1
|
Xiao L, Guo Q, Haihambo N, Wu X, Yu S, Luo J. Revealing the distinct impacts of effectiveness recognition and memory retention on the transfer of creative cognitive reappraisal. Cogn Emot 2024:1-20. [PMID: 39431978 DOI: 10.1080/02699931.2024.2414800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/25/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Previous research has shown that creative cognitive reappraisal is highly effective in regulating negative emotions. We conducted three experiments to explore its transferability. In Experiment 1, we observed that free recall performance was better for creative reappraisal compared to non-creative reappraisal. Memory retention of reappraisals was associated with creativity ratings, but not with perceived effectiveness ratings. In Experiment 2, participants generated reappraisals for newly introduced unpleasant images before (pre-session) and after (post-session) exposure to creative reappraisal, non-creative reappraisal, and descriptive control interpretation. Results showed increased reflective effectiveness of self-generated reappraisals in the post-session. The level of creativity of the self-generated reappraisals was associated with differences in perceived effectiveness between creative and non-creative exposed reappraisals. In Experiment 3, we investigated how two processing approaches (effectiveness-oriented vs. memory-oriented) influenced the transferability of creative reappraisal. We observed creativity levels of self-generated reappraisals increased in both conditions. The reflective effectiveness of the self-generated reappraisals tended to increase only in the effectiveness-oriented processing condition. Our findings demonstrate that recognising the effectiveness of creative reappraisal plays a crucial role in its transfer across different situations.
Collapse
Affiliation(s)
- Luchuan Xiao
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, People's Republic of China
- Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Qi Guo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, People's Republic of China
| | - Naem Haihambo
- Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussel, Belgium
- Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Xiaofei Wu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, People's Republic of China
- Department of Psychology, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Shuting Yu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, People's Republic of China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, People's Republic of China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, People's Republic of China
- Department of Psychology, Shaoxing University, Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Schäfer J, Reuter T, Karbach J, Leuchter M. Domain-specific knowledge and domain-general abilities in children's science problem-solving. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2024; 94:346-366. [PMID: 38061789 DOI: 10.1111/bjep.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 11/23/2023] [Indexed: 04/24/2024]
Abstract
BACKGROUND Problem-solving in early and middle childhood is of high relevance for cognitive developmental research and educational support. Previous research on science problem-solving has focussed on the process and strategies of children handling challenging tasks, but less on providing insights into the cognitive network that enables science problem-solving. AIMS In this study, we aimed to investigate whether performance in science problem-solving is mainly determined by domain-specific rule knowledge, by domain-general cognitive abilities or both. METHODS In our study, 215 6- to 8-year-old children completed a set of three domain-specific rule knowledge tasks and three corresponding problem-solving tasks that were content-coherent, as well as a vocabulary task, and a reasoning task. RESULTS Correlational and regression analyses revealed a negligible impact of domain-specific rule knowledge on corresponding problem-solving tasks. In contrast, the associations between problem-solving performance in different domains and the associations between problem-solving performance and domain-general abilities (vocabulary and reasoning) were comparably strong. CONCLUSIONS The findings suggest that science problem-solving in primary school children primarily relies on domain-general cognitive abilities. Implications of these findings are discussed with regard to cognitive theories and early science education.
Collapse
Affiliation(s)
- Jonas Schäfer
- Institute for Children and Youth Education, University of Kaiserslautern-Landau, Landau, Germany
- Department of Psychology, University of Kaiserslautern-Landau, Landau, Germany
| | - Timo Reuter
- Institute for Children and Youth Education, University of Kaiserslautern-Landau, Landau, Germany
| | - Julia Karbach
- Department of Psychology, University of Kaiserslautern-Landau, Landau, Germany
- Center for Research on Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany
| | - Miriam Leuchter
- Institute for Children and Youth Education, University of Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
3
|
Ding K, He R, Wang X, Chen Q, Kenett YN. Recognizing ideas generated in a creative task: the roles of the hippocampus and medial prefrontal cortex in facilitating self-generated learning. Cereb Cortex 2024; 34:bhae219. [PMID: 38798002 DOI: 10.1093/cercor/bhae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Creative idea generation plays an important role in promoting successful memory formation. Yet, its underlying neural correlates remain unclear. We investigated the self-generated learning of creative ideas motivated by the schema-linked interactions between medial prefrontal and medial temporal regions framework. This was achieved by having participants generate ideas in the alternative uses task, self-evaluating their ideas based on novelty and source (i.e. new or old), and then later being tested on the recognition performance of the generated ideas. At the behavioral level, our results indicated superior performances in discriminating novel ideas, highlighting the novelty effect on memory. At the neural level, the regions-of-interest analyses revealed that successful recognition of novel ideas was associated with greater activations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) during ideation. However, only activation in the right HPC was positively related to the successful recognition of novel ideas. Importantly, the weaker the connection between the right HPC and left mPFC, the higher the recognition accuracy of novel ideas. Moreover, activations in the right HPC and left mPFC were both effective predictors of successful recognition of novel ideas. These findings uniquely highlight the role of novelty in promoting self-generated learning of creative ideas.
