1
|
Malik A, Malik S, Farooq A, Malik MI, Javaid S. Histopathological features of idiopathic portal hypertension: A systematic review and meta-analysis. Sci Prog 2024; 107:368504241264996. [PMID: 39053026 PMCID: PMC11282518 DOI: 10.1177/00368504241264996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Portal hypertension (PH) is a clinically significant entity that could present with life-threatening gastrointestinal bleeding. Cirrhosis is the most common cause of PH, with well-documented histopathology and etiology. However, in idiopathic portal hypertension (IPH), no single histopathologic finding is associated with PH. Our systematic review aims to identify and summarize the prevalence of the common histological findings of IPH. METHODS We systematically searched PubMed, Cochrane CENTRAL, Web of Science, and Scopus till 1ST March 2022 for studies describing the histopathological features of IPH. Data were extracted from eligible studies and pooled as events rate and 95% confidence interval (CI) using binary random-effects model by open meta-analyst software. RESULTS We included 23 retrospective studies with a total sample size of 813 patients. The overall incidence of nodular regenerative hyperplasia was 38.6%, 59.8% for portal fibrosis, 51.3% for periportal fibrosis, 39.3% for perisinusoidal fibrosis, 89.8% for portal vein sclerosis, 42.2% for portal inflammation, 53.3% for mega-sinusoids, 39.5% for thickening of portal vein branches, 93.8% for narrowing of portal veins, 53.3% for hepatic veins/venous outflow obstruction, 51.4% for aberrant portal/periportal vessels, 42.4% for shunt vessel, 50.9% for ductular proliferation, and 16.3% for steatosis. CONCLUSION Due to the relatively non-pathognomonic and non-specific nature of IPH, a combination of different histological features such as the portal and periportal fibrosis, portal vein sclerosis, mega-sinusoids, narrowing of portal veins, hepatic venous outflow obstruction, aberrant portal or periportal vessels, and ductular proliferation may be of value in diagnosing IPH as the incidence rate of these features was at approximately 50%.
Collapse
Affiliation(s)
- Adnan Malik
- Mountain Vista Medical Center, Midwestern University Program, Mesa AZ, USA
| | - Sohira Malik
- Penn State College of Medicine, Hershey, PA, USA
| | - Ahsan Farooq
- Penn State College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
2
|
Fularski P, Czarnik W, Frankenstein H, Gąsior M, Młynarska E, Rysz J, Franczyk B. Unveiling Selected Influences on Chronic Kidney Disease Development and Progression. Cells 2024; 13:751. [PMID: 38727287 PMCID: PMC11083010 DOI: 10.3390/cells13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-β1 (TGF-β1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Magdalena Gąsior
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| |
Collapse
|
3
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
4
|
Seleem AA, Hussein BH. Effects of silver nanoparticles prepared by aqueous extract of Ferula communis on the developing mouse embryo after maternal exposure. Toxicol Ind Health 2023; 39:712-734. [PMID: 37871157 DOI: 10.1177/07482337231209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.
Collapse
Affiliation(s)
- Amin A Seleem
- Biology Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Belal Hm Hussein
- Chemistry Department, Faculty of Science and Arts, Al Ula, Taibah University, Madinah, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Liu R, Zhu M, Chen J, Gai J, Huang J, Zhou Y, Wan Y, Tu C. Identification and Characterization of a Novel Nanobody Against Human CTGF to Reveal Its Antifibrotic Effect in an in vitro Model of Liver Fibrosis. Int J Nanomedicine 2023; 18:5407-5422. [PMID: 37753068 PMCID: PMC10519214 DOI: 10.2147/ijn.s428430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Background No agents are currently available for the treatment or reversal of liver fibrosis. Novel antifibrotic therapies for chronic liver diseases are thus urgently needed. Connective tissue growth factor (CTGF) has been shown to contributes profoundly to liver fibrogenesis, which makes CTGF as a promising target for developing antifibrotic agents. Methods In this study, we identified a novel nanobody (Nb) against human CTGF (anti-CTGF Nb) by phage display using an immunized camel, which showed high affinity and specificity in vitro. LX-2 cells, the immortalized human hepatic stellate cells, were induced by transforming growth factor beta1 (TGFβ1) as an in vitro model of liver fibrosis to verify the antifibrotic activity of the anti-CTGF Nb. Results Our data demonstrated that anti-CTGF Nb effectively alleviated TGFβ1-induced LX-2 cell proliferation, activation, and migration, and promoted the apoptosis of activated LX-2 cells in response to TGFβ1. Moreover, the anti-CTGF Nb remarkably reduced the levels of TGFβ1, Smad2, and Smad3 expression in LX-2 stellate cells stimulated by TGFβ1. Conclusion Taken together, we successfully identified a novel Nb against human CTGF, which exhibited antifibrotic effects in vitro by regulating the biological functions of human stellate cells LX-2.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, People's Republic of China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Jing Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People's Republic of China
| |
Collapse
|
6
|
Li X, Chen R, Kemper S, Brigstock DR. Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis. Int J Mol Sci 2023; 24:12823. [PMID: 37629004 PMCID: PMC10454308 DOI: 10.3390/ijms241612823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3-F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
7
|
Trampuž SR, van Riet S, Nordling Å, Ingelman-Sundberg M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023; 12:cells12020302. [PMID: 36672237 PMCID: PMC9857203 DOI: 10.3390/cells12020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Connective tissue growth factor (CTGF) is involved in the regulation of extracellular matrix (ECM) production. Elevated levels of CTGF can be found in plasma from patients with liver fibrosis and in experimental animal models of liver fibrosis, but the exact role of CTGF in, e.g., diet-induced human liver fibrosis is not entirely known. To address this question, we utilized a 3D human liver co-culture spheroid model composed of hepatocytes and non-parenchymal cells, in which fibrosis is induced by TGF-β1, CTGF or free fatty acids (FFA). Treatment of the spheroids with TGF-β1 or FFA increased COL1A1 deposition as well as the expression of TGF-β1 and CTGF. Recombinant CTGF, as well as angiotensin II, caused increased expression and/or production of CTGF, TGF-β1, COL1A1, LOX, and IL-6. In addition, silencing of CTGF reduced both TGF-β1- and FFA-induced COL1A1 deposition. Furthermore, we found that IL-6 induced CTGF, COL1A1 and TGF-β1 production, suggesting that IL-6 is a mediator in the pathway of CTGF-induced fibrosis. Taken together, our data indicate a specific role for CTGF and CTGF downstream signaling pathways for the development of liver inflammation and fibrosis in the human 3D liver spheroid model.
