1
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
2
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
3
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
4
|
Dallio M, Romeo M, Gravina AG, Masarone M, Larussa T, Abenavoli L, Persico M, Loguercio C, Federico A. Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients 2021; 13:nu13051679. [PMID: 34063372 PMCID: PMC8156164 DOI: 10.3390/nu13051679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic- (dysfunction) associated fatty liver disease (MAFLD) represents the predominant hepatopathy and one of the most important systemic, metabolic-related disorders all over the world associated with severe medical and socio-economic repercussions due to its growing prevalence, clinical course (steatohepatitis and/or hepatocellular-carcinoma), and related extra-hepatic comorbidities. To date, no specific medications for the treatment of this condition exist, and the most valid recommendation for patients remains lifestyle change. MAFLD has been associated with metabolic syndrome; its development and progression are widely influenced by the interplay between genetic, environmental, and nutritional factors. Nutrigenetics and nutrigenomics findings suggest nutrition’s capability, by acting on the individual genetic background and modifying the specific epigenetic expression as well, to influence patients’ clinical outcome. Besides, immunity response is emerging as pivotal in this multifactorial scenario, suggesting the interaction between diet, genetics, and immunity as another tangled network that needs to be explored. The present review describes the genetic background contribution to MAFLD onset and worsening, its possibility to be influenced by nutritional habits, and the interplay between nutrients and immunity as one of the most promising research fields of the future in this context.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
- Correspondence: ; Tel.: +39-0815666740
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Tiziana Larussa
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, viale Europa, 88100 Catanzaro, Italy; (T.L.); (L.A.)
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081 Baronissi, Italy; (M.M.); (M.P.)
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via S. Pansini 5, 80131 Naples, Italy; (M.R.); (A.G.G.); (C.L.); (A.F.)
| |
Collapse
|
5
|
Teo K, Abeysekera KWM, Adams L, Aigner E, Anstee QM, Banales JM, Banerjee R, Basu P, Berg T, Bhatnagar P, Buch S, Canbay A, Caprio S, Chatterjee A, Ida Chen YD, Chowdhury A, Daly AK, Datz C, de Gracia Hahn D, DiStefano JK, Dong J, Duret A, Emdin C, Fairey M, Gerhard GS, Guo X, Hampe J, Hickman M, Heintz L, Hudert C, Hunter H, Kelly M, Kozlitina J, Krawczyk M, Lammert F, Langenberg C, Lavine J, Li L, Lim HK, Loomba R, Luukkonen PK, Melton PE, Mori TA, Palmer ND, Parisinos CA, Pillai SG, Qayyum F, Reichert MC, Romeo S, Rotter JI, Im YR, Santoro N, Schafmayer C, Speliotes EK, Stender S, Stickel F, Still CD, Strnad P, Taylor KD, Tybjærg-Hansen A, Umano GR, Utukuri M, Valenti L, Wagenknecht LE, Wareham NJ, Watanabe RM, Wattacheril J, Yaghootkar H, Yki-Järvinen H, Young KA, Mann JP. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J Hepatol 2021; 74:20-30. [PMID: 32882372 PMCID: PMC7755037 DOI: 10.1016/j.jhep.2020.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Collapse
Affiliation(s)
- Kevin Teo
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Leon Adams
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Austria
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jesus M Banales
- Department on Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | | | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | | | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Ali Canbay
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonia Caprio
- Yale University, Department of Pediatrics, New Haven, CT, USA
| | | | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Abhijit Chowdhury
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | | | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Matthew Hickman
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Christian Hudert
- Department of Pediatric Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joel Lavine
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Lin Li
- BioStat Solutions LLC, Frederick, MD, USA
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA, USA
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Yale University School of Medicine, New Haven, CT, USA
| | - Phillip E Melton
- School of Global Population Health, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Constantinos A Parisinos
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | | | - Faiza Qayyum
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nicola Santoro
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of Medicine and Health Sciences 'V. Tiberio' University of Molise, Campobasso, Italy
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Pavel Strnad
- Medical Clinic III, University Hospital RWTH Aachen, Aachen, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Giuseppina Rosaria Umano
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of the Woman, the Child, of General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the clinic. J Hepatol 2020; 72:1196-1209. [PMID: 32145256 DOI: 10.1016/j.jhep.2020.02.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing NAFLD and related complications is highly variable among individuals and is determined by environmental and genetic factors. Genome-wide association studies have uncovered robust and reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More recently the development of polygenic risk scores, which have shown promising results for the clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer), have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification. Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-environment interactions, and discuss the implications for disease pathobiology, drug discovery and risk prediction. We particularly focus on the potential clinical translation of recent genetic advances, discussing methodological hurdles that must be overcome before these discoveries can be implemented in everyday practice.
Collapse
Affiliation(s)
- Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
7
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
8
|
Romeo S, Sanyal A, Valenti L. Leveraging Human Genetics to Identify Potential New Treatments for Fatty Liver Disease. Cell Metab 2020; 31:35-45. [PMID: 31914377 DOI: 10.1016/j.cmet.2019.12.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Abstract
Fatty liver disease (FLD), including its more severe pathologies, namely steatohepatitis, hepatocarcinoma, and cirrhosis, is the most common cause of chronic liver disease worldwide and is projected to become the leading cause of hepatocellular carcinoma and end-stage liver disease. FLD is heterogeneous with multiple etiologies and diverse histological phenotypes, so therapies will ultimately need to be individualized for relevant targets. Inherited factors contribute to FLD, and most of the genetic variation influencing liver disease development and progression is derived from genes involved in lipid biology, including PNPLA3, TM6SF2, GCKR, MBOAT7, and HSD17B13. From this point of view, we focus in this perspective on how human molecular genetics of FLD have highlighted defects in hepatic lipid handling as a major common mechanism of its pathology and how this insight could be leveraged to treat and prevent its more serious complications.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy.