Collapse
Affiliation(s)
- Ke Ding
- Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Technicon City, 3200003, Haifa, Israel
| | - Ruizhi He
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Xi Wang
- Faculty of Medicine, Dresden University of Technology, No. 10, Helmholtzstr, 01069, Dresden, Germany
| | - Qunlin Chen
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yoed N Kenett
- Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Technicon City, 3200003, Haifa, Israel
| |
Collapse
|
4
|
Harada T. Q-learning model of insight problem solving and the effects of learning traits on creativity. Front Psychol 2024; 14:1287624. [PMID: 38259581 PMCID: PMC10800724 DOI: 10.3389/fpsyg.2023.1287624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Despite the fact that insight is a crucial component of creative thought, the means by which it is cultivated remain unknown. The effects of learning traits on insight, specifically, has not been the subject of investigation in pertinent research. This study quantitatively examines the effects of individual differences in learning traits estimated using a Q-learning model within the reinforcement learning framework and evaluates their effects on insight problem solving in two tasks, the 8-coin and 9-dot problems, which fall under the umbrella term "spatial insight problems." Although the learning characteristics of the two problems were different, the results showed that there was a transfer of learning between them. In particular, performance on the insight tasks improved with increasing experience. Moreover, loss-taking, as opposed to loss aversion, had a significant effect on performance in both tasks, depending on the amount of experience one had. It is hypothesized that loss acceptance facilitates analogical transfer between the two tasks and improves performance. In addition, this is one of the few studies that attempted to analyze insight problems using a computational approach. This approach allows the identification of the underlying learning parameters for insight problem solving.
Collapse
Affiliation(s)
- Tsutomu Harada
- Graduate School of Business Administration, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Bieth T, Ovando‐Tellez M, Lopez‐Persem A, Garcin B, Hugueville L, Lehongre K, Levy R, George N, Volle E. Time course of EEG power during creative problem-solving with insight or remote thinking. Hum Brain Mapp 2024; 45:e26547. [PMID: 38060194 PMCID: PMC10789201 DOI: 10.1002/hbm.26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Problem-solving often requires creativity and is critical in everyday life. However, the neurocognitive mechanisms underlying creative problem-solving remain poorly understood. Two mechanisms have been highlighted: the formation of new connections among problem elements and insight solving, characterized by sudden realization of a solution. In this study, we investigated EEG activity during a modified version of the remote associates test, a classical insight problem task that requires finding a word connecting three unrelated words. This allowed us to explore the brain correlates associated with the semantic remoteness of connections (by varying the remoteness of the solution word across trials) and with insight solving (identified as a Eurêka moment reported by the participants). Semantic remoteness was associated with power increase in the alpha band (8-12 Hz) in a left parieto-temporal cluster, the beta band (13-30 Hz) in a right fronto-temporal cluster in the early phase of the task, and the theta band (3-7 Hz) in a bilateral frontal cluster just prior to participants' responses. Insight solving was associated with power increase preceding participants' responses in the alpha and gamma (31-60 Hz) bands in a left temporal cluster and the theta band in a frontal cluster. Source reconstructions revealed the brain regions associated with these clusters. Overall, our findings shed new light on some of the mechanisms involved in creative problem-solving.
Collapse
Affiliation(s)
- Théophile Bieth
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Marcela Ovando‐Tellez
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Alizée Lopez‐Persem
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Béatrice Garcin
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Department of NeurologyAvicenne Hospital, AP‐HPBobignyFrance
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Richard Levy
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Emmanuelle Volle
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| |
Collapse
|
6
|
Tulver K, Kaup KK, Laukkonen R, Aru J. Restructuring insight: An integrative review of insight in problem-solving, meditation, psychotherapy, delusions and psychedelics. Conscious Cogn 2023; 110:103494. [PMID: 36913839 DOI: 10.1016/j.concog.2023.103494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023]
Abstract
Occasionally, a solution or idea arrives as a sudden understanding - an insight. Insight has been considered an "extra" ingredient of creative thinking and problem-solving. Here we propose that insight is central in seemingly distinct areas of research. Drawing on literature from a variety of fields, we show that besides being commonly studied in problem-solving literature, insight is also a core component in psychotherapy and meditation, a key process underlying the emergence of delusions in schizophrenia, and a factor in the therapeutic effects of psychedelics. In each case, we discuss the event of insight and its prerequisites and consequences. We review evidence for the commonalities and differences between the fields and discuss their relevance for capturing the essence of the insight phenomenon. The goal of this integrative review is to bridge the gap between the different views and inspire interdisciplinary research efforts for understanding this central process of human cognition.
Collapse
Affiliation(s)
- Kadi Tulver
- Institute of Computer Science, University of Tartu, Estonia.
| | | | | | - Jaan Aru
- Institute of Computer Science, University of Tartu, Estonia.
| |
Collapse
|
7
|
Li X, Li Y, Wang X, Hu W. Reduced brain activity and functional connectivity during creative idea generation in individuals with smartphone addiction. Soc Cogn Affect Neurosci 2023; 18:6712258. [PMID: 36149062 PMCID: PMC9619470 DOI: 10.1093/scan/nsac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Since the coronavirus disease 2019 outbreak, the frequency of smartphone use has surged, which has caused an increase in smartphone addiction among individuals. Smartphone addiction can impair various cognitive abilities. However, to date, the impact of smartphone addiction on creative cognition remains unclear. The current functional near-infrared spectroscopy study compared neural differences between smartphone addiction tendency (SAT) and healthy control (HC) individuals during creative idea generation. In particular, by manipulating a key component of creative cognition, that is, overcoming semantic constraints, we explored whether SAT individuals could overcome semantic constraints. Both the SAT and HC groups completed the alternate uses task (AUT) in semantic constraint and unconstraint conditions. The results indicated that the prefrontal cortex (PFC) and temporal regions were less active during AUT in the SAT group than in the HC group. In the SAT group, the PFC was less active under constraint than unconstraint conditions. Moreover, both task-related and resting-state functional connectivity analyses indicated weaker coupling between the PFC and temporal regions in the SAT than in the HC group. Furthermore, the left dorsolateral PFC mediated the effect of smartphone addiction on creative performance. These findings provide unprecedented neuroimaging evidence on the negative impact of smartphone addiction on creative cognition.