Collapse
Affiliation(s)
- Sara Redenšek Trampuž
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sander van Riet
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
8
|
Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:13251. [PMID: 36362037 PMCID: PMC9654696 DOI: 10.3390/ijms232113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C- cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c-/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.
Collapse
Affiliation(s)
- Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Can Demirdöğen B, Kılıç OO, Karagülle EN, Kalmaz LM, Mungan S. Single nucleotide variants around the connective tissue growth factor (CTGF/CCN2) gene and their association with multiple sclerosis risk, disability scores, and rate of disease progression. Neurol Sci 2022; 43:3867-3877. [PMID: 35091888 DOI: 10.1007/s10072-021-05852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to explore the possible association of single nucleotide polymorphisms (SNPs) in the upstream (rs9402373) and downstream regions (rs9399005 and rs12526196) of the gene encoding connective tissue growth factor (CTGF/CCN2) with relapsing-remitting multiple sclerosis (RRMS) risk and clinical parameters including disability scores and rate of disability progression. MATERIALS AND METHODS In total, 200 patients with RRMS and 305 controls were genotyped using real-time PCR (rs1252696 C/T and rs9402373 G/C) or PCR-RFLP (rs9399005 C/T) methods. Furthermore, the association between these genotypes and clinical parameters including Expanded Disability Status Scale (EDSS) score, Multiple Sclerosis Severity Score (MSSS), age at onset, duration of disease, duration of treatment, and presence of contrast-enhancing lesions was analyzed. RESULTS rs9399005 genotypes TT and CT in the dominant model were significant predictors of RRMS vs. control status by logistic regression analysis (OR = 1.45, 95% CI = 1.01-2.08, P = .04). Moreover, these genotypes for rs9399005 were associated with a MSSS ≥ 2.4 (OR = 3.54, 95% CI = 1.56-8.05, P = .003). In addition, MSSS was lower in patients who had at least one rs12526196C allele than in the corresponding patients with the TT genotype (P = .02). CONCLUSION To our knowledge, this is the first evidence of the involvement of variants around the CTGF gene in MS risk and disability progression.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey.
| | - Osman Oğuzhan Kılıç
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Elif Naz Karagülle
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Latife Mekselina Kalmaz
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| | - Semra Mungan
- Neurology Clinic, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
11
|
Yamazaki K, Igarashi-Takeuchi H, Numabe Y. Hepatocyte growth factor exhibits anti-fibrotic effects in an in vitro model of nifedipine-induced gingival overgrowth. J Oral Sci 2022; 64:99-104. [PMID: 34980825 DOI: 10.2334/josnusd.21-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The aim of this study was to establish an in vitro model of nifedipine-induced gingival overgrowth and characterize the anti-fibrotic effect of hepatocyte growth factor (HGF) using this model. METHODS Human gingival fibroblasts were cultured-treated with 0.1, 1, or 10 µg/mL nifedipine or 10 ng/mL IL-1β + 0.1, 1, or 10 µg/mL nifedipine (0.1N, 1N, 10N, IL + 0.1N, IL + 1N, IL + 10N). Cell proliferation and levels of type I collagen, TGF-β1, CCN2/CTGF, and α-SMA were measured 48 h after the simultaneous addition of 10 and 50 ng/mL HGF (10 and 50HGF) along with IL-1β and nifedipine. Type I collagen was measured after administration of anti-HGF neutralizing antibody. RESULTS Significant increases in type I collagen, TGF-β1, and CCN2/CTGF were observed after treatment in the 1N and IL + 0.1N groups. Levels of type I collagen and CCN2/CTGF differed significantly between the IL + 0.1N group and the IL + 0.1N + 50HGF group. Production of type I collagen increased significantly following addition of anti-HGF antibody. CONCLUSION This study demonstrated the establishment of an in vitro model of nifedipine-induced gingival overgrowth by showing increased collagen levels. Experiments using this model suggested that HGF exerts anti-fibrotic effects.
Collapse
Affiliation(s)
- Kei Yamazaki
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University
| | - Hiroko Igarashi-Takeuchi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University.,Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine
| | - Yukihiro Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University
| |
Collapse
|
12
|
Targeting CCN2 protects against progressive non-alcoholic steatohepatitis in a preclinical model induced by high-fat feeding and type 2 diabetes. J Cell Commun Signal 2022; 16:447-460. [PMID: 35038159 PMCID: PMC9411483 DOI: 10.1007/s12079-022-00667-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is an independent risk factor for non-alcoholic steatohepatitis (NASH) progression and its mediators have not been resolved. In this study, a pathogenic role of cellular communication network factor 2 (CCN2) protein in NASH pathology, was investigated in an established preclinical NASH model. Male wild type C57BL/6 mice received either Chow or high fat diet (HFD) for 26 weeks, with some mice in each group randomly selected to receive low dose streptozotocin (STZ: 3 i.p. injections, 65 mg/kg) at 15 weeks to induce type 2 diabetes. In the final 10 of the 26 weeks mice from each group were administered i.p. either rabbit anti-CCN2 neutralizing antibody (CCN2Ab) or as control normal rabbit IgG, at a dose of 150 µg per mouse twice/week. NASH developed in the HFD plus diabetes (HFD+DM) group. Administration of CCN2Ab significantly downregulated collagen I and collagen III mRNA induction and prevented pro-inflammatory MCP-1 mRNA induction in HFD+DM mice. At the protein level, CCN2Ab significantly attenuated collagen accumulation by PSR stain and collagen I protein induction in HFD+DM. Phosphorylation of the pro-fibrotic ERK signalling pathway in liver in HFD+DM was attenuated by CCN2Ab treatment. Intrahepatic CCN1 mRNA was induced, whereas CCN3 was downregulated at both the mRNA and protein levels in HFD+DM. CCN3 down-regulation was prevented by CCN2Ab treatment. This in vivo study indicates that CCN2 is a molecular target in NASH with high fat diet and diabetes, and that regulation of ERK signalling is implicated in this process.