| |
Collapse
|
9
|
Valenti L, Pelusi S. The Natural History of NAFLD: Environmental vs. Genetic Risk Factors. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:129-145. [DOI: 10.1007/978-3-319-95828-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Gawrieh S, Guo X, Tan J, Lauzon M, Taylor KD, Loomba R, Cummings OW, Pillai S, Bhatnagar P, Kowdley KV, Yates K, Wilson LA, Chen YI, Rotter JI, Chalasani N. A Pilot Genome-Wide Analysis Study Identifies Loci Associated With Response to Obeticholic Acid in Patients With NASH. Hepatol Commun 2019; 3:1571-1584. [PMID: 31832568 PMCID: PMC6887685 DOI: 10.1002/hep4.1439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
A significantly higher proportion of patients with nonalcoholic steatohepatitis (NASH) who received obeticholic acid (OCA) had histological improvement relative to placebo in the FLINT (farnesoid X nuclear receptor ligand obeticholic acid for noncirrhotic, NASH treatment) trial. However, genetic predictors of response to OCA are unknown. We conducted a genome-wide association study (GWAS) in FLINT participants to identify variants associated with NASH resolution and fibrosis improvement. Genotyping was performed using the Omni2.5 content GWAS chip. To avoid false positives introduced by population stratification, we focused our GWAS on white participants. Six regions on chromosomes 1, 4, 6, 7, 15, and 17 had multiple single nucleotide polymorphisms (SNPs) with suggestive association (P < 1 × 10 - 4 ) with NASH resolution. A sentinel SNP, rs75508464, near CELA3B on chromosome 1 was associated with NASH resolution, improvement in the nonalcoholic fatty liver disease activity score, portal inflammation, and fibrosis. Among individuals carrying this allele, 83% achieved NASH resolution with OCA compared with only 33% with placebo. Eight regions on chromosomes 1, 2, 3, 11, 13, and 18 had multiple SNPs associated with fibrosis improvement; of these, rs12130403 near TDRD10 on chromosome 1 was also associated with improvement in NASH and portal inflammation, and rs4073431 near ANO3 on chromosome 11 was associated with NASH resolution and improvement in steatosis. Multiple SNPs on chromosome 11 had suggestive association with pruritus, with rs1379650 near ANO5 being the top SNP. Conclusion: We identified several variants that may be associated with histological improvement and pruritus in individuals with NASH receiving OCA. The rs75508464 variant near CELA3B may have the most significant effect on NASH resolution in those receiving OCA.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana UniversityIndianapolisIN
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Rohit Loomba
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of California San DiegoSan DiegoCA
| | | | | | | | - Kris V. Kowdley
- Liver Care Network and Organ Care ResearchSwedish Medical CenterSeattleWA
| | - Katherine Yates
- Department of EpidemiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMD
| | - Laura A. Wilson
- Department of EpidemiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMD
| | - Yii‐Der Ida Chen
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Science and Department of PediatricsLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCA
| | - Naga Chalasani
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana UniversityIndianapolisIN
| |
Collapse
|
11
|
Taliento AE, Dallio M, Federico A, Prati D, Valenti L. Novel Insights into the Genetic Landscape of Nonalcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2755. [PMID: 31375010 PMCID: PMC6695718 DOI: 10.3390/ijerph16152755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disorder worldwide, is epidemiologically associated with overweight, insulin resistance features and type 2 diabetes, and can progress to advanced liver fibrosis and hepatocellular carcinoma. Genetic factors play an important role in the development of NAFLD, which is a multifactorial disease. Several common naturally occurring variants modulating lipid and retinol metabolism in hepatocytes predispose to NAFLD development and progression, in particular those in PNPLA3, TM6SF2, MBOAT7, and HSD17B13. In addition, genetic variants that protect hepatic cells from oxidative stress modulate the susceptibility to progressive NAFLD. Although the molecular mechanisms linking these genetic variants with liver disease are not yet fully understood, hepatic fat has emerged as a major driver of the disease, while altered retinol metabolism and mitochondrial oxidative stress play a role in determining the development of advanced NAFLD.
Collapse
Affiliation(s)
- Alice Emma Taliento
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Daniele Prati
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico IRCCS, 20122 Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milano, Italy.
| |
Collapse
|
12
|
Andrade RJ, Aithal GP, Björnsson ES, Kaplowitz N, Kullak-Ublick GA, Larrey D, Karlsen TH. EASL Clinical Practice Guidelines: Drug-induced liver injury. J Hepatol 2019; 70:1222-1261. [PMID: 30926241 DOI: 10.1016/j.jhep.2019.02.014] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Idiosyncratic (unpredictable) drug-induced liver injury is one of the most challenging liver disorders faced by hepatologists, because of the myriad of drugs used in clinical practice, available herbs and dietary supplements with hepatotoxic potential, the ability of the condition to present with a variety of clinical and pathological phenotypes and the current absence of specific biomarkers. This makes the diagnosis of drug-induced liver injury an uncertain process, requiring a high degree of awareness of the condition and the careful exclusion of alternative aetiologies of liver disease. Idiosyncratic hepatotoxicity can be severe, leading to a particularly serious variety of acute liver failure for which no effective therapy has yet been developed. These Clinical Practice Guidelines summarize the available evidence on risk factors, diagnosis, management and risk minimization strategies for drug-induced liver jury.
Collapse
|
13
|
|