1
|
Tseng YY, Liao GR, Lien A, Hsu WL. Current concepts in the development of therapeutics against human and animal coronavirus diseases by targeting NP. Comput Struct Biotechnol J 2021; 19:1072-1080. [PMID: 33552444 PMCID: PMC7847285 DOI: 10.1016/j.csbj.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
The coronavirus (CoV) infects a broad range of hosts including humans as well as a variety of animals. It has gained overwhelming concerns since the emergence of deadly human coronaviruses (HCoVs), severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2015. Very recently, special attention has been paid to the novel coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 due to its high mobility and mortality. As the COVID-19 pandemic continues, despite vast research efforts, the effective pharmaceutical interventions are still not available for clinical uses. Both expanded knowledge on structure insights and the essential function of viral nucleocapsid (N) protein are key basis for the development of novel, and potentially, a broad-spectrum inhibitor against coronavirus diseases. This review aimed to delineate the current research from the perspective of biochemical and structural study in cell-based assays as well as virtual screen approaches to identify N protein antagonists targeting not only HCoVs but also animal CoVs.
Collapse
Key Words
- AMP, UMP, GMP and CMP, ribonucleoside 5′-monophosphates
- Antagonists
- BCoV, bovine coronavirus
- CCoV, canine coronavirus
- COVID-19
- COVID-19, coronavirus disease 2019
- CTD, C-terminus dimerization domain
- CoV, coronavirus
- Coronavirus
- E, envelope protein
- ECoV, equine coronavirus
- FECV, feline enteric coronavirus
- FIPV, feline infectious peritonitis virus
- HCoVs, human coronaviruses
- HIV, human immunodeficiency virus
- IBV, infectious bronchitis virus
- IFN, interferon
- Inhibitors
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MHV, mouse hepatitis virus
- MP, membrane protein
- N protein
- NTD, N-terminus RNA-binding domain
- PDCoV, porcine deltacoronavirus
- PEDV, Porcine epidemic diarrhea virus
- PRCV, porcine respiratory coronavirus
- RBD, RNA-binding domain
- RNP, ribonucleoproteins
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SP, spike protein
- SeCoV, swine enteric coronavirus
- TCoV, turkey coronavirus
- TGEV, transmissible gastroenteritis virus
- nsp3, the nonstructural protein 3
- shRNAs, short hairpin RNAs
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Guan-Ru Liao
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taiwan
| | - Abigail Lien
- Department of Biochemistry, University of Washington, Seattle, USA
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taiwan
| |
Collapse
|
2
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
3
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
4
|
El-Shenawy R, Tabll A, Bader El Din NG, El Abd Y, Mashaly M, Abdel Malak CA, Dawood R, El-Awady M. Antiviral activity of virocidal peptide derived from NS5A against two different HCV genotypes: an in vitro study. J Immunoassay Immunochem 2015; 36:63-79. [PMID: 24606010 DOI: 10.1080/15321819.2014.896264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed at assessment of the antiviral activity of an amphipathic α-helical peptide derived from the hepatitis C virus NS5A known as C5A virocidal peptide against different HCV genotypes. Two sources of HCV virus for in vitro study: HCV genotype 4 sera samples and JFH-1 infectious culture system genotype 2a were used. Several virocidal peptide concentrations were tested to determine the concentration that inhibits HCV propagation in Huh 7.5 cells according to three different prortocols (pre-infection, coinfection, and post infection). The capacity of the virocidal peptide to block HCV in Huh7.5 cells infected with different 10 individual serum samples was evaluated. In the pre-infection protocol, virocidal concentration (20, 50, and 75 μM) showed no viral RNA. In the co-infection protocol, virocidal concentrations (10, 20, 50, 75 μM) showed no viral RNA while in post-infection protocol, 75 μM was the only concentration that blocked the HCV activity. Results of Huh7.5 cell line transfected with HCV cc J6/JFH and treated with virocidal peptide revealed that only the higher virocidal concentration (75 μM) showed no amplification. The percentage of virocidal blocking in the 10 HCV individual serum samples was 60%. In conclusion, the C5A virocidal peptide has potent antiviral activity against HCV.
Collapse
Affiliation(s)
- Reem El-Shenawy
- a Department of Microbial Biotechnology , National Research Center , Giza , Egypt
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mao X, Li X, Mao X, Huang Z, Zhang C, Zhang W, Wu J, Li G. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P. Virol J 2014; 11:86. [PMID: 24885776 PMCID: PMC4038377 DOI: 10.1186/1743-422x-11-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS By analyzing the sequence and structure of the 5' untranslated region of HCV RNA, a putative cleavage site (C67-G68) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C67) was constructed by linking a custom guide sequence (GS) to the 3' termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a "disabled" ribozyme (i.e. M1GS-HCV/C67*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C67) showed almost the same bioactivities with M1GS-HCV/C67, demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Vaccine Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | | | | |
Collapse
|
6
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
7
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Investigating a new generation of ribozymes in order to target HCV. PLoS One 2010; 5:e9627. [PMID: 20224783 PMCID: PMC2835756 DOI: 10.1371/journal.pone.0009627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/17/2010] [Indexed: 02/08/2023] Open
Abstract
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.
Collapse
|
9
|
|
10
|
Abstract
The current standard of care for the treatment of hepatitis C virus infection, pegylated interferon-alpha and ribavirin, is costly, associated with significant side effects, and effective in only 50% of patients. There is therefore a need for the development of novel antiviral therapies. One such approach involves the application of gene silencing technologies, including antisense oligonucleotides, ribozymes, RNA interference, and aptamers. However, despite great scientific advances over the past decade, and promising in vitro data, several significant challenges continue to limit the translation of this technology to the clinical setting. This review provides a concise update of the current literature.
