent anti-fibrotic complex. We demonstrated that Sy-HPBCD and Sy-RAMEB complexes decreased extracellular matrix accumulation by inhibiting HSC activation and diminished the oxidative damage. This might occur via the inhibition of TGF-β1/Smad signal transduction and MMP/tissue inhibitor of MMPs (TIMP) rebalance, by blocking the synthesis of Col I and decreasing collagen deposition. These results suggest that complexation of silymarin with HPBCD or RAMEB represent viable options for the its oral delivery, of the flavonoid as a potential therapeutic entity candidate, with applications in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Sami Gharbia
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Hildegard Herman
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Szilvia Gyöngyösi
- Department of Solid State Physics, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Roxana E Cristian
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, The Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Hermenean
- The Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| |
Collapse
|
18
|
Qiao JB, Fan QQ, Xing L, Cui PF, He YJ, Zhu JC, Wang L, Pang T, Oh YK, Zhang C, Jiang HL. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J Control Release 2018; 283:113-125. [DOI: 10.1016/j.jconrel.2018.05.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
|
19
|
Brückner S, Zipprich A, Hempel M, Thonig A, Schwill F, Roderfeld M, Roeb E, Christ B. Improvement of portal venous pressure in cirrhotic rat livers by systemic treatment with adipose tissue–derived mesenchymal stromal cells. Cytotherapy 2017; 19:1462-1473. [DOI: 10.1016/j.jcyt.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
|
20
|
Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Zhou J, Tang X, Liu J, Huo M. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 2017; 536:231-240. [PMID: 29162374 DOI: 10.1016/j.ijpharm.2017.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
Abstract
This study demonstrates the preparation of a silybin-loaded N-octyl-O, N-carboxymethyl chitosan micelle (OCC-SLB) to enhance the oral absorption efficiency of silybin (SLB) and investigate the related mechanisms of enhancement. Firstly, the physicochemical properties of OCC and OCC-SLB micelles, including critical micelle concentration (CMC), particle size, zeta potential, drug-loading, etc., were determined. Results of pharmacokinetic studies on rats then confirmed a desirable enhancement in the oral bioavailability of SLB by OCC-SLB micelles compared with a stock SLB suspension solution. Subsequently, uptake studies on the Caco-2 cell line demonstrated that OCC-SLB micelles effectively accumulated SLB or rhodamine-123 into cells through clathrin and caveolae-mediated endocytosis and the inhibition of P-glycoprotein (P-gp) efflux. In addition, results of the Caco-2 transport study further clarified that OCC-SLB micelles enhanced the permeability of SLB via tight junction opening and clathrin-mediated transcytosis across the endothelium. These findings indicated the OCC micelle platform as a potential delivery vehicle for oral administration of P-gp substrates such as SLB.
Collapse
Affiliation(s)
- Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yanhong Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinyu Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinlai Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiaomeng Tang
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jiyong Liu
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Salam OMA, Sleem AA, Omara EA, Hassan NS. Effect of Ribavirin Alone or Combined with Silymarin on Carbon Tetrachloride Induced Hepatic Damage in Rats. Drug Target Insights 2017. [DOI: 10.1177/117739280700200014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Omar M.E. Abdel Salam
- Department of Pharmacology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt
| | - Amany A. Sleem
- Department of Pharmacology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt
| | - Enayat A. Omara
- Department of Pathology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt
| | - Nabila S. Hassan
- Department of Pathology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt
| |
Collapse
|
22
|
Fathalah WF, Abdel Aziz MA, Abou el Soud NH, El Raziky MES. High Dose of Silymarin in Patients with Decompensated Liver Disease: A Randomized Controlled Trial. J Interferon Cytokine Res 2017; 37:480-487. [DOI: 10.1089/jir.2017.0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Waleed Fouad Fathalah
- Endemic Gastroenterology and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
23
|
The common dietary flavonoid myricetin attenuates liver fibrosis in carbon tetrachloride treated mice. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
|
24
|
Federico A, Dallio M, Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017; 22:molecules22020191. [PMID: 28125040 PMCID: PMC6155865 DOI: 10.3390/molecules22020191] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Carmelina Loguercio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| |
Collapse
|
25
|