Collapse
|
13
|
Chen X, Zhou Y, Sun Y, Ji T, Dai H. Transplantation of decellularized and lyophilized amniotic membrane inhibits endometrial fibrosis by regulating connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2. Exp Ther Med 2021; 22:968. [PMID: 34335910 PMCID: PMC8290472 DOI: 10.3892/etm.2021.10400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Intrauterine adhesion (IUA) is a disease characterized by endometrial fibrosis caused by injury to the endometrium. In the present study, decellularized and lyophilized human amniotic membrane (DL-AM) material was transplanted in a rat model to explore the preventive effect against IUA. A total of 24 Sprague Dawley rats were randomly divided into an IUA (n=12) group and an IUA + DL-AM (n=12) group. To establish the model, the endometrium of the left uterus was scraped, while that of the right uterus was used as a control. In the IUA group, scraped uteri were sutured without any other treatment, whereas DL-AM was transplanted onto the scraped uteri in the IUA + DL-AM group. Uteri were resected for histological and immunohistochemical evaluation at 3, 7, 14 and 28 days after surgery. The results confirmed the development of IUA, which was accompanied by an increase in the rate of fibrotic area. Integral optical density (IOD) values of connective tissue growth factor (CTGF) were elevated in the IUA group, while matrix metalloproteinase-2 (MMP-2) decreased relative to the control group (P<0.05). After DL-AM transplantation, the IOD value of CTGF dropped, while MMP-2 increased compared with the IUA group (P<0.05). However, compared with that in the control group, the IOD value of CTGF was still higher, whereas MMP-2 was still lower in the IUA + DL-AM group (P<0.05). Furthermore, no evidence of endometrial regeneration was detected in both the IUA and IUA + DL-AM groups. Overall, these results indicated that in the rat model of IUA, transplantation of DL-AM had the potential to prevent the formation of fibrosis to a certain extent and may thus be an alternative strategy for managing the condition.
Collapse
Affiliation(s)
- Xing Chen
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Yan Zhou
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Ying Sun
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Tonghui Ji
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Huihua Dai
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| |
Collapse
|
14
|
Salas A, Vázquez P, Bello AR, Báez D, Almeida TA. Dual agonist-antagonist effect of ulipristal acetate in human endometrium and myometrium. Expert Rev Mol Diagn 2021; 21:851-857. [PMID: 34110938 DOI: 10.1080/14737159.2021.1941878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to assess the molecular effect of ulipristal acetate (UPA) on gene expression in myometrium and endometrium of patients with symptomatic fibroids. Tissues isolated from four women treated preoperatively with UPA (5 mg) were compared to those from untreated controls using NanoString platform to assess the expression of 75 candidate genes modulated by UPA and ovarian steroids. Deregulated genes were then validated by real-time PCR. In myometrium, UPA exerted an antagonistic effect similar to that observed in fibroids. In UPA-treated endometrium, six genes were identified as highly and significantly upregulated, including matricellular genes CCN1 (54-fold, P = 0.0018) and CCN2 (11-fold, P = 0.00044), Krüppel-like factor 4 (>3-fold, P = 0.0036), and mast cell markers including tryptases TPSAB1/TPSB2 (31-fold, P = 0.023) and carboxypeptidase A (CPA3, 17-fold, P = 0.05). In endometrium, UPA induced the expression of genes involved in fibrogenesis and mast cell function-some of them being widely involved in hepatic injury, which could explain the marked fibrosis and inflammatory cell infiltration observed in explanted livers from patients under UPA treatment.
Collapse
Affiliation(s)
- Ana Salas
- Departamento de Bioquímica, Microbiología, Biología Celular Y Genética, Universidad de La Laguna. Facultad De Ciencias. Sección de Biología, Tenerife, Spain.,Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC). Avda. Astrofísico Fco. Sánchez S/n. 38200. San Cristóbal de La Laguna, Tenerife, Spain
| | - Paula Vázquez
- Departamento de Bioquímica, Microbiología, Biología Celular Y Genética, Universidad de La Laguna. Facultad De Ciencias. Sección de Biología, Tenerife, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular Y Genética, Universidad de La Laguna. Facultad De Ciencias. Sección de Biología, Tenerife, Spain.,Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC). Avda. Astrofísico Fco. Sánchez S/n. 38200. San Cristóbal de La Laguna, Tenerife, Spain
| | - Delia Báez
- Departamento de Obstetricia y Ginecología, Facultad de Ciencias de La Salud, Universidad de La Laguna, Campus de Ofra S/n, Tenerife, Spain
| | - Teresa A Almeida
- Departamento de Bioquímica, Microbiología, Biología Celular Y Genética, Universidad de La Laguna. Facultad De Ciencias. Sección de Biología, Tenerife, Spain.,Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC). Avda. Astrofísico Fco. Sánchez S/n. 38200. San Cristóbal de La Laguna, Tenerife, Spain
| |
Collapse
|
15
|
Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
|
16
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
17
|
Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM. Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity. Cells 2021; 10:cells10051048. [PMID: 33946738 PMCID: PMC8146455 DOI: 10.3390/cells10051048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Correspondence:
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Pedro Castro
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Buschow
- Department of Microscopy & Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Tilman Grune
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 13347 Berlin, Germany
| | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, 13509 Berlin, Germany;
- Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- German Diabetes Center, 40225 Duesseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Jensen VS, Fledelius C, Zachodnik C, Damgaard J, Nygaard H, Tornqvist KS, Kirk RK, Viuff BM, Wulff EM, Lykkesfeldt J, Hvid H. Insulin treatment improves liver histopathology and decreases expression of inflammatory and fibrogenic genes in a hyperglycemic, dyslipidemic hamster model of NAFLD. J Transl Med 2021; 19:80. [PMID: 33596938 PMCID: PMC7890970 DOI: 10.1186/s12967-021-02729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark. .,Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark.
| | - Christian Fledelius
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Christina Zachodnik
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jesper Damgaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Helle Nygaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Rikke Kaae Kirk
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| |
Collapse
|
19
|
Shah AM, Jain K, Desai RS, Bansal S, Shirsat P, Prasad P, Bodhankar K. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation-An Immunohistochemical Study. Head Neck Pathol 2021; 15:817-830. [PMID: 33544386 PMCID: PMC8384978 DOI: 10.1007/s12105-020-01270-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Connective tissue growth factor (CTGF), a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins, is highly expressed in various organ fibrosis and several malignant tumors. Although a few studies have been conducted using CTGF in oral submucous fibrosis (OSF) and oral squamous cell carcinoma, no study has demonstrated its relation with various stages of OSF and its malignant transformation. The present study investigated the possible role of CTGF in the pathogenesis of OSF and its malignant transformation by using immunohistochemistry. Ten formalin-fixed paraffin-embedded tissue blocks, each of Stage 1 OSF, Stage 2 OSF, Stage 3 OSF, Stage 4 OSF, well- differentiated squamous cell carcinoma (WDSCC) with OSF and WDSCC without OSF were stained for CTGF by immunohistochemistry. Ten cases of healthy buccal mucosa (NOM) were included as controls. The present study demonstrated a statistically significant expression of CTGF in the epithelium and connective tissue of OSF and WDSCC with and without OSF cases against its complete absence in NOM. We observed an upregulation of CTGF expression from NOM to various stages of OSF to WDSCC with or without OSF. A gradual upregulation of the CTGF expression in various stages of OSF to WDSCC (with and without OSF) against its complete absence in NOM suggests that CTGF plays an important role in the pathogenesis of OSF and its malignant transformation.