Collapse
Affiliation(s)
- Alexander J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA
| | | |
Collapse
|
11
|
Fukushima A, Fukuda N, Lai Y, Ueno T, Moriyama M, Taguchi F, Iguchi A, Shimizu K, Kuroda K. Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus. Intervirology 2009; 52:92-9. [PMID: 19420961 PMCID: PMC7179559 DOI: 10.1159/000215946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/23/2009] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Severe acute respiratory syndrome (SARS) is a severe pulmonary infectious disease caused by a novel coronavirus. To develop an effective and specific medicine targeting the SARS-coronavirus (CoV), a chimeric DNA-RNA hammerhead ribozyme was designed and synthesized using a sequence homologous with the mouse hepatitis virus (MHV). METHOD Chimeric DNA-RNA hammerhead ribozyme targeting MHV and SARS-CoV were designed and synthesized.To confirm its activity, in vitro cleavage reactions were performed with the synthesized ribozyme. Effects of the chimeric ribozyme were evaluated on multiplication of MHV. Effects of the chimeric ribozyme on expression of SARS-CoV were evaluated in cultured 3T3 cells. RESULT The synthetic ribozyme cleaved the synthetic target MHV and SARS-CoV RNA into fragments of predicted length. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited multiplication of MHV in DBT cells by about 60%. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited the expression of SARS-CoV RNA in 3T3 cells transfected with the recombinant plasmid. The chimeric DNA-RNA ribozyme targeting SARS-CoV significantly inhibited MHV viral activity and expression of recombinant SARS RNA in vitro. CONCLUSION These findings indicate that the synthetic chimeric DNA-RNA ribozyme could provide a feasible treatment for SARS.
Collapse
Affiliation(s)
- Akiko Fukushima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hlawaty H, San Juan A, Jacob MP, Vranckx R, Letourneur D, Feldman LJ. Local matrix metalloproteinase 2 gene knockdown in balloon-injured rabbit carotid arteries using nonviral-small interfering RNA transfection. J Gene Med 2009; 11:92-9. [DOI: 10.1002/jgm.1275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Pawlotsky JM, Chevaliez S, McHutchison JG. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 2007; 132:1979-98. [PMID: 17484890 DOI: 10.1053/j.gastro.2007.03.116] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The burden of disease consequent to hepatitis C virus (HCV) infection has been well described and is expected to increase dramatically over the next decade. Current approved antiviral therapies are effective in eradicating the virus in approximately 50% of infected patients. However, pegylated interferon and ribavirin-based therapy is costly, prolonged, associated with significant adverse effects, and not deemed suitable for many HCV-infected patients. As such, there is a clear and pressing need for the development of additional agents that act through alternate or different mechanisms, in the hope that such regimens could lead to enhanced response rates more broadly applicable to patients with hepatitis C infection. Recent basic science enhancements in HCV cell culture systems and replication assays have led to a broadening of our understanding of many of the mechanisms of HCV replication and, therefore, potential novel antiviral targets. In this article, we have attempted to highlight important new information as it relates to our understanding of the HCV life cycle. These steps broadly encompass viral attachment, entry, and fusion; viral RNA translation; posttranslational processing; HCV replication; and viral assembly and release. In each of these areas, we present up-to-date knowledge of the relevant aspects of that component of the viral life cycle and then describe the preclinical and clinical development targets and pathways being explored in the translational and clinical settings.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- French National Reference Center for Viral Hepatitis B, C, and delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France.
| | | | | |
Collapse
|
14
|
Singh N, Higgins E, Amin S, Jani P, Richter E, Patel A, Kaur R, Wang J, Ambati J, Dong Z, Ambati BK. Unique Homologous siRNA Blocks Hypoxia-Induced VEGF Upregulation in Human Corneal Cells and Inhibits and Regresses Murine Corneal Neovascularization. Cornea 2007; 26:65-72. [PMID: 17198016 DOI: 10.1097/ico.0b013e31802b4201] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the results of amniotic membrane transplantation (AMT) for ocular surface reconstruction in chemical and thermal injuries. METHODS Retrospective review of case records of patients who had undergone AMT for chemical injuries (January 1998 to May 2001). RESULTS Seventy two eyes of 69 patients were studied of which 24 were acute cases (median-2 days, range, 1-20 days) and 48 were chronic cases (median-12.4 months, range, 1.02-95.8 months). Mean age was 22.4 years (SD +/- 13.34 years) and average follow up duration was 7.8 months (SD +/- 7.1). Main clinical findings were symblephara (52.8%), corneal vascularization (51.3%), conjunctivalization (45.8%), Limbal ischemia (45.8%), Limbal stem cell deficiency (55.5%) and epithelial defect (48.6%). 18 cases were due to acid injuries (5 acute, 13 chronic), 52 were due to alkali (18 acute and 34 chronic) and 2 cases were due to thermal burns (1 each acute and chronic). Overall success rate was 87.5% in acute cases and 72.9% in chronic cases. Indication-wise success rates were 94.3% for epithelial defect healing, 88.2% for symptomatic relief, 59.7% for ocular surface reconstruction, and 55% for improving limbal stem cell function. Success was not achieved in any outcome measure in 1/24 (4.2%) in acute group and 6/48 (12.5%) in chronic group. CONCLUSION AMT helps in ocular surface reconstruction, promotes rapid epithelial healing and partially restores limbal stem cell function. It can be considered as an effective modality for the ocular surface restoration in chemical and thermal injuries in selected cases. Success rates in acute and chronic cases are comparable.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Ophthalmology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Platz J, Pinkenburg O, Beisswenger C, Püchner A, Damm T, Bals R. Application of small interfering RNA (siRNA) for modulation of airway epithelial gene expression. Oligonucleotides 2006; 15:132-8. [PMID: 15989427 DOI: 10.1089/oli.2005.15.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNA (siRNA) was developed as a novel tool to inhibit gene function in human disease. The aim of the present study was to modify the function of NF-kappaB in airway epithelial cells by application of siRNA. 1HAEo cells were transfected with siRNA directed to the p65 subunit of NF- kappaB (siRNA.p65). Application of siRNA.p65 caused decreased levels of p65 mRNA or protein after 72 hours, as determined by quantitative RT-PCR or Western blot analysis. The tumor necrosis factor- alpha (TNF-alpha)-induced release of interleukin-6 (IL-6) and IL-8 was significantly inhibited by the application of siRNA.p65. Well-differentiated primary cells were resistant to transfection with siRNA.p65. However, when undifferentiated primary cells were transfected, an effect of the siRNA could still be observed when the cells were differentiated in an air-liquid interface culture system. In conclusion, siRNA can be used to regulate the activity of NF-kappaB in airway epithelial cells.