Abdel-Hamid NM, Wahid A, Nazmy MH, Eisa MAM. Synergistic Effects of Jerusalem Artichoke in Combination with Pegylated Interferon Alfa-2a and Ribavirin Against Hepatic Fibrosis in Rats. Asian Pac J Cancer Prev 2017; 17:1979-85. [PMID: 27221884 DOI: 10.7314/apjcp.2016.17.4.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complementary and alternative medicine has been highly appreciated as a supportive regimen for classical treatment strategies. Here we offer a nutrition-based adjuvant therapy for liver fibrosis, a major risk factor for cirrhosis and hepatocellular carcinoma. AIM OF THE STUDY To evaluate the possible hepatoprotective effects of Jerusalem artichoke tubers (JAT) in combination with interferon and ribavirin. MATERIALS AND METHODS Twelve groups of rats were administered JAT, interferon and ribavirin either separately or in combination from day one of CCL4 administration until the end of the study. Animals were killed after 8 weeks of CCL4- induced hepatotoxicity. RESULTS Hepatocytes from rats treated with triple combination of interferon, ribavirin, and JAT showed more less normal architecture compared to CCL4- treated rats. We also detected significantly higher hepatic protein expression levels of p53, BAX and transforming growth factor-β (TGF-β) in the CCl4- intoxicated group compared to normal controls, as evidenced by immunohistochemical staining and western blotting analyses. Addition of JAT as a supportive regimen improved response to ribavirin and interferon and effectively participated in retaining normal histopathological and biochemical criteria and significantly lowered protein expression of p53, BAX, and TGF-β. CONCLUSIONS We suggest that addition of JAT as a supportive regimen to interferon and ribavirin effectively potentiates their anti-fibrotic effects.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafr-El-Sheikh University, Minya, Egypt E-mail :
| | | | | | | |
Collapse
|
26
|
Silymarin and methionine application on treatment of liver chronic diseases by aflatoxicosis in rabbit (Oryctolagus cuniculi)—case report. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2401-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.
Collapse
Affiliation(s)
- Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Polachi N, Bai G, Li T, Chu Y, Wang X, Li S, Gu N, Wu J, Li W, Zhang Y, Zhou S, Sun H, Liu C. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer – A comprehensive review. Eur J Med Chem 2016; 123:577-595. [DOI: 10.1016/j.ejmech.2016.07.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
|
29
|
Abstract
Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C-C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.
Collapse
|
30
|
Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo. Molecules 2016; 21:molecules21111456. [PMID: 27809254 PMCID: PMC6274176 DOI: 10.3390/molecules21111456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.
Collapse
|
31
|
Czaja AJ. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:2784-2803. [PMID: 27411555 DOI: 10.1007/s10620-016-4247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Geng Y, Wang J, Sun Q, Xie M, Lu ZM, Xu HY, Shi JS, Xu ZH. Identification of antrodin B from Antrodia camphorata as a new anti-hepatofibrotic compound using a rapid cell screening method and biological evaluation. Hepatol Res 2016; 46:E15-25. [PMID: 25753357 DOI: 10.1111/hepr.12516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
AIM Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) resulting from chronic liver diseases. Efficient and well-tolerated drugs for its treatment are urgently needed. This study aims to identify the active ingredients of Antrodia camphorata by a bioassay-guided fractionation approach and explore the acting mechanism by using a hepatic stellate cell (HSC) line CFSC-8B stimulated by transforming growth factor-β1 (TGF-β1). METHODS The accumulation of collagens was evaluated using chromogenic precipitation reaction with picro-sirius red (PSR) dye solution and quantified by spectrophotometric analysis of the dissolved stain. MTT assay, cell migration assay, quantitative polymerase chain reaction and western blotting analysis were used to determine the cell viability, cell migration and gene expression. RESULTS We established a rapid colorimetric assay suitable for screening of anti-hepatofibrotic reagents. Stimulation with 10 ng/mL TGF-β1 for 48 h and 200 μL PSR dye solution were optimal for the colorimetric assay in CFSC-8B cells. We used SB431542, silybin and another 11 antifibrotic reagents to verify the cellular model. Within the safe doses, they attenuated ECM production induced by TGF-β1. Bioactivity-guided fractionation led to the identification of antrodin B from A. camphorata. Antrodin B significantly ameliorated cell proliferation, cell migration, suppressed HSC activation marker α-smooth muscle actin expression and ECM components Col1, Col3 and Fn expression, and blocked the phosphorylation of Smad2/3 induced by TGF-β1 in CFSC-8B cells in a dose-dependent manner. CONCLUSION We developed a simple assay based on TGF-β1-induced total collagen accumulation in CFSC-8B cells and identified antrodin B which may serve as a potential candidate for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Jing Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Qing Sun