Collapse
Affiliation(s)
| | - Kejal Jain
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Rajiv S. Desai
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Shivani Bansal
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pankaj Shirsat
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pooja Prasad
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Kshitija Bodhankar
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| |
Collapse
|
20
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
21
|
Jiao J, Li L, Yao W, Qin W, Hao C, Lu L. Influence of Silica Exposure for Lung Silicosis Rat. DISEASE MARKERS 2021; 2021:6268091. [PMID: 34938375 PMCID: PMC8687785 DOI: 10.1155/2021/6268091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the influence of silica exposure on the expression of connective tissue growth factor (CTGF), transforming growth factor beta-1 (TGF-β1), and platelet-derived growth factor (PDGF) in lung silicosis rat. METHODS Wistar rats were divided into an experimental group and a control group. In the experimental group, rats were exposed to silica by intratracheal instillation. In the control group, rats were exposed to physiological saline by intratracheal instillation. After 45 days, we compared the level of fibrosis and CTGF, TGF-β1, and PDGF in the lungs by immunohistochemistry or reverse transcription-polymerase chain reaction between the two groups. RESULTS The results showed that the expression levels of CTGF, TGF-β1, and PDGF mRNA were significantly higher in the experimental group than those in the control group (P < 0.05). The positive staining of CTGF, TGF-β1, and PDGF mRNA was found in the cytoplasm, especially in the silicotic nodules of the hyalinisation section and cell endochylema of the alveolar macrophages, type II pneumonocytes, and lung tracheal epithelium. There were significantly positive correlations between CTGF, TGF-β1, and PDGF expressions (P < 0.05). A protein-protein interaction analysis showed interactions between TGF-β1, CTGF, and PDGF. CONCLUSIONS TGF-β/CTGF signaling pathway plays an important role in silicosis. Silicon dioxide exposure can induce the expression of CTGF, TGF-β1, and PDGF.
Collapse
Affiliation(s)
- Jie Jiao
- 1Henan Provincial Institute for Occupational Health, Zhengzhou, Henan, China
| | - Li Li
- 2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wu Yao
- 3School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Qin
- 1Henan Provincial Institute for Occupational Health, Zhengzhou, Henan, China
| | - Changfu Hao
- 3School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingeng Lu
- 4Yale School of Public Health, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
22
|
Extracellular Matrix Remodeling in Chronic Liver Disease. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:41-52. [PMID: 34337431 PMCID: PMC8300084 DOI: 10.1007/s43152-021-00030-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. RECENT FINDINGS The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. SUMMARY Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. GRAPHICAL ABSTRACT
Collapse
|
23
|
Chiu YJ, Wu KC, Tsai JC, Kao CP, Chao J, Peng WH, Cheng HY. Hepatoprotective Effect of the Fruits of Polygonum orientale L. Against Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20971501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to evaluate the hepatoprotective effects of the fruits of Polygonum orientale L. (POE) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury. Bioactive components of POE were identified using liquid chromatography (LC)-mass spectrometry (MS)/MS by comparison with standards. Treatment with either silymarin (200 mg/kg) or POE (0.5 and 1.0 g/kg) caused significant decreases in the serum levels of enzymes and reduced the extent of liver lesions and fibrosis in histological analysis. POE (0.5 and 1.0 g/kg) decreased the levels of malondialdehyde, nitric oxide, proinflammatory cytokines (ie, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6), an inflammatory cytokine (ie, cyclooxygenase-2), a profibrotic cytokine (ie, transforming growth factor-β), and fibrosis-related proteins (ie, connective tissue growth factor and α-smooth muscle actin) in the liver and enhanced the activities of the antioxidative enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. Quantitative analysis of the active constituents in POE revealed an extract composition of 3.4 mg/g of protocatechuic acid, 20.8 mg/g of taxifolin, and 5.6 mg/g of quercetin. We have demonstrated that the hepatoprotective mechanisms of POE are likely to be associated with the decrease in inflammatory cytokines by increasing the activities of antioxidant enzymes. Our findings provide evidence that POE possesses a hepatoprotective activity to ameliorate chronic liver injury.
Collapse
Affiliation(s)
- Yung-Jia Chiu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jen-Chieh Tsai
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology and Bio-Resources, Da-Yeh University, Chang-Hua, Taiwan
- Biotechnology Research Center, Da-Yeh University, Chang-Hua, Taiwan
| | - Chun-Pin Kao
- Hsin Sheng College of Medical Care and Management, Taoyuan City, Taiwan
| | - Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| |
Collapse
|
24
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Chiabotto G, Camussi G, Bruno S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-020-00050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis.
Collapse
|
26
|
Bandopadhyay M, Bharadwaj M. Exosomal miRNAs in hepatitis B virus related liver disease: a new hope for biomarker. Gut Pathog 2020; 12:23. [PMID: 32346400 PMCID: PMC7183117 DOI: 10.1186/s13099-020-00353-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation, in its 2019 progress report on HIV, viral hepatitis and STDs indicates that 257 million people are afflicted with chronic HBV infections, of which, 1 million patients lose their lives every year due to HBV related chronic liver diseases including serious complications such as liver cirrhosis and hepatocellular carcinoma. The course of HBV infection and associated liver injury depend on several host factors, genetic variability of the virus, and the host viral interplay. The challenge of medical science is the early diagnosis/identification of the potential for development of fatal complications like liver cirrhosis and HCC so that timely medical intervention can improve the chances of survival. Currently, neither the vaccination regime nor the diagnostic methods are completely effective as reflected in the high number of annual deaths. It is evident from numerous publications that microRNAs (miRNAs) are the critical regulators of gene expression and various cellular processes like proliferation, development, differentiation, apoptosis and tumorigenesis. Expressions of these diminutive RNAs are significantly affected in cancerous tissues as a result of numerous genomic and epigenetic modifications. Exosomes are membrane-derived vesicles (30–100 nm) secreted by normal as well as malignant cells, and are present in all body fluids. They are recognized as critical molecules in intercellular communication between cells through horizontal transfer of information via their cargo, which includes selective proteins, mRNAs and miRNAs. Exosomal miRNAs are transferred to recipient cells where they can regulate target gene expression. This provides an insight into the elementary biology of cancer progression and therefore the development of therapeutic approaches. This concise review outlines various on-going research on miRNA mediated regulation of HBV pathogenesis with special emphasis on association of exosomal miRNA in advanced stage liver disease like hepatocellular carcinoma. This review also discusses the possible use of exosomal miRNAs as biomarkers in the early detection of HCC and liver cirrhosis.