Collapse
Affiliation(s)
- Juliane Platz
- Hospital of the University of Marburg, Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Therapy of hepatitis C virus (HCV) infection may prevent progression to cirrhosis, hepatocellular carcinoma and end-stage liver disease. The cornerstone of treatment has long been standard IFN-alpha, the use of which was associated with a sustained biochemical and viral response in only a small proportion of patients. More recently, the success of interferon-based regimens has substantially improved due to the combination with the guanosine analogue ribavirin and to the advent of pegylated interferon formulations. However, even the most up-to-date regimens fail to cure the infection in many cases and are limited by side effects and high costs. A better understanding of the HCV genomic organisation, the elucidation of the three-dimensional structures of virally encoded enzymes and the recent development of a HCV-replicon system in human hepatoma (Huh-7) cells have led to significant advances in the development of new antiviral compounds, many of which are under evaluation in clinical trials. The aim of this review is to trace a brief overview of the progress made by interferon-based treatments for hepatitis C since their introduction in the early 1990s, and to highlight the results of recent clinical studies concerning new and emerging drugs.
Collapse
Affiliation(s)
- Pierluigi Toniutto
- Internal Medicine, Medical Liver Transplantation Unit, DPMSC, University of Udine, Clinica Medica, Policlinico Universitario, Piazzale SM della Misericordia 1, 33100 Udine, Italy.
| | | | | |
Collapse
|
18
|
Gonzalez-Carmona MA, Schüssler S, Serwe M, Alt M, Ludwig J, Sproat BS, Steigerwald R, Hoffmann P, Quasdorff M, Schildgen O, Caselmann WH. Hammerhead ribozymes with cleavage site specificity for NUH and NCH display significant anti-hepatitis C viral effect in vitro and in recombinant HepG2 and CCL13 cells. J Hepatol 2006; 44:1017-25. [PMID: 16469406 DOI: 10.1016/j.jhep.2005.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS Four different ribozymes (Rz) targeting the hepatitis C virus (HCV) 5'-non-coding region (NCR) at nucleotide (nt) positions GUA 165 (Rz1), GUC 270 (Rz2), GUA 330 (Rz3) and GCA 348 (Rz1293) were compared for in vitro cleavage using a 455 nt HCV RNA substrate. The GUA 330 (Rz3) and GCA 348 (Rz1293) ribozymes, both targeting the HCV loop IV region, were found to be the most efficient, and were further analyzed in an in vitro translation system. METHODS For this purpose RNA transcribed from a construct encoding a HCV-5'-NCR-luciferase fusion protein was used. Cleavage-inactive (Rz1426), mismatch (Rz1293m) or unrelated ribozymes (Rz1437) were synthesized as controls for Rz-1293. HCV specificity was analysed by competition experiments using sense and mismatch oligodeoxynucleotides HCVrzCI and HCVrzMM, respectively. RESULTS A chemically modified nuclease-resistant variant of the GCA 348 cleaving ribozyme was selected for cell culture experiments using recombinant HepG2 or CCL13 cell lines stably transfected with a HCV-5'-NCR-luciferase target construct. CONCLUSIONS This ribozyme (Rz1293) showed an inhibitory activity of translation of more than 70% thus verifying that the GCA 348 cleavage site in the HCV loop IV is an accessible target site in vivo and may be suitable for the development of novel optimized hammerhead structures.
Collapse
|
19
|
Khan AU. Ribozyme: A clinical tool. Clin Chim Acta 2006; 367:20-7. [PMID: 16426595 DOI: 10.1016/j.cca.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 01/15/2023]
Abstract
Catalytic RNAs (ribozymes) are capable of specifically cleaving RNA molecules, a property that enables them to act as potential antiviral and anti-cancer agents, as well as powerful tools for functional genomic studies. Recently, ribozymes have been used successfully to inhibit gene expression in a variety of biological systems in vitro and in vivo. Phase I clinical trials using ribozyme gene therapy to treat AIDS patients have been conducted. Despite initial success, there are many areas that require further investigation. These include stability of ribozymes in cells and designing highly active ribozymes in vivo, identification of target sequence sites and co-localization of ribozymes and substrates, and their delivery to specific tissues and maintenance of its stable long-term expression. This review gives a brief introduction to ribozyme structure, catalysis and its potential applications in biological systems as therapeutic agents.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
20
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
22
|
Prabhu R, Vittal P, Yin Q, Flemington E, Garry R, Robichaux WH, Dash S. Small interfering RNA effectively inhibits protein expression and negative strand RNA synthesis from a full-length hepatitis C virus clone. J Med Virol 2005; 76:511-9. [PMID: 15977238 DOI: 10.1002/jmv.20391] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hepatitis C virus (HCV) infection is usually treated with the combination of interferon and ribavirin, but only a small fraction of patients develop a sustained remission. There is need for the development of specific molecular approaches for the treatment of chronic HCV infection. We propose that RNA interference is highly effective antiviral strategy that offers great potential for the treatment of HCV infection. Three plasmid constructs expressing small interfering RNAs (siRNAs) targeted to sequences encoding the structural gene (E2) and non-structural genes (NS3, NS5B) of HCV1a genome were prepared. Antiviral properties of siRNAs against the HCV1a strain were studied in a transient replication model that involved the use of a transcription plasmid containing the full-length HCV genome and an adenovirus expressing T7 RNA polymerase. We found that siRNAs targeted to the E2, NS3 and NS5B regions of the HCV genome efficiently inhibited expression of the HCV core and NS5A protein measured by Western blot analysis and immunocytochemical staining. Intracytoplasmic immunization of siRNAs in HCV-transfected cells efficiently degraded genomic positive strand HCV RNA, as shown by ribonuclease protection assay (RPA). All three siRNAs efficiently inhibited synthesis of replicative negative strand HCV RNA in the transfected cells. A control siRNA plasmid against a Epstein--Barr virus latency gene did not inhibit protein expression and negative strand HCV RNA. These results suggest that RNAi is an effective and alternative approach that can be used to inhibit HCV expression and replication.