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Minfeng Xie
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
33
|
Ferenci P. Silymarin in the treatment of liver diseases: What is the clinical evidence? Clin Liver Dis (Hoboken) 2016; 7:8-10. [PMID: 31041017 PMCID: PMC6490246 DOI: 10.1002/cld.522] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Peter Ferenci
- Internal Medicine 3, Department of Gastroenterology and HepatologyMedical University of ViennaViennaAustria
| |
Collapse
|
34
|
Neha, Jaggi AS, Singh N. Silymarin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:25-44. [PMID: 27771919 DOI: 10.1007/978-3-319-41342-6_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silymarin is the active constituent of Silybum marianum (milk thistle) which is a C-25 containing flavonolignan. Milk thistle has a lot of traditional values, being used as a vegetable, as salad, as bitter tonic, and as galactogogue in nursing mothers and in various ailments such as liver complications, depression, dyspepsia, spleenic congestions, varicose veins, diabetes, amenorrhea, uterine hemorrhage, and menstrual problems. In this present chapter, a comprehensive attempt has been made to discuss the potential of silymarin in chronic disorders. An insight into modulation of cellular signaling by silymarin and its implication in various disorders such as liver disorders, inflammatory disorders, cancer, neurological disorders, skin diseases, and hypercholesterolemia is being provided.
Collapse
Affiliation(s)
- Neha
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Amteshwar S Jaggi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
35
|
Zhao X, Deng Y, Zhang Y, Zu Y, Lian B, Wu M, Zu C, Wu W. Silymarin nanoparticles through emulsion solvent evaporation method for oral delivery with high antioxidant activities, bioavailability, and absorption in the liver. RSC Adv 2016. [DOI: 10.1039/c6ra12896c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silymarin (SM), a well-known hepatoprotective drug, is widely used to treat liver disorders. Silymarin nanoparticles (SMNs) were prepared through emulsion solvent evaporation and freeze-drying methods to improve their solubility.
Collapse
Affiliation(s)
- Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Yiping Deng
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Ying Zhang
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Bolin Lian
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Mingfang Wu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Chang Zu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology
- Northeast Forestry University
- Ministry of Education
- Harbin 150040
- China
| |
Collapse
|
36
|
Li J, Li B, Xu WW, Chan KW, Guan XY, Qin YR, Lee NPY, Chan KT, Law S, Tsao SW, Cheung ALM. Role of AMPK signaling in mediating the anticancer effects of silibinin in esophageal squamous cell carcinoma. Expert Opin Ther Targets 2015; 20:7-18. [DOI: 10.1517/14728222.2016.1121236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Zhang YA, Shen XZ, Zhu JM, Liu TT. Extensive Metastatic Cholangiocarcinoma Associated With IgG4-Related Sclerosing Cholangitis Misdiagnosed as Isolated IgG4-Related Sclerosing Cholangitis: A Case Report and Literature Review. Medicine (Baltimore) 2015; 94:e2052. [PMID: 26559312 PMCID: PMC4912306 DOI: 10.1097/md.0000000000002052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As cholangiographic features of IgG4-related sclerosing cholangitis (IgG4-SC) resemble those of cholangiocarcinoma, it is highly confusing between the 2 conditions on the basis of cholangiographic findings. This study presents a case of extensive metastatic cholangiocarcinoma with IgG4-SC misdiagnosed as isolated IgG4-SC, and reviews recent studies of the 2 diseases.A 56-year-old man with no family history of malignant tumors or liver diseases presented with recurrent mild abdominal pain and distention for 3 months. Magnetic resonance cholangiopancreatography showed a 3.7 cm nodular lesion with unclear boundary in segment VI of the liver. Serum IgG4 and CA19-9 were slightly elevated. Histopathological examination was consistent with the consensus statement on the pathology of IgG4-SC. IgG4-SC was thus considered. Due to his mild symptoms, glucocorticoid was not given at first. However, 3 months after his first admission, he had more severe abdominal pain and further elevated serum CA19-9. Actually he was found suffering from extensive metastatic cholangiocarcinoma with IgG4-SC by exploratory laparotomy.The present case serves as a reminder that extensive metastatic cholangiocarcinoma with or without IgG4-SC may be misdiagnosed as an isolated IgG4-SC case if one relies solely on elevated serum and tissue IgG4 levels. We emphasize on the importance of repeated core needle biopsy or exploratory laparoscopy/laparotomy before immunosuppressive drugs are given, and on follow-up of imaging findings and serum CA19-9 once immunosuppressive therapy is started.