Collapse
Affiliation(s)
- Manikankana Bandopadhyay
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| | - Mausumi Bharadwaj
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| |
Collapse
|
27
|
Dessein H, Duflot N, Romano A, Opio C, Pereira V, Mola C, Kabaterene N, Coutinho A, Dessein A. Genetic algorithms identify individuals with high risk of severe liver disease caused by schistosomes. Hum Genet 2020; 139:821-831. [PMID: 32277285 DOI: 10.1007/s00439-020-02160-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Schistosomes induce severe hepatic disease, which is fatal in 2-10% of cases, mortality being higher in cases of co-infection with HBV or HCV. Hepatic disease occurs as a consequence of the chronic inflammation caused by schistosome eggs trapped in liver sinusoids. In certain individuals, the repair process leads to a massive accumulation of fibrosis in the periportal spaces. We and others have shown that genetic variants play a crucial role in disease progression from mild to severe fibrosis and explain why hepatic fibrosis progresses rapidly in certain subjects only. We will review here published findings concerning the strategies that have been used in the analysis of hepatic fibrosis in schistosome-infected individuals, the genetic variants that have associated with fibrosis, and variants in new pathways crucial for fibrosis progression. Together, these studies show that the development of fibrosis is under the tight genetic control of various common variants with moderate effects. This polygenic control has made it possible to develop models that identify schistosome-infected individual at risk of severe hepatic disease. We discuss the performances and limitations of these models.
Collapse
Affiliation(s)
- Hélia Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Nicolas Duflot
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Audrey Romano
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Christopher Opio
- Department of Medicine, Mulago Hospital, Makerere University College of Health Sciences, Kampala, Uganda
| | - Valeria Pereira
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Carla Mola
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Narcis Kabaterene
- Vector Control Division Uganda, Ministry of Health, Queen's Ln, Kampala, Uganda
| | - Ana Coutinho
- Fundação Oswaldo Cruz Rio de Janeiro, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Alain Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France.
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France.
| |
Collapse
|
28
|
Trivella JP, Martin P, Carrion AF. Novel targeted therapies for the management of liver fibrosis. Expert Opin Emerg Drugs 2020; 25:59-70. [PMID: 32098512 DOI: 10.1080/14728214.2020.1735350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan P. Trivella
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Martin
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andres F. Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Toda N, Mori K, Kasahara M, Koga K, Ishii A, Mori KP, Osaki K, Mukoyama M, Yanagita M, Yokoi H. Deletion of connective tissue growth factor ameliorates peritoneal fibrosis by inhibiting angiogenesis and inflammation. Nephrol Dial Transplant 2019; 33:943-953. [PMID: 29165602 DOI: 10.1093/ndt/gfx317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/09/2017] [Indexed: 01/28/2023] Open
Abstract
Background Connective tissue growth factor (CTGF/CCN2) regulates the signalling of other growth factors and promotes fibrosis. CTGF is increased in mice and humans with peritoneal fibrosis. Inhibition of CTGF has not been examined as a potential therapeutic target for peritoneal fibrosis because systemic CTGF knockout mice die at the perinatal stage. Methods To study the role of CTGF in peritoneal fibrosis of adult mice, we generated CTGF conditional knockout (cKO) mice by crossing CTGF floxed mice with RosaCreERT2 mice. We administered tamoxifen to Rosa-CTGF cKO mice to delete the CTGF gene throughout the body. We induced peritoneal fibrosis by intraperitoneal injection of chlorhexidine gluconate (CG) in wild-type and Rosa-CTGF cKO mice. Results Induction of peritoneal fibrosis in wild-type mice increased CTGF expression and produced severe thickening of the peritoneum. In contrast, CG-treated Rosa-CTGF cKO mice exhibited reduced thickening of the peritoneum. Peritoneal equilibration test revealed that the excessive peritoneal small-solute transport in CG-treated wild-type mice was normalized by CTGF deletion. CG-treated Rosa-CTGF cKO mice exhibited a reduced number of αSMA-, Ki67-, CD31- and MAC-2-positive cells in the peritoneum. Analyses of peritoneal mRNA showed that CG-treated Rosa-CTGF cKO mice exhibited reduced expression of Cd68, Acta2 (αSMA), Pecam1 (CD31) and Vegfa. Conclusions These results indicate that a deficiency of CTGF can reduce peritoneal thickening and help to maintain peritoneal function by reducing angiogenesis and inflammation in peritoneal fibrosis. These results suggest that CTGF plays an important role in the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Kenichi Koga
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Yoshino J, Patterson BW, Klein S. Adipose Tissue CTGF Expression is Associated with Adiposity and Insulin Resistance in Humans. Obesity (Silver Spring) 2019; 27:957-962. [PMID: 31004409 PMCID: PMC6533148 DOI: 10.1002/oby.22463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/18/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Connective tissue growth factor (CTGF) is an important regulator of fibrogenesis in many organs. This study evaluated the interrelationship among adipose tissue CTGF expression, fat mass, and insulin resistance in humans. METHODS This study examined (1) CTGF gene expression in human subcutaneous preadipocytes before and after inducing adipogenesis; (2) relationships among abdominal subcutaneous adipose tissue CTGF gene expression, body fat mass, and indices of insulin sensitivity, including the hepatic insulin sensitivity index and the hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotope glucose tracer infusion, in 72 people who had marked differences in adiposity and insulin sensitivity; (3) localization of CTGF protein in subcutaneous adipose tissue; and (4) effect of progressive (5%, 11%, and 16%) weight loss on adipose tissue CTGF gene expression. RESULTS CTGF was highly expressed in preadipocytes, not adipocytes. Adipose tissue CTGF expression was strongly correlated with body fat mass and both skeletal muscle and liver insulin sensitivity, and CTGF-positive cells were predominantly found in areas of fibrosis. Progressive weight loss caused a stepwise decrease in adipose tissue CTGF expression. CONCLUSIONS It was concluded that increased CTGF expression is associated with adipose tissue expansion, adipose tissue fibrosis, and multi-organ insulin resistance in people with obesity.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Gonzalez D, Brandan E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5911-5916. [PMID: 30689195 DOI: 10.1007/s12035-019-1490-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
32
|