Collapse
Affiliation(s)
- Ramesh Prabhu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kanda T, Yokosuka O, Imazeki F, Fujiwara K, Nagao K, Saisho H. Amantadine inhibits hepatitis A virus internal ribosomal entry site-mediated translation in human hepatoma cells. Biochem Biophys Res Commun 2005; 331:621-629. [PMID: 15850805 DOI: 10.1016/j.bbrc.2005.03.212] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 12/30/2022]
Abstract
The effect of six drugs (amantadine, glycyrrhizin, ribavirin, ursodeoxycholic acid, alcohol, and IFN) on HAV RNA translation from the HAV internal ribosomal entry site (IRES) was investigated using a bicistronic reporter construct containing HAV IRES as intragenic spacer. Huh-7 cells and derivatives were transfected with in vitro transcripts, and the reporter gene activity was determined. IFN suppressed both cap-dependent and HAV IRES-dependent translation, while amantadine specifically inhibited HAV IRES-dependent translation. In contrast to IFN, by reporter assay, amantadine did not activate the interferon-stimulated response element (ISRE) or interferon gamma-activated sequence (GAS)-associated pathways. Immunoblot analysis revealed that amantadine had no effect on PKR and on IFN-regulatory factor-1 (IRF-1) expression. These findings demonstrated a novel antiviral effect of amantadine against HAV with or without HCV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Safety and Health Organization, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Callison SA, Hilt DA, Jackwood MW. In vitro analysis of a hammerhead ribozyme targeted to infectious bronchitis virus nucleocapsid mRNA. Avian Dis 2005; 49:159-63. [PMID: 15839432 DOI: 10.1637/7259-081104r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hammerhead ribozymes are catalytic RNA molecules that specifically cleave a target RNA molecule. Herein, we report the design, synthesis, and in vitro analysis of a hammerhead ribozyme targeted to the infectious bronchitis virus (IBV) nucleocapsid mRNA. At a concentration of 0.5 or 10 microM, the ribozyme, designated IBV-N-Rz, effectively cleaved target RNAs in trans (37 C, 10 mM MgCl2, 50 mM Tris). Cleavage products were visualized by agarose gel analysis. The time course of the ribozyme reaction was monitored by agarose gel analysis and relative quantitative reverse transcription-polymerase chain reaction. The amount of target RNA continually declined over a 5-hr period, indicating that the ribozyme was truly catalytic. Although stability and delivery problems must be overcome, a hammerhead ribozyme targeted to the IBV nucleocapsid mRNA most likely has antiviral activity and may be an effective therapeutic/prophylactic reagent in the future.
Collapse
Affiliation(s)
- Scott A Callison
- Department of Avian Medicine, Poultry and Diagnostic Research Center, College of Veterinary Medicine, 953 College Station Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
25
|
Zhang Z, Burke JM. Inhibition of viral replication by ribozyme: mutational analysis of the site and mechanism of antiviral activity. J Virol 2005; 79:3728-36. [PMID: 15731266 PMCID: PMC1075678 DOI: 10.1128/jvi.79.6.3728-3736.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A controlled mutational study was used to determine the site and mechanism of the antiviral action of ribozymes that inhibit Sindbis virus replication. A hairpin ribozyme targeting G575 of the Sindbis virus genomic RNA was designed and cloned into a minimized alphavirus amplicon vector. Cells that were stably transfected with this construct expressed low levels of a constitutive transcript containing the ribozyme plus recognition sequences for Sindbis RNA replicase. Upon infection, the ribozyme transcript was amplified to high levels by the viral replicase, resulting in decreased viral production from infected ribozyme-expressing cells. Mutations were then introduced into the viral RNA target sequence to interfere with ribozyme binding, and compensatory changes were generated in the ribozyme recognition sequence. Single mutations in the virus or ribozyme decreased the efficacy of the ribozyme's inhibition of viral replication, and compensatory mutations restored it. To confirm that ribozyme-catalyzed RNA cleavage was actually needed for inhibition, we performed tests with a cell line expressing an inactivated ribozyme and with a virus containing a single nucleotide target mutation that allowed the ribozyme to bind but blocked cleavage at the recognition site. The results show that most of the antiviral activity of ribozymes is due to ribozyme-catalyzed cleavage at the targeted RNA sequence, but some additional inhibition seems to occur through an antisense mechanism.
Collapse
Affiliation(s)
- Zhenxi Zhang
- Department of Microbiology and Molecular Genetics, The University of Vermont, 95 Carrigan Dr., 220 Stafford Hall, Burlington, VT 05405, USA
| | | |
Collapse
|
26
|
Abstract
Hepatitis C virus (HCV) is a human hepatotropic virus with an estimated worldwide prevalence of 170 million cases, including approximately 4 million cases in the US. It is a major cause of liver disease and is the most common indication for liver transplantation in the US. The majority of infected individuals are eligible for therapy. Since it is difficult to predict who will have progressive disease, those with significant inflammation or fibrosis on histologic examination of liver biopsy are generally offered treatment. The following chapter is an overview of the patent literature during 2000-mid-2002, and discusses the potential of various treatment modalities for HCV.
Collapse
Affiliation(s)
- F Fred Poordad
- Department of Hepatology and Liver Transplantation, Cedars-Sinai Medical Center, 8635 W. Third St, #590W, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
27
|
|
28
|
Brass V, Blum HE, Moradpour D. Recent developments in target identification against hepatitis C virus. Expert Opin Ther Targets 2005; 8:295-307. [PMID: 15268625 DOI: 10.1517/14728222.8.4.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C is a leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. Recent progress in the understanding of the molecular virology of hepatitis C has allowed the identification of novel antiviral targets. Moreover, in vitro and in vivo model systems have been developed that allow the systematic evaluation of new therapeutic strategies. Exciting results from proof-of-concept clinical studies have now been reported for a specific hepatitis C virus serine protease inhibitor. These and other novel antiviral strategies may complement existing therapeutic modalities in the future.