Collapse
Affiliation(s)
- Yi-An Zhang
- From Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China (YAZ, XZS, JMZ, TTL); Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China (XZS); and Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China (XZS)
| | | | | | | |
Collapse
|
38
|
Mahli A, Koch A, Czech B, Peterburs P, Lechner A, Haunschild J, Müller M, Hellerbrand C. Hepatoprotective effect of oral application of a silymarin extract in carbon tetrachloride-induced hepatotoxicity in rats. CLINICAL PHYTOSCIENCE 2015. [DOI: 10.1186/s40816-015-0006-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Silymarin derived from the milk thistle plant “Silybum marianum” is composed of four major flavonolignans. Clinical as well as experimental studies indicate hepatoprotective effects of silymarin. However, the underlying mechanisms are only incompletely understood.
The aim of this study was to assess the effect of oral administration of a defined silymarin extract in the model of acute carbon tetrachloride (CCl4) induced liver injury.
Methods
A single dose of a silymarin extract (SE; 20 or 100 mg/kg body weight) was given to rats by oral gavage. Subsequently, rats were injected with a single dose of CCl4 (2 ml/kg body weight).
Results
After 24h, analysis of liver to body weight ratio, serum levels of transaminases and histological analysis revealed a marked liver damage which was inhibited by SE in a dose dependent manner. CCl4-induced expressions of pro-inflammatory and pro-fibrogenic genes were significantly reduced in SE treated rats. Molecular analysis revealed that SE reduced the expression of the pro-inflammatory chemokine MCP-1, the pro-fibrogenic cytokine TGF-beta as well as collagen I in isolated human hepatic stellate cells (HSC), which are the key effector cells of hepatic fibrosis.
Conclusion
Oral administration of the tested silymarin extract inhibited hepatocellular damage in a model of acute liver injury. Moreover, we newly found that the silymarin extract had direct effects on pro-inflammatory and pro-fibrogenic gene expression in HSCs in vitro. This indicates that direct effects on HSC also contribute to the in vivo hepatoprotective effects of silymarin, and further promote its potential as anti-fibrogenic agent also in chronic liver disease.
Collapse
|
39
|
Buko V, Belonovskaya E, Naruta E, Lukivskaya O, Kanyuka O, Zhuk O, Kranc R, Stoika R, Sybirna N. Pituitary tumor transforming gene as a novel regulatory factor of liver fibrosis. Life Sci 2015; 132:34-40. [PMID: 25936962 DOI: 10.1016/j.lfs.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/16/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022]
Abstract
AIMS Pituitary tumor-transforming gene (PTTG) is involved in multiple cellular pathways. We studied the development of liver fibrosis induced by thioacetamide (TAA) in knockout (PTTG-/-) and wildtype (PTTG+/+) mice. MAIN METHODS Liver fibrosis in PTTG+/+ and PTTG-/- mice was induced by escalating dose TAA treatment (50-400mg/kg, i.p.) for 12 weeks and assessed by histochemistry, immunohistochemistry, liver hydroxyproline, serum fibrosis markers and fibrosis-related mRNA expression by real-time PCR determination. KEY FINDINGS Both PTTG+/+ and PTTG-/- mice treated with TAA developed signs of fibrosis and inflammatory cell infiltration. However, histological signs of bridging fibrosis and connective tissue square morphometry were significantly attenuated in mice lacking PTTG. α-SMA immunohistochemistry revealed that hepatic stellate cell activation was markedly reduced in PTTG-/- mice compared to wildtype controls. Hepatic hydroxyproline levels were significantly lower in fibrotic PTTG-/- group. The serum TNFα and hepatic TNFα mRNA expression were significantly lower in fibrotic PTTG-/- animals, as well as hepatic TGFβ and VEGF mRNA levels compared to TAA-treated wildtype controls. Serum hyaluronate and TGFβ levels were markedly elevated in fibrotic mice of both genotypes, but were not altered by the absence of PTTG. SIGNIFICANCE TAA-induced fibrosis development is significantly ameliorated in PTTG-/- mice. These animals demonstrated diminished stellate cell activation, suppressed circulating serum markers of inflammation, fibrogenesis and angiogenesis. The presented findings suggest that PTTG is functionally required for hepatic fibrosis progression in an animal model of chronic liver injury. PTTG can be considered as a new important target for prevention and treatment of liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Vyacheslav Buko
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus; School of Medical Sciences, Bialystok, Poland.