Collapse
Affiliation(s)
- Xinyi Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China
| | - Yadan Li
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| | - Xuewei Wang
- Centre for Mental Health Education, Xidian University, Xi'an 710126, Shaanxi, China
| | - Weiping Hu
- Key Laboratory of Modern Teaching Technology (Ministry of Education), Shaanxi Normal University, Xi'an 710062, China.,Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an 710062, China
| |
Collapse
|
8
|
Liu D, Hao L, Han L, Zhou Y, Qin S, Niki K, Shen W, Shi B, Luo J. The optimal balance of controlled and spontaneous processing in insight problem solving: fMRI evidence from Chinese idiom guessing. Psychophysiology 2023:e14240. [PMID: 36651323 DOI: 10.1111/psyp.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
Cognitive control is a key factor in insight generation. However, the neurocognitive mechanisms underlying the generation of insight for different cognitive control remain poorly understood. This study developed a parametric fMRI design, wherein hints for solving Chinese idiom riddles were gradually provided in a stepwise manner (from the first hint, H1, to the final hint, H4). By classifying the step-specific items solved in different hint-uncovering steps/conditions, we could identify insightful responses for different levels of spontaneous or controlled processing. At the behavioral level, the number of insightful problem solving trials reached the maximum at a intermediate level of the cognitively controlled processing and the spontaneously idea generating in H3, while the bilateral insular cortex and thalamus showed the robust engagement, implying the function of these regions in making the optimal balance between external hint processing and internal generated ideas. In addition, we identified brain areas, including the dorsolateral prefrontal cortex (dlPFC), angular gyrus (AG), dorsal anterior cingulate cortex (dACC), and precuneus (PreC), whose activities were parametrically increased with the levels of controlled (from H1 to H4) insightful processing which were increasingly produced by the sequentially revealed hints. Further representational similarity analysis (RSA) found that spontaneous processing in insight featured greater within-condition representational variabilities in widely distributed regions in the executive, salience, and default networks. Altogether, the present study provided new evidence for the relationship between the process of cognitive control and that of spontaneous idea generation in insight problem solving and demystified the function of the insula and thalamus as an interactive interface for the optimal balance of these two processes.
Collapse
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Lei Han
- School of Psychology, Shandong Normal University, Jinan, China
| | - Ying Zhou
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology, Tsukuba, Japan.,Keio University Graduate School of Human Relations, Keio University, Tokyo, Japan
| | - Wangbing Shen
- School of Public Administration and Institute of Applied Psychology, Hohai University, Nanjing, China
| | - Baoguo Shi
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China.,College of Teacher Education, Southwest University, Chongqing, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China.,Department of Psychology, Shaoxing University, Shaoxing, China
| |
Collapse
|
9
|
Structure learning enhances concept formation in synthetic Active Inference agents. PLoS One 2022; 17:e0277199. [PMID: 36374909 PMCID: PMC9662737 DOI: 10.1371/journal.pone.0277199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Humans display astonishing skill in learning about the environment in which they operate. They assimilate a rich set of affordances and interrelations among different elements in particular contexts, and form flexible abstractions (i.e., concepts) that can be generalised and leveraged with ease. To capture these abilities, we present a deep hierarchical Active Inference model of goal-directed behaviour, and the accompanying belief update schemes implied by maximising model evidence. Using simulations, we elucidate the potential mechanisms that underlie and influence concept learning in a spatial foraging task. We show that the representations formed–as a result of foraging–reflect environmental structure in a way that is enhanced and nuanced by Bayesian model reduction, a special case of structure learning that typifies learning in the absence of new evidence. Synthetic agents learn associations and form concepts about environmental context and configuration as a result of inferential, parametric learning, and structure learning processes–three processes that can produce a diversity of beliefs and belief structures. Furthermore, the ensuing representations reflect symmetries for environments with identical configurations.
Collapse
|
10
|
Kuang C, Chen J, Chen J, Shi Y, Huang H, Jiao B, Lin Q, Rao Y, Liu W, Zhu Y, Mo L, Ma L, Lin J. Uncovering neural distinctions and commodities between two creativity subsets: A meta-analysis of fMRI studies in divergent thinking and insight using activation likelihood estimation. Hum Brain Mapp 2022; 43:4864-4885. [PMID: 35906880 PMCID: PMC9582370 DOI: 10.1002/hbm.26029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The dual‐process theory that two different systems of thought coexist in creative thinking has attracted considerable attention. In the field of creative thinking, divergent thinking (DT) is the ability to produce multiple solutions to open‐ended problems in a short time. It is mainly considered an associative and fast process. Meanwhile, insight, the new and unexpected comprehension of close‐ended problems, is frequently marked as a deliberate and time‐consuming thinking process requiring concentrated effort. Previous research has been dedicated to revealing their separate neural mechanisms, while few studies have compared their differences and similarities at the brain level. Therefore, the current study applied Activation Likelihood Estimation to decipher common and distinctive neural pathways that potentially underlie DT and insight. We selected 27 DT studies and 30 insight studies for retrospective meta‐analyses. Initially, two single analyses with follow‐up contrast and conjunction analyses were performed. The single analyses showed that DT mainly involved the inferior parietal lobe (IPL), cuneus, and middle frontal gyrus (MFG), while the precentral gyrus, inferior frontal gyrus (IFG), parahippocampal gyrus (PG), amygdala (AMG), and superior parietal lobe were engaged in insight. Compared to insight, DT mainly led to greater activation in the IPL, the crucial part of the default mode network. However, insight caused more significant activation in regions related to executive control functions and emotional responses, such as the IFG, MFG, PG, and AMG. Notably, the conjunction analysis detected no overlapped areas between DT and insight. These neural findings implicate that various neurocognitive circuits may support DT and insight.