Collapse
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
29
|
Abstract
Hepatitis C virus (HCV) has infected millions of people worldwide and has emerged as a global health crisis. The currently available therapy is interferon (IFN) either alone or in combination with ribavirin. However, the disappointing efficacy of IFN has led to the considerable need for improved treatments and a number of new therapies are under evaluation in clinical trials. These include pegylated IFNs, which have altered physiochemical characteristics allowing once-weekly dosing. Combination of pegylated IFN with ribavirin should further improve sustained response rates. However, not all patients are successfully treated with IFNs, particularly those infected with genotype 1 of the virus, and it is likely that potent, specific drugs will be required. The majority of new approaches currently trying to combat this viral disease are aimed at inhibition of viral targets. Most effort has been directed towards inhibition of the NS3 serine protease, and potent inhibitors have now been described. However, a clinical candidate is yet to emerge against this difficult target. Considerable work by leading researchers has provided crystal structures of the key replicative enzymes, NS3 protease, NS3 helicase, NS5B polymerase and full-length NS3 protease-helicase, and there is much hope that such structural information will bear fruit. More recently, inhibition of host targets, particularly inosine monophosphate dehydrogenase (IMPDH), has become of interest and there are on-going clinical trials with such inhibitors. Research aimed at novel treatments for HCV disease is gathering pace and very recent developments in cell-based assay systems can only hasten the discovery of improved therapies.
Collapse
Affiliation(s)
- B W Dymock
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK.
| |
Collapse
|
30
|
Le Calvez H, Yu M, Fang F. Biochemical prevention and treatment of viral infections - a new paradigm in medicine for infectious diseases. Virol J 2004; 1:12. [PMID: 15560846 PMCID: PMC535550 DOI: 10.1186/1743-422x-1-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 11/23/2004] [Indexed: 01/16/2023] Open
Abstract
For two centuries, vaccination has been the dominating approach to develop prophylaxis against viral infections through immunological prevention. However, vaccines are not always possible to make, are ineffective for many viral infections, and also carry certain risk for a small, yet significant portion of the population. In the recent years, FDA's approval and subsequent market acceptance of Synagis, a monoclonal antibody indicated for prevention and treatment of respiratory syncytial virus (RSV) has heralded a new era for viral infection prevention and treatment. This emerging paradigm, herein designated "Biochemical Prevention and Treatment", currently involves two aspects: (1) preventing viral entry via passive transfer of specific protein-based anti-viral molecules or host cell receptor blockers; (2) inhibiting viral amplification by targeting the viral mRNA with anti-sense DNA, ribozyme, or RNA interference (RNAi). This article summarizes the current status of this field.
Collapse
Affiliation(s)
- Hervé Le Calvez
- Abgent, Inc. 6310 Nancy Ridge Drive, Suite 106, San Diego, CA 92121 USA
| | - Mang Yu
- NexBio, Inc. 6330 Nancy Ridge Drive, Suite 105, San Diego, CA 92121 USA
| | - Fang Fang
- NexBio, Inc. 6330 Nancy Ridge Drive, Suite 105, San Diego, CA 92121 USA
| |
Collapse
|
31
|
Prabhu R, Khalap N, Burioni R, Clementi M, Garry RF, Dash S. Inhibition of hepatitis C virus nonstructural protein, helicase activity, and viral replication by a recombinant human antibody clone. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1163-73. [PMID: 15466383 PMCID: PMC1618619 DOI: 10.1016/s0002-9440(10)63377-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatitis C virus (HCV) nonstructural protein 3 (NS3), with its protease, helicase, and NTPase enzymatic activities, plays a crucial role in viral replication, and therefore represents an ideal target for the development of anti-viral agents. We have developed a recombinant human antibody (Fab) that reacts with the helicase domain of HCV NS3. The affinity-purified Fab antibody completely inhibited the helicase activity of HCV NS3 at equimolar concentration. To evaluate the effect of the Fab on HCV replication, the clone encoding the Fab gene was put into an expression vector, which converts Fab into a complete IgG1 antibody. Using a DNA-based transfection model, we demonstrated that intracellular expression of this antibody resulted in significant reduction of HCV-negative strand RNA synthesis. Intracellular expression of this antibody into either a stable cell line replicating subgenomic RNA, or a transient full-length HCV replication model, reduced both HCV RNA and viral protein expression. These results support the use of recombinant antibody fragments to inhibit NS3 enzyme as a novel, feasible, and effective approach for inhibiting HCV replication.
Collapse
Affiliation(s)
- Ramesh Prabhu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans LA 70112, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schedel J, Seemayer CA, Pap T, Neidhart M, Kuchen S, Michel BA, Gay RE, Müller-Ladner U, Gay S, Zacharias W. Targeting cathepsin L (CL) by specific ribozymes decreases CL protein synthesis and cartilage destruction in rheumatoid arthritis. Gene Ther 2004; 11:1040-7. [PMID: 15164093 DOI: 10.1038/sj.gt.3302265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was undertaken to examine whether ribozymes cleaving specifically cathepsin L (CL) mRNA are able to decrease the synthesis of CL protease in rheumatoid arthritis synovial fibroblasts (RA-SF) and thereby reduce the invasiveness into cartilage both in vitro and in the SCID mouse coimplantation model of RA. Two different ribozymes that cleave CL mRNA specifically at positions 533 (RzCL533) and 790 (RzCL790) were generated. Using retroviral gene transfer, RA-SF were transduced with the ribozyme constructs or the empty vector. To examine the effect of the ribozymes on the mRNA level, quantitative analysis for CL mRNA was performed using real-time PCR. For evaluation on the protein level, ELISA using specific anti-CL antibodies was performed. In addition, transduced RA-SF were examined in vitro in a three-dimensional destruction assay evaluating their ability to degrade extracellular matrix produced by human chondrocytes. Matrix destruction was monitored by the release of soluble glycosaminoglycans (sGAG). Using the in vivo SCID mouse coimplantation model of RA, RzCL533-transduced RA-SF and control cells were coimplanted with human cartilage for 60 days. After being killed, invasion of RA-SF into the cartilage was evaluated by using a semiquantitative score. Transduction of RA-SF with RzCL533 and RzCL790 ribozymes decreased significantly the expression of CL mRNA to 44% (range 25-62%) and 20% (range 1-43%), respectively, when compared to mock-transduced cells. The protein concentration of CL in the cell culture supernatants of transduced RA-SF was decreased from 16.0 ng/ml in the mock constructs to 4.1 and 8.2 ng/ml (mean), respectively. Using the in vitro cartilage destruction assay, the release of sGAG decreased to 46 and 60%, respectively, after 14 days when compared to mock-transduced cells. In the SCID mouse coimplantation model of RA, RzCL533-transduced RA-SF revealed a significant lower cartilage invasion when compared to mock and untransduced cells. Using retroviral gene transfer, ribozymes cleaving CL mRNA inhibit specifically the synthesis of this matrix-degrading enzyme and reduce cartilage destruction in in vitro and in vivo models. Our study therefore suggests that ribozymes targeting CL could be a novel and efficient tool to inhibit joint destruction in RA.