| | - Elena Belonovskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Elena Naruta
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Oxana Lukivskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Olga Zhuk
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Rostislav Stoika
- Lviv National Ivan Franko University, Lviv, Ukraine; Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | | |
Collapse
|
40
|
Rakelly de Oliveira D, Relison Tintino S, Morais Braga MFB, Boligon AA, Linde Athayde M, Douglas Melo Coutinho H, de Menezes IRA, Fachinetto R. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. BIOMED RESEARCH INTERNATIONAL 2015; 2015:292797. [PMID: 25866771 PMCID: PMC4377387 DOI: 10.1155/2015/292797] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022]
Abstract
Silymarin is a standardized extract from the dried seeds of the milk thistle (Silybum marianum L. Gaertn.) clinically used as an antihepatotoxic agent. The aim of this study was to investigate the antibacterial and antifungal activity of silymarin and its major constituent (silibinin) against different microbial strains and their modulatory effect on drugs utilized in clinical practice. Silymarin demonstrated antimicrobial activity of little significance against the bacterial strains tested, with MIC (minimum inhibitory concentration) values of 512 µg/mL. Meanwhile, silibinin showed significant activity against Escherichia coli with a MIC of 64 µg/mL. The results for the antifungal activity of silymarin and silibinin demonstrated a MIC of 1024 µg/mL for all strains. Silymarin and silibinin appear to have promising potential, showing synergistic properties when combined with antibacterial drugs, which should prompt further studies along this line.
Collapse
Affiliation(s)
- Dayanne Rakelly de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-700 Santa Maria, RS, Brazil
| | - Saulo Relison Tintino
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri (URCA), 63100-000 Crato, CE, Brazil
| | | | - Aline Augusti Boligon
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, 97105-700 Santa Maria, RS, Brazil
| | - Margareth Linde Athayde
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, 97105-700 Santa Maria, RS, Brazil
| | | | - Irwin Rose Alencar de Menezes
- Laboratório de Microbiologia e Biologia Molecular, Departamento de Química Biológica, Universidade Regional do Cariri, 63100-000 Crato,CE, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-700 Santa Maria, RS, Brazil
- Programa de Pós-Graduaçãoo em Farmacologia, Universidade Federal de Santa Maria, 97105-700 Santa Maria, RS, Brazil
| |
Collapse
|
41
|
Duval F, Moreno-Cuevas JE, González-Garza MT, Rodríguez-Montalvo C, Cruz-Vega DE. Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis. Chin Med 2014; 9:27. [PMID: 25606051 PMCID: PMC4299307 DOI: 10.1186/s13020-014-0027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/26/2014] [Indexed: 01/18/2023] Open
Abstract
During chronic liver injury, hepatic stellate cells (HSC) are activated and proliferate, which causes excessive extracellular matrix (ECM) deposition, leading to scar formation and fibrosis. Medicinal plants are gaining popularity as antifibrotic agents, and are often safe, cost-effective, and versatile. This review aims to describe the protective role and mechanisms of medicinal plants in the inhibition of HSC activation and ECM deposition during the pathogenesis of liver fibrosis. A systematic literature review on the anti-fibrotic mechanisms of hepatoprotective plants was performed in PubMed, which yielded articles about twelve relevant plants. Many of these plants act via disruption of the transforming growth factor beta 1 signaling pathway, possibly through reduction in oxidative stress. This reduction could explain the inhibition of HSC activation and reduction in ECM deposition. Medicinal plants could be a source of anti-liver fibrosis compounds.