Collapse
Affiliation(s)
- Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Chen
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Jiawen Chen
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Mo
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China.,UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Lin J, Chen Y, Xie J, Mo L. Altered Brain Connectivity Patterns of Individual Differences in Insightful Problem Solving. Front Behav Neurosci 2022; 16:905806. [PMID: 35645749 PMCID: PMC9130958 DOI: 10.3389/fnbeh.2022.905806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Insightful problem solving (IPS) attracts widespread attention in creative thinking domains. However, the neural underpinnings of individual differences in IPS are still unclear. The purpose of this research was to investigate inherent full-brain connectivity patterns at voxel-level in IPS. Sixty-two healthy participants were enrolled in the study. We used a voxelwise full-brain network measurement, degree centrality (DC), to depict the characteristics of cerebral network involved in individual differences in IPS. For each participant, we employed a chunk decomposition paradigm, using Mandarin characters as stimuli, to estimate the individual differences in IPS. Results showed that DC in the inferior frontal gyrus, and the middle frontal gyrus/precentral gyrus positively correlated with IPS, while the anterior cingulate cortex, and the brainstern/cerebellum/thalamus exhibited negative correlations with IPS. Using each cluster above as a seed, we performed seed-based functional connectivity analysis further. Results showed that IPS was mainly involved in the default mode network, containing the key regions of precuneus and medial prefrontal cortex. All in all, this research may shed new lights on understanding the neural underpinnings of individual differences in IPS.
Collapse
Affiliation(s)
- Jiabao Lin
- Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- Institut des Sciences Cognitives Marc Jeannerod, Université Claude Bernard Lyon 1, Lyon, France
| | - Yajue Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiushu Xie
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Lei Mo
- Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- *Correspondence: Lei Mo,
| |
Collapse
|
12
|
Ren J, Huang F, Gao C, Gott J, Schoch SF, Qin S, Dresler M, Luo J. Functional lateralization of the medial temporal lobe in novel associative processing during creativity evaluation. Cereb Cortex 2022; 33:1186-1206. [PMID: 35353185 PMCID: PMC9930633 DOI: 10.1093/cercor/bhac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/12/2022] Open
Abstract
Although hemispheric lateralization of creativity has been a longstanding topic of debate, the underlying neurocognitive mechanism remains poorly understood. Here we designed 2 types of novel stimuli-"novel useful and novel useless," adapted from "familiar useful" designs taken from daily life-to demonstrate how the left and right medial temporal lobe (MTL) respond to novel designs of different usefulness. Taking the "familiar useful" design as a baseline, we found that the right MTL showed increased activation in response to "novel useful" designs, followed by "novel useless" ones, while the left MTL only showed increased activation in response to "novel useful" designs. Calculating an asymmetry index suggests that usefulness processing is predominant in the left MTL, whereas the right MTL is predominantly involved in novelty processing. Moreover, the left parahippocampal gyrus (PHG) showed stronger functional connectivity with the anterior cingulate cortex when responding to "novel useless" designs. In contrast, the right PHG showed stronger connectivity with the amygdala, midbrain, and hippocampus. Critically, multivoxel representational similarity analyses revealed that the left MTL was more effective than the right MTL at distinguishing the usefulness differences in novel stimuli, while representational patterns in the left PHG positively predicted the post-behavior evaluation of "truly creative" products. These findings suggest an apparent dissociation of the left and right MTL in integrating the novelty and usefulness information and novel associative processing during creativity evaluation, respectively. Our results provide novel insights into a longstanding and controversial question in creativity research by demonstrating functional lateralization of the MTL in processing novel associations.