Collapse
Affiliation(s)
- J Schedel
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Papatheodoridis GV, Cholongitas E. Chronic hepatitis C and no response to antiviral therapy: potential current and future therapeutic options. J Viral Hepat 2004; 11:287-96. [PMID: 15230850 DOI: 10.1111/j.1365-2893.2004.00522.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant proportion of chronic hepatitis C patients fails to achieve sustained virologic response even after treatment with the current, more potent, combination of pegylated interferon-alpha (IFNa) plus ribavirin. Such patients represent a rather heterogeneous group and may be divided initially into relapsers and nonresponders. Both the type of previous therapy and of previous response are very important factors for the indication and the type of re-treatment. The combination of pegylated IFNa and ribavirin seems to be a rational approach for patients who failed to respond to IFNa monotherapy. Pegylated IFNa-based regimens appear to induce sustained responses in 40-68% of relapsers but in only 11% of nonresponders to previous therapy with standard IFNa plus ribavirin. Thus, new therapeutic approaches are needed for the latter subgroup of patients as well as those who fail to respond to pegylated IFNa-based regimens. Such new approaches currently under evaluation include the triple combination of pegylated IFNa, ribavirin, and amantadine, alternative types of IFN, use of agents with ribavirin like activity but lesser degrees of side-effects, inhibitors of hepatitis C virus (HCV) replication, mainly inhibitors of NS3 protease or helicase, antisense oligonucleotides, and ribozymes, and several immunomodulators. Moreover, maintenance antifibrotic therapy, mostly with low doses of pegylated IFNa, are under evaluation in patients with advanced fibrosis. Thus, even in the current era of the potent pegylated IFNa-based regimens, the management of these difficult-to-treat patients represents an increasingly frequent problem and perhaps the most challenging therapeutic task in chronic hepatitis C.
Collapse
Affiliation(s)
- G V Papatheodoridis
- Academic Department of Medicine, Hippokration General Hospital, Athens, Greece.
| | | |
Collapse
|
34
|
Ryu KJ, Lee SW. Identification of the most accessible sites to ribozymes on the hepatitis C virus internal ribosome entry site. BMB Rep 2004; 36:538-44. [PMID: 14659071 DOI: 10.5483/bmbrep.2003.36.6.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA.
Collapse
Affiliation(s)
- Kyung-Ju Ryu
- Department of Molecular Biology, Dankook University, Seoul 140-714, Korea
| | | |
Collapse
|
35
|
Abstract
Chronic hepatitis C infection is associated with significant morbidity and mortality in addition to substantial social and health-related costs. Since the identification of the virus and determination of the HCV genome over a decade ago, considerable progress has been made in the treatment of chronic hepatitis C infection. However, the current standard combination of interferon-based therapies and ribavirin is effective in only 50% of patients. In addition, this combination is expensive, requires lengthy periods of administration, and is associated with significant side effects. Furthermore, no effective preventive measure, such as vaccination, is currently available. A number of newer therapies, including protease and helicase inhibitors, ribozymes, antisense therapies, and therapeutic vaccines, are in preclinical and clinical development and may significantly enhance existing therapeutic options for the future.
Collapse
Affiliation(s)
- Anouk Dev
- Duke Clinical Research Institute, Duke University Medical Center, PO Box 17969, Durham, NC 27715, USA
| | | | | |
Collapse
|
36
|
Abstract
Current treatment modalities available for hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are not efficient. The enormous disease burden caused by these two infections makes the development of novel therapies critical. For HCV, the development of an effective vaccine is urgent in view of the escalating number of infected individuals. Molecular therapies for HBV and HCV infection can be directed at reducing viral load by interfering with the life cycle of the viruses or at generating immune response against viral epitopes. The antiviral approaches consist of the delivery or expression of antisense RNAs, ribozymes or dominant negative proteins. Viral biology can be interrupted by attacking various potential targets within the two viruses. DNA-based vaccination strategies are being explored for both prevention and treatment of these diseases. Both non-viral and recombinant viral vectors are being developed for safe, effective and long-term gene transfer to the liver. Although no "ideal" vector is available at this time, the ingenuity of numerous investigators is leading to the improvement of the vector systems, promising successful application of gene therapy to the prevention and treatment of viral hepatitis in the foreseeable future.
Collapse
Affiliation(s)
- Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
37
|
McKnight KL, Sandefur S, Phipps KM, Heinz BA. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype. Virology 2003; 317:345-58. [PMID: 14698672 DOI: 10.1016/j.virol.2003.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs.