Collapse
Affiliation(s)
- Florent Duval
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| | - Jorge E Moreno-Cuevas
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| | | | | | - Delia Elva Cruz-Vega
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| |
Collapse
|
42
|
Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs. Pharmacol Rep 2014; 67:317-25. [PMID: 25712657 DOI: 10.1016/j.pharep.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/14/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite that gentamicin is a very effective aminoglycoside, its potential ototoxicity which is of irreversible nature makes a challenge and limitation for its use. This study was designed to investigate possible neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity. METHODS AND RESULTS Twenty pigmented guinea pigs were divided into four equal groups, where group I served as normal control group. The other groups received gentamicin (120 mg/kg/day, ip) for 19 days where group II given vehicle of 1% CMC, group III and group IV were pre-treated 2h before gentamicin by 4-methylcatechol (10 μg/kg, ip) and silymarin (100mg/kg, oral gavage), respectively. The main findings indicated that silymarin exhibited restoration of nerve growth factor (NGF) levels and increased tropomyosin-related kinase receptors-A (Trk-A) m-RNA expression in cochlear tissue and preservation of hair cells of organ of Corti by scanning electron microscopy (SEM) with significant decrease in auditory brainstem response (ABR) threshold compared to 4-methylcatechol. Only silymarin caused significant amelioration in oxidative stress state by reducing malondialdehyde (MDA) levels and increasing catalase activity. CONCLUSIONS Silymarin exerts superiority over 4-methylcatechol when recommended as protective agent against gentamicin ototoxicity based on its efficient neurotrophic and antioxidant activities.
Collapse
|
43
|
Yang L, Wang X, Yang X. Possible antioxidant mechanism of melanoidins extract from Shanxi aged vinegar in mitophagy-dependent and mitophagy-independent pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8616-8622. [PMID: 25102123 DOI: 10.1021/jf501690e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Melanoidins are widely reported to have antioxidant activity; however, their mechanism has not been frequently studied. In this study, we found that melanoidins from Shanxi aged vinegar induced mitopahgy, the specific autophagic elimination of mitochondria, as assessed by up-regulation of the autophagy markers LC3-II and Beclin1 as well as degradation of the autophagy substrate p62 and mitochondrial proteins. Melanoidins reduced reactive oxygen species (ROS) in normal human liver cells and mouse livers through a mitophagy-dependent pathway, by the observation that the reducing ROS effect of melanoidins was partially lost when mitophagy was inhibited by chloroquine. Impaired Akt signaling was found in cells treated with melanoidins, which might explain the activation of autophagy induced by melanoidins. These results suggest that in addition to direct free radical scavenging activity, melanoidins decreased ROS levels through mitophagy in which damaged mitochondria, the source of ROS, were degraded.
Collapse
Affiliation(s)
- Lei Yang
- College of Life Science, Shanxi University , Taiyuan 030006, China
| | | | | |
Collapse
|
44
|
Pooja D, Babu Bikkina DJ, Kulhari H, Nikhila N, Chinde S, Raghavendra YM, Sreedhar B, Tiwari AK. Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles. Int J Biol Macromol 2014; 69:267-73. [PMID: 24863917 DOI: 10.1016/j.ijbiomac.2014.05.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022]
Abstract
Silibinin is reported to possess multiple biological activities. However, its hydrophobic nature limits its bioavailability compromising in vivo biological activities. Nanoparticles-based delivery of such molecules has emerged as new technique to resolve these issues. Bio-degradable, compatible and adhesive nature of chitosan has recently attracted its suitability as a carrier for biologically active molecules. This study presents fabrication and characterization of chitosan-tripolyphosphate based encapsulation of silibinin. Various preparations of silibinin encapsulated chitosan-tripolyphosphate nanoparticles were studied for particle size, morphology, zeta-potential, and encapsulation efficiencies. Preparations were also evaluated for cytotoxic activities in vitro. The optimized silibinin loaded chitosan nanoparticles were of 263.7±4.1nm in particle size with zeta potential 37.4±1.57mV. Nanoparticles showed high silibinin encapsulation efficiencies (82.94±1.82%). No chemical interactions between silibinin and chitosan were observed in FTIR analysis. Powder X-ray diffraction analysis revealed transformed physical state of silibinin after encapsulation. Surface morphology and thermal behaviour were determined using TEM and DSC analysis. Encapsulated silibinin displayed increased dissolution and better cytotoxicity against human prostate cancer cells (DU145) than silibinin alone.