Collapse
Affiliation(s)
- Jingyuan Ren
- Corresponding authors: Jingyuan Ren, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Trigon Building, Kapittelweg 29, Nijmegen 6525 EN, Netherlands, ; Jing Luo, Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Baiduizijia 23, Beijing 100048, China,
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Chuanji Gao
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Jarrod Gott
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
- Center of Competence Sleep & Health Zurich, University of Zurich, Zürich 8091, Switzerland
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Jing Luo
- Corresponding authors: Jingyuan Ren, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Trigon Building, Kapittelweg 29, Nijmegen 6525 EN, Netherlands, ; Jing Luo, Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Baiduizijia 23, Beijing 100048, China,
| |
Collapse
|
13
|
Li X, Li Y, Wang X, Bai H, Hu W. Affective valence moderates the influence of thinking style on insight problem solving: Electrophysiological evidence. Biol Psychol 2022; 170:108317. [DOI: 10.1016/j.biopsycho.2022.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
14
|
Lytaev S. Long-Latency Event-Related Potentials (300-1000 ms) of the Visual Insight. SENSORS 2022; 22:s22041323. [PMID: 35214225 PMCID: PMC8963065 DOI: 10.3390/s22041323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Abstract
The line of insight research methods that have high temporal and surface resolution is not large—these are EEGs, EPs, and fMRI, as well as their combinations and various options for assessing temporal events of random understanding. The objective of this research was to study the classification of insight for visual illusory images consisting of several objects simultaneously according to the analysis of early, middle, late, and ultra-late components (up to 1000 ms) of event-related potentials (ERPs). ERP research on 42 healthy subjects (men) aged 20–28 years was performed. The stimuli were a line of visual images with an incomplete set of signs, as well as images-illusions, which, with different perceptions, represent different images. The results showed the similarity of the tests to correct recognition of fragments of unrecognition and double images. At the intermediate stage of perception (100–200 ms), in both cases, the activity of the central and frontal cortex decreased, mainly in the left hemisphere. At the later stages of information processing (300–500 ms), the temporal-parietal and occipital brain parts on the right were activated, with the difference that when double objects were perceived, this process expanded to 700–800 ms with the activation of the central and occipital fields of the right hemisphere. Outcomes allowed discussing two possible options for actualizing the mechanisms of long-term memory that ensure the formation of insight—the simultaneous perception of images as part of an illusion. The first of them is associated with the inhibition of the frontal cortex at the stage of synthesis of information flows, with the subsequent activation of the occipital brain parts. The second variant is traditional and manifests itself in the activation of the frontal brain areas, with the subsequent excitation of all brain fields by the mechanisms of exhaustive search.
Collapse
Affiliation(s)
- Sergey Lytaev
- Department of Normal Physiology, St. Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia; ; Tel.: +7-921-938-5120
- Lab of Applied Informatics, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 Saint Petersburg, Russia
| |
Collapse
|
15
|
Pang J, Guo H, Tang X, Fu Y, Yang Z, Li Y, An N, Luo J, Yao Z, Hu B. Uncovering the global task-modulated brain network in chunk decomposition with Chinese characters. Neuroimage 2021; 247:118826. [PMID: 34923135 DOI: 10.1016/j.neuroimage.2021.118826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Chunk decomposition, which requires the mental representation transformation in accordance with behavioral goals, is of vital importance to problem solving and creative thinking. Previous studies have identified that the frontal, parietal, and occipital cortex in the cognitive control network selectively activated in response to chunk tightness, however, functional localization strategy may overlook the interaction brain regions. Based on the notion of a global brain network, we proposed that multiple specialized regions have to be interconnected to maintain goal representation during the course of chunk decomposition. Therefore, the present study applied a beta-series correlation method to investigate interregional functional connectivity in the event-related design of chunk decomposition tasks using Chinese characters, which would highlight critical nodes irrespective to chunk tightness. The results reveal a network of functional hubs with highly within or between module connections, including the orbitofrontal cortex, superior/inferior parietal lobule, hippocampus, and thalamus. We speculate that the thalamus integrates information across modular as an integrative hub while the orbitofrontal cortex tracks the mental states of chunk decomposition on a moment-to-moment basis. The superior and inferior parietal lobule collaborate to manipulate the mental representation of chunk decomposition and the hippocampus associates the relationship between elements in the question and solution phase. Furthermore, the tightness of chunks is not only associated with different processors in visual systems but also leads to increased intermodular connections in right superior frontal gyrus and left precentral gyrus. To summary up, the present study first reveals the task-modulated brain network of chunk decomposition in addition to the tightness-related nodes in the frontal and occipital cortex.
Collapse
Affiliation(s)
- Jiaoyan Pang
- School of Government, Shanghai University of Political Science and Law, Shanghai, China
| | - Hanning Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Yu Fu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Zhengwu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Na An
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, China; Ministry of Education, Open Source Software and Real-Time System Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Osuna-Mascaró AJ, Auersperg AMI. Current Understanding of the "Insight" Phenomenon Across Disciplines. Front Psychol 2021; 12:791398. [PMID: 34975690 PMCID: PMC8715918 DOI: 10.3389/fpsyg.2021.791398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Despite countless anecdotes and the historical significance of insight as a problem solving mechanism, its nature has long remained elusive. The conscious experience of insight is notoriously difficult to trace in non-verbal animals. Although studying insight has presented a significant challenge even to neurobiology and psychology, human neuroimaging studies have cleared the theoretical landscape, as they have begun to reveal the underlying mechanisms. The study of insight in non-human animals has, in contrast, remained limited to innovative adjustments to experimental designs within the classical approach of judging cognitive processes in animals, based on task performance. This leaves no apparent possibility of ending debates from different interpretations emerging from conflicting schools of thought. We believe that comparative cognition has thus much to gain by embracing advances from neuroscience and human cognitive psychology. We will review literature on insight (mainly human) and discuss the consequences of these findings to comparative cognition.