Collapse
Affiliation(s)
- Kevin L McKnight
- Eli Lilly and Company, Lilly Research Laboratories, LCC, Indianapolis, IN 46225, USA.
| | | | | | | |
Collapse
|
38
|
Khan AU, Lal SK. Ribozymes: a modern tool in medicine. J Biomed Sci 2003; 10:457-67. [PMID: 12928586 DOI: 10.1007/bf02256107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 05/07/2003] [Indexed: 01/20/2023] Open
Abstract
Since the discovery of ribozymes and self-splicing introns, it has been estimated that this biological property of RNA combined with other recombinant DNA technologies would become a tool to combat viral diseases and control oncogenes. These goals seem like a distinct possibility now. However, there is still a lot to be learned about the mobility of RNA inside the cells and the cellular factors that can impede ribozyme action in order to capitalize fully on the targeted RNA inactivation property of ribozymes. The most effective approach to maximize ribozyme function in a complex intracellular environment is to understand as much as possible about the intracellular fate of the RNA that is being targeted. As new techniques in cell biology become available, such understanding will be less problematic. Fundamental studies of ribozyme structure and mechanism of catalysis are flourishing both at the academic and industrial level and it can be expected that many new developments will continue to take place in these areas in the near future. Here, we review the design, stability and therapeutic application of these technologies illustrating relevant gene targets and applications in molecular medicine. Relevant problems in implementation of the technology, group I and II introns and the differences in applications, ribozyme structure and the application of this technology to virus attack and oncogene downregulation are discussed. Also some of the latest RNA-based technologies such as siRNA, RNA/DNA duplexes and RNA decoys have been introduced.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
39
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
40
|
McCaffrey AP, Meuse L, Karimi M, Contag CH, Kay MA. A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 2003; 38:503-8. [PMID: 12883495 DOI: 10.1053/jhep.2003.50330] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) is an RNA virus infecting one in every 40 people worldwide. Current treatments are ineffective and HCV is the leading cause of liver failure leading to transplantation in the United States and Europe. Translational control of HCV is a prime therapeutic target. We assessed the inhibitory potential of morpholino phosphoramidate antisense oligonucleotides (morpholinos) on HCV translation by codelivering them with reporter plasmids expressing firefly luciferase under the translational control of the HCV internal ribosome entry site (IRES) into the livers of mice. Real-time imaging of HCV IRES luciferase reporter messenger RNA (mRNA) translation in living mice showed that a 20-mer complementary to nucleotides 345-365 of the IRES inhibited translation by greater than 95% for at least 6 days and showed mismatch specificity. No significant nonspecific inhibition of a cap-dependent luciferase or encephalomyocarditis virus (EMCV) IRES luciferase reporter translation was observed. Inhibition by the 20-mer morpholino was dose dependent, with 1 nmol/mouse giving the highest inhibition. In conclusion, morpholino antisense oligonucleotides are potent inhibitors of HCV IRES translation in a preclinical mouse model; morpholinos have potential as molecular therapeutics for treating HCV and other viral infections. The in vivo model described is a broadly applicable, straightforward, and rapid readout for inhibitor efficacy. As such, it will greatly facilitate the development of novel therapeutic strategies for viral hepatitis. Notably, the level of antisense inhibition observed in this in vivo model is similar to the maximal inhibition we have obtained previously with RNA interference in mice.
Collapse
Affiliation(s)
- Anton P McCaffrey
- Program in Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Sriram B, Thakral D, Panda SK. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication. Virology 2003; 312:350-8. [PMID: 12919740 DOI: 10.1016/s0042-6822(03)00259-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by approximately 37 and approximately 60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes.
Collapse
Affiliation(s)
- Bandi Sriram
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
42
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:810-814. [DOI: 10.11569/wcjd.v11.i6.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
Nadal A, Robertson HD, Guardia J, Gómez J. Characterization of the structure and variability of an internal region of hepatitis C virus RNA for M1 RNA guide sequence ribozyme targeting. J Gen Virol 2003; 84:1545-1548. [PMID: 12771424 DOI: 10.1099/vir.0.18898-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Accessibility to folded RNA and low potential of variation in the target RNA are crucial requirements for ribozyme therapy against virus infections. In hepatitis C virus (HCV), the sequence of the 5'UTR is conserved but the highly folded RNA structure severely limits the number of accessible sites. To expand investigation of targeting in the HCV genome, we have considered an internal genomic region whose sequence variation has been widely investigated and which has a particularly conserved RNA structure, which makes it accessible to the human RNase P in vitro. We have first mapped the accessibility of the genomic RNA to complementary DNAs within this internal genomic region. We performed a kinetic and thermodynamic study. Accordingly, we have designed and assayed four RNase P M1 RNA guide sequence ribozymes targeted to the selected sites. Considerations of RNA structural accessibility and sequence variation indicate that several target sites should be defined for simultaneous attack.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- DNA, Viral/genetics
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Genetic Variation
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/virology
- Humans
- In Vitro Techniques
- Kinetics
- Molecular Structure
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/therapeutic use
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P
- Thermodynamics
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Anna Nadal
- Servicio de Medicina Interna-Hepatología, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Hugh D Robertson
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jaime Guardia
- Servicio de Medicina Interna-Hepatología, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jordi Gómez
- Servicio de Medicina Interna-Hepatología, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
44
|
Kurreck J. Antisense technologies. Improvement through novel chemical modifications. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1628-44. [PMID: 12694176 DOI: 10.1046/j.1432-1033.2003.03555.x] [Citation(s) in RCA: 720] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisense agents are valuable tools to inhibit the expression of a target gene in a sequence-specific manner, and may be used for functional genomics, target validation and therapeutic purposes. Three types of anti-mRNA strategies can be distinguished. Firstly, the use of single stranded antisense-oligonucleotides; secondly, the triggering of RNA cleavage through catalytically active oligonucleotides referred to as ribozymes; and thirdly, RNA interference induced by small interfering RNA molecules. Despite the seemingly simple idea to reduce translation by oligonucleotides complementary to an mRNA, several problems have to be overcome for successful application. Accessible sites of the target RNA for oligonucleotide binding have to be identified, antisense agents have to be protected against nucleolytic attack, and their cellular uptake and correct intracellular localization have to be achieved. Major disadvantages of commonly used phosphorothioate DNA oligonucleotides are their low affinity towards target RNA molecules and their toxic side-effects. Some of these problems have been solved in 'second generation' nucleotides with alkyl modifications at the 2' position of the ribose. In recent years valuable progress has been achieved through the development of novel chemically modified nucleotides with improved properties such as enhanced serum stability, higher target affinity and low toxicity. In addition, RNA-cleaving ribozymes and deoxyribozymes, and the use of 21-mer double-stranded RNA molecules for RNA interference applications in mammalian cells offer highly efficient strategies to suppress the expression of a specific gene.