Collapse
Affiliation(s)
- Deep Pooja
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Dileep J Babu Bikkina
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Hitesh Kulhari
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - Nalla Nikhila
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Chinde
- Toxicology Unit, Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Y M Raghavendra
- Crop Protection Chemical Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - B Sreedhar
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashok K Tiwari
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
45
|
Reiter R, Freise C, Jöhrens K, Kamphues C, Seehofer D, Stockmann M, Somasundaram R, Asbach P, Braun J, Samani A, Sack I. Wideband MRE and static mechanical indentation of human liver specimen: Sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J Biomech 2014; 47:1665-74. [DOI: 10.1016/j.jbiomech.2014.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 01/30/2023]
|
46
|
Vargas-Mendoza N, Madrigal-Santillán E, Morales-González &A, Esquivel-Soto J, Esquivel-Chirino C, González-Rubio MGLY, Gayosso-de-Lucio JA, Morales-González JA. Hepatoprotective effect of silymarin. World J Hepatol 2014; 6:144-149. [PMID: 24672644 PMCID: PMC3959115 DOI: 10.4254/wjh.v6.i3.144] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
The use of medicinal plants in treating illnesses has been reported since ancestral times. In the case of hepatic diseases, several species such as Silybum marianum, Phyllanthus niruri, and Panus giganteus (Berk.) have been shown to ameliorate hepatic lesions. Silymarin is a natural compound derived from the species Silybum marianum, which is commonly known as Milk thistle. This plant contains at least seven flavoligands and the flavonoid taxifolin. The hepatoprotective and antioxidant activity of silymarin is caused by its ability to inhibit the free radicals that are produced from the metabolism of toxic substances such as ethanol, acetaminophen, and carbon tetrachloride. The generation of free radicals is known to damage cellular membranes and cause lipoperoxidation. Silymarin enhances hepatic glutathione and may contribute to the antioxidant defense of the liver. It has also been shown that silymarin increases protein synthesis in hepatocytes by stimulating RNA polymerase I activity. A previous study on humans reported that silymarin treatment caused a slight increase in the survival of patients with cirrhotic alcoholism compared with untreated controls.
Collapse
|
47
|
Hepatoprotective Effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in Combination: A Possible Synergy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:641597. [PMID: 24795768 PMCID: PMC3984823 DOI: 10.1155/2014/641597] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. A time-dependent study was designed to evaluate the ability of silymarin (SLN) and glycyrrhizin (GLN) in different dosage regimens to lessen oxidative stress in the rats with hepatic injury caused by the hepatotoxin carbon tetrachloride. Wistar male albino rats (n = 60) were randomly assigned to six groups. Group A served as a positive control while groups B, C, D, E, and F received a dose of CCl4 (50% solution of CCl4 in liquid paraffin, 2 mL/kg, intraperitoneally) twice a week to induce hepatic injury. Additionally, the animals received SLN and GLN in different doses for a period of six weeks. CCl4 was found to induce hepatic injury by significantly increasing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and thiobarbituric acid reactive substances while decreasing total protein and the activities of reduced glutathione, superoxide dismutase, and catalase. Treatment with various doses of SLN and GLN significantly reduced ALT, AST, ALP, and TBARS levels and increased GSH, SOD, and CAT levels. Our findings indicated that SLN and GLN have hepatoprotective effects against oxidative stress of the liver.
Collapse
|
48
|
Pathological impact of hepatitis B virus surface proteins on the liver is associated with the host genetic background. PLoS One 2014; 9:e90608. [PMID: 24594856 PMCID: PMC3942466 DOI: 10.1371/journal.pone.0090608] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/02/2014] [Indexed: 12/18/2022] Open
Abstract
Background While the immune pathogenesis caused by hepatitis B virus (HBV) infection has been studied extensively, little is known about direct pathogenic effects of HBV surface proteins. Here, we have investigated pathological cellular effects of HBV surface protein expression in the liver of transgenic mice with different genetic background. Methods The impact of HBV surface protein expression on the liver was studied in two mouse strains, BALB/c and C57BL/6. Histology and hydroxyproline assays were performed to investigate liver morphology and fibrosis. Gene expression and signaling were analyzed by microarray, qPCR and Western blotting. Results Expression of HBV surface proteins in the liver of transgenic mice induced activation of protein kinase-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor 2α (eIF2α) phosphorylation. Phosphorylation of eIF2α resulted in activation of the ER stress markers glucose regulated protein (GRP) 78 and pro-apoptotic C/EBP homologous protein (CHOP) in transgenic mice on BALB/c genetic background leading to stronger liver injury and fibrosis in comparison with transgenic mice on C57BL/6 background. Hepatic stellate cells represented the main collagen-producing liver cells in HBV transgenic mice. The key regulators of hepatocyte proliferation, transcription factors c-Jun and STAT3 were activated in HBV transgenic mice. Tumour incidence in transgenic mice was strain- and sex-dependent. Conclusions Extent of liver injury, fibrosis, and tumour development induced by hepatic HBV surface protein expression considerably depends on host genetic background.