Chen L, Brenner DA, Kisseleva T. Combatting Fibrosis: Exosome-Based Therapies in the Regression of Liver Fibrosis. Hepatol Commun 2018; 3:180-192. [PMID: 30766956 PMCID: PMC6357832 DOI: 10.1002/hep4.1290] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis results from chronic injury and inflammation in the liver and leads to cirrhosis, liver failure, and portal hypertension. Understanding the molecular mechanisms underlying hepatic fibrosis has advanced the prospect of developing therapies for regression of the disease. Resolution of fibrosis requires a reduction of proinflammatory and fibrogenic cytokines, a decrease in extracellular matrix (ECM) protein production, an increase in collagenase activity, and finally, a disappearance of activated myofibroblasts. Exosomes are nanovesicles of endocytic origin secreted by most cell types. They epigenetically reprogram and alter the phenotype of their recipient cells and hold great promise for the reversal of fibrosis. Recent studies have shown that exosomes function as conduits for intercellular transfer and contain all the necessary components to induce resolution of fibrosis, including the ability to (1) inhibit macrophage activation and cytokine secretion, (2) remodel ECM production and decrease fibrous scars, and (3) inactivate hepatic stellate cells, a major myofibroblast population. Here, we discuss the research involving the regression of hepatic fibrosis. We focus on the newly discovered roles of exosomes during fibrogenesis and as a therapy for fibrosis reversal. We also emphasize the novel discoveries of exosome‐based antifibrotic treatments in vitro and in vivo.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine University of California San Diego La Jolla CA
| | - David A Brenner
- Department of Medicine University of California San Diego La Jolla CA
| | - Tatiana Kisseleva
- Department of Surgery University of California San Diego La Jolla CA
| |
Collapse
|
33
|
Borkham-Kamphorst E, Steffen BT, van de Leur E, Haas U, Weiskirchen R. Portal myofibroblasts are sensitive to CCN-mediated endoplasmic reticulum stress-related apoptosis with potential to attenuate biliary fibrogenesis. Cell Signal 2018; 51:72-85. [DOI: 10.1016/j.cellsig.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
|
34
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
35
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
36
|
Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends Parasitol 2018. [PMID: 29526403 DOI: 10.1016/j.pt.2018.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a common pathology in various liver diseases. Hepatic stellate cells (HSCs) are the main cell type responsible for collagen deposition and fibrosis formation in the liver. Schistosomiasis is characterised by granulomatous fibrosis around parasite eggs trapped within the liver and other host tissues. This response is facilitated by the recruitment of immune cells and the activation of HSCs. The interactions between HSCs and schistosome eggs are complex and diverse, and a better understanding of these interactions could lead to improved resolution of fibrotic liver disease, including that associated with schistosomiasis. Here, we discuss recent advances in HSC biology and the role of HSCs in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, Herston, QLD, 4006, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
37
|
Pan X, Zhu F, Li G, Cao H, Liu J. HBx induces expression of CTGF in the transfected hepatoma cell line HepG2. Future Virol 2018. [DOI: 10.2217/fvl-2017-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effect of HBx on CTGF expression by hepatocytes. Materials & methods: HepG2 cells were transfected with the full-length gene of HBV, HBV protein-expressing plasmids, rhTGFβ1, LY2109761 or Smad2 siRNA, respectively, using Lipofectamine 3000. CTGF expression was detected by real-time PCR, ELISA, respectively. Then the effect of IL-32 on CTGF promoter was assayed by the Dual Luciferase® Reporter Assay System. Results: We found that HBx could induce CTGF expression by HepG2 cells in a concentration-dependent manner. CTGF expression induced by HBx employed the activation of TGFβ1-Smad2 signal pathway. Inhibition of TGFβ1 or Smad2 decreased CTGF expression induced by HBx. Conclusion: HBV might be involved in the pathogenesis of liver fibrosis through the HBx-induced CTGF expression.
Collapse
Affiliation(s)
- Xingfei Pan
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fengqin Zhu
- Department of Gastroenterology, the Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Gang Li
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Cao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Bowel Disease, Wuhan 430071, China
| |
Collapse
|
38
|
Cai Y, Huang G, Ma L, Dong L, Chen S, Shen X, Zhang S, Xue R, Sun D, Zhang S. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:297-308. [PMID: 29100790 DOI: 10.1016/j.bbamcr.2017.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that Smad ubiquitin regulatory factor 2 (Smurf2) activity was decreased in human fibrotic livers. Here, we overexpressed Smurf2 in livers of transgenic mice and observed inhibited collagen deposition and hepatic stellate cell activation in fibrotic model induced by carbon tetrachloride treatment or bile duct ligation. Hepatic Smurf2 overexpression also inhibited the production of connective tissue growth factor (CTGF), a central mediator of liver fibrosis. Using miRNA array and bioinformatics analyses, we identified miR-132 as a mediator of this inhibitory effect. miR-132 directly targets the 3'-untranslated region of CTGF and was transcriptionally upregulated by cAMP-PKA-CREB signaling. In addition, Smurf2 activated cAMP-PKA-CREB pathway by interacting with phosphodiesterase 4B (PDE4B) and facilitating its degradation. Thus, we have demonstrated a previously unrecognized anti-fibrotic pathway controlled by Smurf2.
Collapse
Affiliation(s)
- Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai, China
| | - Guanqun Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Lijie Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai, China
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai, China.
| | - Deqiang Sun
- Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, USA.
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
George J, Tsutsumi M, Tsuchishima M. MMP-13 deletion decreases profibrogenic molecules and attenuates N-nitrosodimethylamine-induced liver injury and fibrosis in mice. J Cell Mol Med 2017; 21:3821-3835. [PMID: 28782260 PMCID: PMC5706575 DOI: 10.1111/jcmm.13304] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Connective tissue growth factor (CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase‐13 (MMP‐13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP‐13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N‐nitrosodimethylamine (NDMA) in doses of 10 μg/g body weight on three consecutive days of each week over a period of 4 weeks in both wild‐type (WT) and MMP‐13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF‐β1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP‐13 knockout mice. Protein and mRNA levels of CTGF, TGF‐β1, α‐SMA and type I collagen and the levels of MMP‐2, MMP‐9 and cleaved products of CTGF were markedly increased in NDMA‐treated WT mice compared to the MMP‐13 knockout mice. Blocking of MMP‐13 with CL‐82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full‐length CTGF and its C‐terminal fragments and active TGF‐β1. The data demonstrate that MMP‐13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP‐13 and CTGF has potential therapeutic implications to arrest liver fibrosis.