Collapse
Affiliation(s)
- Antonio J. Osuna-Mascaró
- Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna, University of Vienna, Vienna, Austria
| | | |
Collapse
|
17
|
Ahmed AO, Kramer S, Hofman N, Flynn J, Hansen M, Martin V, Pillai A, Buckley PF. A Meta-Analysis of Brain-Derived Neurotrophic Factor Effects on Brain Volume in Schizophrenia: Genotype and Serum Levels. Neuropsychobiology 2021; 80:411-424. [PMID: 33706323 PMCID: PMC8619762 DOI: 10.1159/000514126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
AIM The Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene has established pleiotropic effects on schizophrenia incidence and morphologic alterations in the illness. The effects of brain-derived neurotrophic factor (BDNF) on brain volume measurements are however mixed seeming to be less established for most brain regions. The current meta-analytic review examined (1) the association of the Val66Met SNP and brain volume alterations in schizophrenia by comparing Met allele carriers to Val/Val homozygotes and (2) the association of serum BDNF with brain volume measurements. METHOD Studies included in the meta-analyses were identified through an electronic search of PubMed and PsycInfo (via EBSCO) for English language publications from January 2000 through December 2017. Included studies had conducted a genotyping procedure of Val66Met or obtained assays of serum BDNF and obtained brain volume data in patients with psychotic disorders. Nonhuman studies were excluded. RESULTS Study 1 which included 52 comparisons of Met carriers and Val/Val homozygotes found evidence of lower right and left hippocampal volumes among Met allele carriers with schizophrenia. Frontal measurements, while also lower among Met carriers, did not achieve statistical significance. Study 2 which included 7 examinations of the correlation between serum BDNF and brain volume found significant associations between serum BDNF levels and right and left hippocampal volume with lower BDNF corresponding to lower volumes. DISCUSSION The meta-analyses provided evidence of associations between brain volume alterations in schizophrenia and variations on the Val66Met SNP and serum BDNF. Given the limited number of studies, it remains unclear if BDNF effects are global or regionally specific.
Collapse
Affiliation(s)
- Anthony O. Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, New York, USA,*Anthony O. Ahmed, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY 10605 (USA),
| | - Samantha Kramer
- Department of Psychology, Long Island University Post, New York, New York, USA
| | - Naama Hofman
- Department of Psychology, St. John's University, New York, New York, USA
| | - John Flynn
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Marie Hansen
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Victoria Martin
- Department of Psychology, City University of New York, New York, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, Georgia, USA
| | - Peter F. Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
18
|
Quantifying the roles of conscious and unconscious processing in insight-related memory effectiveness within standard and creative advertising. PSYCHOLOGICAL RESEARCH 2021; 86:1410-1425. [PMID: 34417868 DOI: 10.1007/s00426-021-01572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
To maximize marketing effectiveness, many conscious and unconscious elements are simultaneously employed within campaign advertising. However, little is known about the individual contributions that conscious and unconscious processes make to the cognitive effectiveness of creative advertisements, some of which may also induce insight experiences. To quantify the roles of conscious and unconscious processes in memory effectiveness within commercial advertising, a dual-process, signal-detection technique was adopted to separate the contributions of conscious recollection and unconscious discrimination induced by 80 printed advertisements, among which half were considered standard and the other half creative. A total of 51 participants completed immediate (5 min later) and delayed (3 days later) memory recognition tests. In contrast to standard advertising, creative advertising was found to enhance recognition and to demonstrate advantages in both conscious and unconscious memory, which decreased across the test-time intervals. Further analyses showed that a moment of insight induced by an advertisement, regardless of whether it is standard or creative, can consolidate unconscious memory, whereas advertisements that do not induce insight improve conscious memory. The implications of these findings are discussed.
Collapse
|
19
|
Liu R, Yu F, Zhang J, Zhang W, Luo J. Creative Factors and Psychotherapeutic Insight: Effects of Novelty and Appropriateness. CREATIVITY RESEARCH JOURNAL 2021. [DOI: 10.1080/10400419.2021.1940032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ruixuan Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology
- Department of Psychology, University of Chinese Academy of Sciences
| | - Fei Yu
- Department of Psychology, Hebei Normal University
| | - Jianxin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology
- Department of Psychology, University of Chinese Academy of Sciences
| | - Wencai Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology
- Department of Psychology, University of Chinese Academy of Sciences
| | - Jing Luo
- Department of Psychology, Capital Normal University
| |
Collapse
|
20
|
Common and specific neural correlates underlying insight and ordinary problem solving. Brain Imaging Behav 2021; 15:1374-1387. [PMID: 32710333 DOI: 10.1007/s11682-020-00337-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous studies have investigated the cognitive and neural mechanisms underlying insight problem solving (INPS). However, it is still unclear which mechanisms are common to both INPS and ordinary problem solving (ORPS), and which are distinctly involved in only one of these processes. In this study, we selected two types of Chinese character chunk decompositions, ordinary Chinese character chunk decomposition (OCD) and creative Chinese character chunk decomposition (CCD), as representatives of ORPS and INPS, respectively. By using functional magnetic resonance imaging (fMRI) to record brain activations when subjects executed OCD or CCD operations, we found that both ORPS and INPS resulted in significant activations in the widespread frontoparietal cognitive control network, including the middle frontal gyrus, inferior frontal gyrus, and inferior parietal lobe. Furthermore, compared with ORPS, INPS led to greater activations in higher-level brain regions related to symbolic processing in the default mode network, including the anterior cingulate cortex, superior temporal gyrus, angular gyrus, and precuneus. Conversely, ORPS induced greater activations than INPS in more posterior brain regions related to visuospatial attention and visual perception, such as the inferior temporal gyrus, hippocampus, and middle occipital gyrus/superior parietal gyrus/fusiform gyrus. In addition, an ROI analysis corroborated the neural commonalities and differences between ORPS and INPS. These findings provide new evidence that ORPS and INPS rely on common as well as distinct cognitive processes and cortical mechanisms.