Collapse
|
49
|
Son KH, Jeong HW, Jung WW, Kim HS, Lee SK, Kim KT, Ahn CB, Park KY, Kim BM, Lee SH. The use of collagen content as determined by spectral domain polarization-sensitive optical coherence tomography to assess colon anastomosis healing in a rat model. Eur Surg Res 2014; 52:32-40. [PMID: 24480934 DOI: 10.1159/000358057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Many studies have been undertaken to prevent anastomosis leakage of the colon, and several methods have been used to assess anastomosis healing, such as measurement of bursting pressure or hydroxyproline (a marker of collagen) content at the anastomosis site. However, these methods are inappropriate for comparing anastomosis healing at two time points in the same animals. In the present study, we measured the collagen level by spectral domain polarization-sensitive optical coherence tomography (SD-PS-OCT) to assess anastomosis healing. METHODS Sprague-Dawley rats were divided into groups C (saline-administered controls; study group) and M [a 5-fluorouracil (5-FU)-administered experimental group]. Immediately after end-to-end anastomosis of the colon, SD-PS-OCT images of anastomoses were taken (baseline). Animals were administered saline or 5-FU for 7 days. On the 7th postoperative day, SD-PS-OCT images were acquired, a histopathologic exam was performed, and hydroxyproline levels as well as mRNA expressions of collagen-1 and collagen-3 were measured at the anastomosis site. RESULTS Fibroblast proliferation and inflammatory cell infiltration were greater in group C than in group M. The mRNA expressions of collagen-1 and collagen-3 were substantially higher in group C. Hydroxyproline levels were higher in group M than in group C. Though collagen levels measured by SD-PS-OCT at 7 days were elevated compared with baseline in group C, no such changes were observed for group M. CONCLUSION Collagen levels at the colon anastomosis site, measured with SD-PS-OCT, were not increased at 7 days postoperatively versus baseline when 5-FU was injected, but were increased in saline-treated controls. The measurement of collagen content by SD-PS-OCT was found to provide a good means of assessing anastomosis healing, because it allows in situ assessment of collagen contents at baseline and during the postoperative period.
Collapse
Affiliation(s)
- K H Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sala F, Albares P, Colovic M, Persiani S, Rovati LC. Development and validation of two liquid chromatography-tandem mass spectrometry methods for the determination of silibinin and silibinin hemisuccinate in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:1-9. [PMID: 24317417 DOI: 10.1016/j.jchromb.2013.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/04/2013] [Accepted: 11/17/2013] [Indexed: 11/28/2022]
Abstract
To investigate the pharmacokinetics of silibinin and silibinin hemisuccinate in human plasma, two high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods were developed and validated. The methods require a small volume of sample (100μL), and the recovery of the analytes was complete with a good reproducibility (CV% 1.7-9.5), after a simple protein precipitation. Naringenin was used as internal standard. The chromatographic methods provided a good separation of diastereoisomers A and B of both silibinin and silibinin hemisuccinate onto a Chromolith Performance RP18e 100mm×3mm column, with a resolution of peaks from plasma matrix in less than 6min. The methods precision values expressed as CV% were always ≤6.2% and the accuracy was always well within the acceptable 15% range. Quantification was performed on a triple-quadrupole tandem mass spectrometer by Selected Reaction Monitoring (SRM) mode, in a negative ion mode, via electrospray ionization (ESI). The lower limit of quantitation was set at 5.0ng/mL (silibinin) and 25.0ng/mL (silibinin hemisuccinate), and the linearity was validated up to 1000.0 and 12,500.0ng/mL, for silibinin and silibinin hemisuccinate, respectively, with correlation coefficients (R(2)) of 0.991 or better. The methods were suitable for pharmacokinetic studies and were successfully applied to human plasma samples from subjects treated intravenously with Legalon(®) SIL at the dose of 20mg/kg, expressed as silibinin.
Collapse
|