Collapse
Affiliation(s)
- Joseph George
- Department of Medicine, Division of Molecular Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
40
|
Chen PJ, Tseng JK, Lin YL, Wu YHS, Hsiao YT, Chen JW, Chen YC. Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4961-4969. [PMID: 28561587 DOI: 10.1021/acs.jafc.7b01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Via an assay using an Amino Acid Analyzer, pepsin-digested chicken liver hydrolysates (CLHs) contain taurine (365.57 ± 39.04 mg/100 g), carnosine (14.03 ± 1.98 mg/100 g), and anserine (151.58 ± 27.82 mg/100 g). This study aimed to evaluate whether CLHs could alleviate thioacetamide (TAA)-induced fibrosis. A dose of 100 mg TAA/kg BW significantly increased serum liver damage indices and liver cytokine contents. Cell infiltration and monocytes/macrophages in livers of TAA-treated rats were illustrated by the H&E staining and immunohistochemical analysis of cluster of differentiation 68 (CD68, ED1), respectively. A significantly increased hepatic collagen accumulation was also observed and quantified under TAA treatment. A significant up-regulation of transforming growth factor-beta (TGF-β) and SMAD family member 4 (SMAD4) caused by TAA treatment further enhanced alpha smooth muscle actin (αSMA) gene and protein expressions. The liver antioxidant effects under TAA treatment were significantly amended by 200 and 600 mg CLHs/kg BW. Hence, the ameliorative effects of CLHs on liver fibrogenesis could be attributed by antioxidation and anti-inflmmation.
Collapse
Affiliation(s)
- Po-Ju Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University , Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung 404, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Tse Hsiao
- School of Veterinary Medicine, National Taiwan University , Taipei 106, Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
- Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan , Taipei 100, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
41
|
Hu D, Hu Y, Xu W, Yu H, Yang N, Ni S, Fu R. miR‑203 inhibits the expression of collagen‑related genes and the proliferation of hepatic stellate cells through a SMAD3‑dependent mechanism. Mol Med Rep 2017; 16:1248-1254. [PMID: 28586069 PMCID: PMC5561992 DOI: 10.3892/mmr.2017.6702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event during hepatic fibrogenesis. Activated HSCs are the main source of collagen and other extracellular matrix (ECM) components, and emerging antifibrotic therapies are aimed at preventing ECM synthesis and deposition. MicroRNAs (miRNAs) have been demonstrated to exert regulatory effects on HSC activation and ECM synthesis. In the present study, the HSC-T6 rat hepatic stellate cell line was transiently transfected with a miRNA (miR)-203 mimic, which is an artificial miRNA that enhances the function of miR-203, with a miR-203 inhibitor or with a scramble miRNA negative control. mRNA and protein expression levels of collagen (COL) 1A1, COL3A1, α-smooth muscle actin (α-SMA) and mothers against decapentaplegic homolog 3 (SMAD3) were assessed using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The interaction between miR-203 and the 3′-untranslated region (UTR) of SMAD3 mRNA was examined using a dual-luciferase reporter assay. The proliferative capabilities of activated HSCs were measured using an MTT assay. The present results demonstrated that the mRNA and protein expression levels of COL1A1, COL3A1, α-SMA and SMAD3 were significantly upregulated following transfection of HSC-T6 cells with the miR-203 inhibitor. Conversely, COL1A1, COL3A1, α-SMA, and SMAD3 mRNA and protein expression appeared to be downregulated in rat HSCs transfected with miR-203 mimics. Notably, the inhibition of miR-203 expression was revealed to promote HSC proliferation, whereas increased miR-203 expression suppressed the proliferative capabilities of HSC-T6 cells. Furthermore, SMAD3 was revealed to be a direct target of miR-203. The present study suggested that miR-203 may function to prevent the synthesis and deposition of ECM components, including COL1A1, COL3A1 and α-SMA, and to inhibit the proliferation of HSCs through a SMAD3-dependent mechanism. Therefore, it may be hypothesized that miR-203 has potential as a novel target for the development of alternative therapeutic strategies for the treatment of patients with hepatic fibrosis in clinical practice.
Collapse
Affiliation(s)
- Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Naibin Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shunlan Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| |
Collapse
|
42
|
Guo J, Lin Q, Shao Y, Rong L, Zhang D. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway. Can J Physiol Pharmacol 2017; 95:437-442. [PMID: 28092445 DOI: 10.1139/cjpp-2016-0248] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypertrophic scar is a medical difficulty of humans, which has caused great pain to patients. Here, we investigated the inhibitory effect of miR-29b on scar formation. The scalded model was established in mice and miR-29b mimics or a negative control was subcutaneously injected into the injury skin. Then various molecular biological experiments were performed to assess the effect of miR-29b on scar formation. According to our present study, first, the results demonstrated that miR-29b was down-regulated in thermal injury tissue and miR-29b treatment could promote wound healing, inhibit scar formation, and alleviate histopathological morphologic alteration in scald tissues. Additionally, miR-29b treatment suppressed collagen deposition and fibrotic gene expression in scar tissues. Finally, we found that miR-29b treatment inhibited the TGF-β1/Smad/CTGF signaling pathway. Taken together, our data suggest that miR-29b treatment has an inhibitory effect against scar formation via inhibition of the TGF-β1/Smad/CTGF signaling pathway and may provide a potential molecular basis for future treatments for hypertrophic scars.
Collapse
Affiliation(s)
- Jingdong Guo
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
| | - Quan Lin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
| | - Ying Shao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
| | - Li Rong
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Avenue, Changchun 130021, People’s Republic of China
| |
Collapse
|
43
|
Yeh MC, Chen KK, Chiang MH, Chen CH, Chen PH, Lee HE, Wang YH. Low-power laser irradiation inhibits arecoline-induced fibrosis: an in vitro study. Int J Oral Sci 2017; 9:38-42. [PMID: 28233766 PMCID: PMC5379159 DOI: 10.1038/ijos.2016.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 12/24/2022] Open
Abstract
Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline-stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and α-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.