Collapse
|
21
|
Yu F, Zhang J, Luo J, Zhang W. Enhanced insightfulness and neural activation induced by metaphorical solutions to appropriate mental distress problems. Psychophysiology 2021; 58:e13886. [PMID: 34173239 DOI: 10.1111/psyp.13886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Although the neural correlates of novelty and appropriateness of creative insight during cognitive tasks have been investigated in several studies, they have not been examined during mental distress in a psychotherapeutic setting. This study aimed to reveal the promoting effects of novelty and appropriateness processing on therapeutic insight in a micro-psychotherapeutic setting. We examined the effects of appropriateness (between-subject factor: appropriateness group, 20 participants; inappropriateness group, 21 participants) by manipulating the preceding negative scenarios that either fit or did not fit the subsequent solutions, and those of novelty (within-subject factor) by varying the linguistic expressions for describing solutions (metaphorical, literal, or problem-restatement). Event-related functional magnetic resonance images were collected. We found the following effects: an interactive effect of the two factors on insightfulness and activation in the bilateral hippocampus and amygdala, right superior frontal gyrus, and left superior/middle temporal gyrus; a simple effect of novelty on activation in the bilateral inferior frontal gyrus, fusiform gyrus, and inferior/middle occipital gyrus; and a simple effect of appropriateness on activation in the left inferior parietal lobule. Our findings indicate that solutions with high novelty and appropriateness generate the highest levels of therapeutic insightfulness as well as the strongest activation in the hippocampus and amygdala, which may be involved in episodic memory encoding.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, P.R.China.,Department of Psychology, Hebei Normal University, Shijiazhuang, P.R.China
| | - Jianxin Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, P.R.China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, P.R.China
| | - Wencai Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, P.R.China
| |
Collapse
|
22
|
Jacob J, Kent M, Benson-Amram S, Herculano-Houzel S, Raghanti MA, Ploppert E, Drake J, Hindi B, Natale NR, Daniels S, Fanelli R, Miller A, Landis T, Gilbert A, Johnson S, Lai A, Hyer M, Rzucidlo A, Anchor C, Gehrt S, Lambert K. Cytoarchitectural characteristics associated with cognitive flexibility in raccoons. J Comp Neurol 2021; 529:3375-3388. [PMID: 34076254 DOI: 10.1002/cne.25197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
With rates of psychiatric illnesses such as depression continuing to rise, additional preclinical models are needed to facilitate translational neuroscience research. In the current study, the raccoon (Procyon lotor) was investigated due to its similarities with primate brains, including comparable proportional neuronal densities, cortical magnification of the forepaw area, and cortical gyrification. Specifically, we report on the cytoarchitectural characteristics of raccoons profiled as high, intermediate, or low solvers in a multiaccess problem-solving task. Isotropic fractionation indicated that high-solvers had significantly more cells in the hippocampus (HC) than the other solving groups; further, a nonsignificant trend suggested that this increase in cell profile density was due to increased nonneuronal (e.g., glial) cells. Group differences were not observed in the cellular density of the somatosensory cortex. Thionin-based staining confirmed the presence of von Economo neurons (VENs) in the frontoinsular cortex, although no impact of solving ability on VEN cell profile density levels was observed. Elongated fusiform cells were quantified in the HC dentate gyrus where high-solvers were observed to have higher levels of this cell type than the other solving groups. In sum, the current findings suggest that varying cytoarchitectural phenotypes contribute to cognitive flexibility. Additional research is necessary to determine the translational value of cytoarchitectural distribution patterns on adaptive behavioral outcomes associated with cognitive performance and mental health.
Collapse
Affiliation(s)
- Joanna Jacob
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Molly Kent
- Department of Biology, Virginia Military Institute, Lexington, Virginia, USA
| | - Sarah Benson-Amram
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Emily Ploppert
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Jack Drake
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Bilal Hindi
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Nick R Natale
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Sarah Daniels
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Rachel Fanelli
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Anderson Miller
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Tim Landis
- Department of Psychology, Randolph-Macon College, Ashland, Virginia, USA
| | - Amy Gilbert
- USDA-APHIS-WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Shylo Johnson
- USDA-APHIS-WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Annie Lai
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Molly Hyer
- Department of Psychology, Randolph-Macon College, Ashland, Virginia, USA
| | - Amanda Rzucidlo
- Forest Preserve District of Cook County, River Forest, Illinois, USA
| | - Chris Anchor
- Forest Preserve District of Cook County, River Forest, Illinois, USA
| | - Stan Gehrt
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio, USA
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| |
Collapse
|
23
|
Kizilirmak JM, Fischer L, Krause J, Soch J, Richter A, Schott BH. Learning by Insight-Like Sudden Comprehension as a Potential Strategy to Improve Memory Encoding in Older Adults. Front Aging Neurosci 2021; 13:661346. [PMID: 34194316 PMCID: PMC8236646 DOI: 10.3389/fnagi.2021.661346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022] Open
Abstract
Several cognitive functions show a decline with advanced age, most prominently episodic memory. Problem-solving by insight represents a special associative form of problem-solving that has previously been shown to facilitate long-term memory formation. Recent neuroimaging evidence suggests that the encoding network involved in insight-based memory formation is largely hippocampus-independent. This may represent a potential advantage in older adults, as the hippocampus is one of the earliest brain structures to show age-related volume loss and functional impairment. Here, we investigated the potential beneficial effects of learning by insight in healthy older (60-79 years) compared to young adults (19-28 years). To this end, we compared later memory performance for verbal riddles encoded incidentally via induced insight-like sudden comprehension in both age groups. We employed a variant of the Compound Remote Associate Task (CRAT) for incidental encoding, during which participants were instructed to judge the solvability of items. In a 24-h delayed surprise memory test, participants attempted to solve previously encountered items and additionally performed a recognition memory test. During this test, older adults correctly solved an equal proportion of new CRA items compared to young adults and both age groups reported a similar frequency of Aha! experiences. While overall memory performance was better in young participants (higher proportion of correctly solved and correctly recognized old CRA items), older participants exhibited a stronger beneficial effect of insight-like sudden comprehension on later recognition memory for CRA items. Our results suggest that learning via insight might constitute a promising approach to improve memory function in old age.