Collapse
Affiliation(s)
- Jens Kurreck
- Institut für Chemie-Biochemie, Freie Universität Berlin, Germany.
| |
Collapse
|
45
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
46
|
Ryu KJ, Kim JH, Lee SW. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol Ther 2003; 7:386-95. [PMID: 12668134 DOI: 10.1016/s1525-0016(02)00063-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although hepatitis C virus (HCV) causes worldwide health problems, efficient and specific therapy is not available so far. In this study, we describe a new genetic approach to the specific HCV therapy that is based upon trans-splicing ribozymes that can selectively replace HCV transcripts with a new RNA that exerts anti-HCV activity. We have developed a group I intron-based ribozyme targeting the internal ribosome entry site (IRES) of HCV with high fidelity and specificity. The ribozyme was designed to trans-splice its 3' tagging sequence comprising a new coding RNA, such as firefly luciferase transcript, that is linked to the 3' part of the HCV 5' UTR encompassing the downstream sequence of the targeted residue in the IRES. This ribozyme was then demonstrated to induce HCV IRES-dependent translation of the firefly luciferase gene selectively in HCV IRES-expressing cells with trans-splicing reaction. Moreover, a specific ribozyme with the coding sequence of the diphtheria toxin A chain in place of the firefly luciferase selectively triggered expression of the cytotoxin in cells expressing HCV IRES and specifically activated apoptosis of the cells. These results suggest that the trans-splicing ribozyme could be a potent anti-HCV agent to deliver therapeutic new gene activities specifically and selectively in HCV-infected cells.
Collapse
Affiliation(s)
- Kyung-Ju Ryu
- Department of Molecular Biology, Dankook University, Seoul 140-714, South Korea
| | | | | |
Collapse
|
47
|
|
48
|
Jia ZS, Chen L, Hao CQ, Feng ZH, Li JG, Wang JP, Cao YZ, Zhou YX. Intracellular immunization by hammerhead ribozyme against HCV. Shijie Huaren Xiaohua Zazhi 2003; 11:148-150. [DOI: 10.11569/wcjd.v11.i2.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of hammerhead ribozyme 213 (Rz 213) against hepatitis C virus (HCV) infection.
METHODS: Rz213 cleaving 5'oncoding region (5'CR) of HCV was beforehand transfected in a human hepatic carcinoma cell (HHCC) line and selected for G418 resistance. Cells stably expressing Rz213 were retransfected with pCMVNCRluc containing 5扤CR-luc fusion genes by lipofectAMINE; luciferase activity in lysate of transfactant was measured in scintillation counter.
RESULTS: HHCC cells stably expressing Rz213 exhibited significant resistance to retransfection of targeting gene.
CONCLUSION: Stably transfected cells with Rz213 were selected and expressed in HHCC, and thus exerted the intracellular immunity against infection of HCV.
Collapse
|
49
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:238-241. [DOI: 10.11569/wcjd.v11.i2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Fuchizaki U, Kaneko S, Nakamoto Y, Sugiyama Y, Imagawa K, Kikuchi M, Kobayashi K. Synergistic antiviral effect of a combination of mouse interferon-alpha and interferon-gamma on mouse hepatitis virus. J Med Virol 2003; 69:188-94. [PMID: 12683406 PMCID: PMC7166598 DOI: 10.1002/jmv.10286] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although interferon (IFN)-alpha and IFN-gamma have been reported to exhibit a synergistic antiviral effect through the different signaling pathways in vitro, their therapeutic efficacy is not well defined in vivo. The current study was carried out to investigate the combined antiviral effect in a model of mouse hepatitis virus Type 2 (MHV-2) infection, in which fulminant hepatitis is developed. MHV-2 was injected intraperitoneally into 4-week-old ICR mice, IFN or the vehicle was administered intramuscularly for 5 days, and the antiviral effect was evaluated based on survival periods, liver histology, serum alanine transaminase (ALT) levels, and MHV-2 virus titers in the liver tissues. The animals in the group treated with a combination of IFN-alpha and IFN-gamma survived for longer periods than the groups treated with IFN-alpha alone and IFN-gamma alone (IFN-alpha 10(3) (IU/mouse)/-gamma 10(3) vs. IFN-alpha 10(3), P < 0.005; IFN-alpha 10(3)/-gamma 10(3) vs. IFN-gamma 10(3), P < 0.001). This is consistent with the lower levels of hepatocellular necrosis and serum ALT and the decreased titers of MHV-2 virus in the liver tissues (48 hr, P < 0.001; 72 hr, P < 0.001). These findings indicate that a combination of IFN-alpha and IFN-gamma exhibits a synergistic antiviral effect on MHV-2 infection. The biology of MHV-2 is quite different from that of human hepatitis viruses; however, these results suggest the beneficial combined therapy of IFN-alpha and IFN-gamma for the treatment of human viral hepatitis.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/therapeutic use
- Coronavirus Infections/drug therapy
- Coronavirus Infections/mortality
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/mortality
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Interferon-alpha/administration & dosage
- Interferon-alpha/therapeutic use
- Interferon-gamma/administration & dosage
- Interferon-gamma/therapeutic use
- Liver/pathology
- Liver/virology
- Male
- Mice
- Mice, Inbred ICR
- Murine hepatitis virus/drug effects
Collapse
Affiliation(s)
- Uichiro Fuchizaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Yasunari Nakamoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Yoshihiro Sugiyama
- Third Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenichi Imagawa
- Molecular Medical Science Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Mikio Kikuchi
- Third Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenichi Kobayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| |
Collapse
|