Collapse
Affiliation(s)
- Mei-Chun Yeh
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ker-Kong Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Hsuan Chiang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Er Lee
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Shen J, Huang CK, Yu H, Shen B, Zhang Y, Liang Y, Li Z, Feng X, Zhao J, Duan L, Cai X. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med 2017; 21:986-992. [PMID: 28224705 PMCID: PMC5387156 DOI: 10.1111/jcmm.12950] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small vesicles that were initially thought to be a mechanism for discarding unneeded membrane proteins from reticulocytes. Their mediation of intercellular communication appears to be associated with several biological functions. Current studies have shown that most mammalian cells undergo the process of exosome formation and utilize exosome‐mediated cell communication. Exosomes contain various microRNAs, mRNAs and proteins. They have been reported to mediate multiple functions, such as antigen presentation, immune escape and tumour progression. This concise review highlights the findings regarding the roles of exosomes in liver diseases, particularly hepatitis B, hepatitis C, liver cirrhosis and hepatocellular carcinoma. However, further elucidation of the contributions of exosomes to intercellular information transmission is needed. The potential medical applications of exosomes in liver diseases seem practical and will depend on the ingenuity of future investigators and their insights into exosome‐mediated biological processes.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chiung-Kuei Huang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zheyong Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lian Duan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Yang JD, Mohamed HA, Cvinar JL, Gores GJ, Roberts LR, Kim WR. Diabetes Mellitus Heightens the Risk of Hepatocellular Carcinoma Except in Patients With Hepatitis C Cirrhosis. Am J Gastroenterol 2016; 111:1573-1580. [PMID: 27527741 PMCID: PMC6040826 DOI: 10.1038/ajg.2016.330] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES As most hepatocellular carcinoma (HCC) patients have cirrhosis, the association between diabetes and HCC may be confounded by the fact that diabetes is common in patients with cirrhosis. The aim of this study is to investigate whether diabetes increases the risk of HCC in patients with cirrhosis and whether the etiology of liver disease modifies the association between diabetes and HCC. METHODS All liver cirrhosis patients who had repeated radiographic evaluation of the liver (that is, ultrasound, computed tomography, or magnetic resonance image) at Mayo Clinic Rochester between January 2006 and December 2011 were included. The Cox proportional hazard regression analysis was used to investigate the effect of diabetes on the risk of HCC. RESULTS A total of 739 patients met the eligibility criteria, of whom 253 (34%) had diabetes. After a median follow-up of 38 months, 69 (9%) patients developed HCC. In patients without hepatitis C virus (HCV) infection, diabetes was significantly associated with the risk of developing HCC (hazard ratio (HR)=2.1, 95% confidence interval (CI)=1.1-4.1), whereas in patients with HCV, there was no association (HR=0.8, 95% CI=0.4-1.8). When adjusted for covariates, the interaction between HCV and diabetes remained significant (HR for non-HCV=1.9, 95% CI=0.9-3.7; HR for HCV=0.6, 95% CI=0.2-1.3). Lack of association between diabetes and HCC was externally validated in 410 patients with HCV cirrhosis enrolled in the HALT-C trial. CONCLUSIONS Diabetes increases the risk of HCC in patients with non-HCV cirrhosis. In HCV cirrhosis patients who already have very high risk, diabetes may not increase the risk any further.
Collapse
Affiliation(s)
- Ju Dong Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Hager Amed Mohamed
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jessica L. Cvinar
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - W. Ray Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
46
|
A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice. Sci Rep 2016; 6:32155. [PMID: 27562139 PMCID: PMC4999884 DOI: 10.1038/srep32155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138–159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1–149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis.
Collapse
|
47
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
48
|
TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. Inflamm Res 2016; 65:355-65. [PMID: 26856334 DOI: 10.1007/s00011-016-0921-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/07/2015] [Accepted: 01/27/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Although animal studies demonstrated that Smad7 induction ameliorates TGF-β/SMAD-mediated fibrogenesis, its role in human hepatic diseases is rather obscure. Our study explored the activation status of TGF-β/activin pathway in patients with chronic liver diseases, and how it is affected by successful antiviral treatment in chronic HBV hepatitis (CHB). METHODS Thirty-seven CHB patients (19 with active disease, 14 completely remitted on long-term antiviral treatment and 4 with relapse after treatment withdrawal), 18 patients with chronic HCV hepatitis, 12 with non-alcoholic fatty liver disease (NAFLD), and 3 controls were enrolled in the study. Liver mRNA levels of CTGF, all TGF-β/activin isoforms, their receptors and intracellular mediators (SMADs) were evaluated using qRT-PCR and were correlated with the grade of liver inflammation and fibrosis staging. The expression and localization of pSMAD2 and pSMAD3 were assessed by immunohistochemistry. RESULTS TGF-β signalling is activated in CHB patients with active disease, while SMAD7 is up-regulated during the resolution of inflammation after successful treatment. SMAD7 overexpression was also observed in NAFLD patients exhibiting no or minimal fibrosis, despite the activation of TGF-β/activin signaling. CONCLUSIONS SMAD7 overexpression might represent a mechanism limiting TGF-β-mediated fibrogenesis in human hepatic diseases; therefore, SMAD7 induction likely represents a candidate for novel therapeutic approaches.
Collapse
|
49
|
Xue X, Chen Q, Zhao G, Zhao JY, Duan Z, Zheng PS. The Overexpression of TGF-β and CCN2 in Intrauterine Adhesions Involves the NF-κB Signaling Pathway. PLoS One 2015; 10:e0146159. [PMID: 26719893 PMCID: PMC4697802 DOI: 10.1371/journal.pone.0146159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 01/24/2023] Open
Abstract
Intrauterine adhesions (IUA) are a significant cause of menstrual disturbance and infertility, but their pathogenesis still remains unclear. Here, we investigated the expression of TGF-β and CCN2 in IUA endometrial tissue by immunohistochemistry, western blotting and qRT-PCR assays, and found the expression of TGF-β and CCN2 in the endometrial tissue of IUA was significantly increased compared to normal endometrium and uterine septum (P<0.01), suggesting that TGF-β and CCN2 may play an important role in the formation of IUA. Moreover, the activity of the NF-κB signaling pathway in endometrial tissue of IUA was also significantly enhanced compared to normal endometrial and uterine septum (P<0.01) and positively correlated with the expression of TGF-β and CCN2, which suggested that TGF-β and CCN2 expression may be involved in the NF-κB signaling pathway. Blocking the NF-κB signaling pathway using SN50 resulted in the reduced expression of TGF-β in RL95-2 cells, which confirmed the association of the NF-κB signaling pathway and TGF-β in endometrial cells. Additionally, the expression of TGF-β and CCN2 was associated with IUA recurrence, which provides a potential prognostic indictor for IUA. Together, these results demonstrated that TGF-β and CCN2 play an important role in IUA formation, whose mechanism was associated with the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Qing Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Gang Zhao
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Jin-Yan Zhao
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Zhao Duan
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, the First Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J Cell Commun Signal 2015; 9:327-39. [PMID: 26698861 DOI: 10.1007/s12079-015-0309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
The CCN family of matricellular signaling proteins is emerging as a unique common link across multiple diseases and organs related to injury and repair. They are now being shown to play a central role in regulating the pathways to the initiation and resolution of normal wound healing and fibrosis in response to multiple forms of injury. Similarly, it is also emerging that they play a key role in regulating the establishment, growth, metastases and tissue regeneration in many forms of cancer via the interaction of cancer cells with the tumor stroma. Evidence has been recently provided that these proteins do not act independently but are co-regulated working in a yin/yang manner to alter the outcome of both normal physiological processes as well as pathology. The purpose of this review is to twofold. First, it will summarize work to date supporting CCN2 as a therapeutic target in the formation and progression of renal, skin, and other organ fibrosis, as well as cancer stroma formation. Second, it will highlight recent evidence for CCN3 as a counter-regulator and a potential therapeutic agent in these diseases with an exciting, novel potential to both treat and then restore tissue homeostasis in those afflicted by these devastating disorders.
Collapse
|