Collapse
Affiliation(s)
- Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | | | - Justus Krause
- Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Björn H. Schott
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Wu X, Guo T, Zhang C, Hong TY, Cheng CM, Wei P, Hsieh JC, Luo J. From "Aha!" to "Haha!" Using Humor to Cope with Negative Stimuli. Cereb Cortex 2021; 31:2238-2250. [PMID: 33258955 DOI: 10.1093/cercor/bhaa357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Humor has been considered an effective emotion regulation strategy, and some behavioral studies have examined its superior effects on negative emotion regulation. However, its neural mechanisms remain unknown. Our functional magnetic resonance imaging study directly compared the emotion regulation effects and neural bases of humorous coping (reappraisal) and ordinary reappraisal following exposure to negative pictures. The behavioral results suggested that humorous reappraisal was more effective in downregulating negative emotions and upregulating positive emotions both in the short and long term. We also found 2 cooperative neural pathways involved in coping with negative stimuli by means of humor: the "hippocampal-thalamic-frontal pathway" and the "amygdala-cerebellar pathway." The former is associated with the restructuring of mental representations of negative situations and accompanied by an insightful ("Aha!") experience, while the latter is associated with humorous emotional release and accompanied by an expression of laughter ("Haha!"). Furthermore, the degree of hippocampal functional connectivity with both the thalamus and frontal cortex was positively correlated with changes in positive emotion, and this result implied that the degree of emotion regulation could be strongly directly related to the depth of cognitive reconstruction. These findings highlight that regulating negative emotions with humor involves cognitive restructuring and the release of positive emotions.
Collapse
Affiliation(s)
- Xiaofei Wu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China.,Department of Psychology, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Zhang
- Department of Psychology, School of Educational Science, Shanxi Normal University, Linfen 041004, China
| | - Tzu-Yi Hong
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Chou-Ming Cheng
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China
| | - Jen-Chuen Hsieh
- Institute of Brain Science, School of Medicine, Brain Research Center, Yang-Ming University, Taipei 11267, Taiwan.,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China.,Department of Psychology, Shaoxing University, China, 312000
| |
Collapse
|
25
|
Baqapuri HI, Roes LD, Zvyagintsev M, Ramadan S, Keller M, Roecher E, Zweerings J, Klasen M, Gur RC, Mathiak K. A Novel Brain-Computer Interface Virtual Environment for Neurofeedback During Functional MRI. Front Neurosci 2021; 14:593854. [PMID: 33505237 PMCID: PMC7830095 DOI: 10.3389/fnins.2020.593854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)-based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain-computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player's avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE's objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.
Collapse
Affiliation(s)
- Halim I. Baqapuri
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Linda D. Roes
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Souad Ramadan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Charalambous E, Hanna S, Penn A. Aha! I know where I am: the contribution of visuospatial cues to reorientation in urban environments. SPATIAL COGNITION AND COMPUTATION 2021. [DOI: 10.1080/13875868.2020.1865359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Efrosini Charalambous
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Sean Hanna
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Alan Penn
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
27
|
Shen W, Bai H, Ball LJ, Yuan Y, Wang M. What makes creative advertisements memorable? The role of insight. PSYCHOLOGICAL RESEARCH 2020; 85:2538-2552. [PMID: 33170356 DOI: 10.1007/s00426-020-01439-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022]
Abstract
Sudden insight is often observed during creative problem solving and studies have suggested that advertisements can likewise evoke an insight experience. To date, however, there is limited empirical evidence on whether advertisements can trigger ideational insight, and, if so, whether such insight plays a role in advertising memorability. This study aimed to explore the insight experience evoked by advertisements and to examine the role of such experimentally-induced insight in predicted memory and metamemory performance. Participants viewed standardized advertising images sequentially, with each image presentation being followed immediately by a second presentation either with or without a brief description of the advertising idea. Next, participants were asked to recall the three most impressive advertisements. Finally, participants were randomly divided to complete either immediate (5 min later) or delayed (3 days later) recognition tests and to provide retrospective confidence judgments (RCJs). Recall of creative advertisements was better than standard advertisements and most of them evoked insight. In addition, recognition accuracy was greater for creative advertisements relative to standard advertisements and metamemory performance as elicited through RCJs was enhanced. Further analyses confirmed the documented importance of insight for memory consolidation. The findings suggest that insight makes advertisements more memorable, especially those that are creative.
Collapse
Affiliation(s)
- Wangbing Shen
- School of Public Administration and Business School, Hohai University, No. 8 Focheng West Road, Jiangning District, Nanjing, Jiangsu, China.
| | - Haiping Bai
- School of Public Administration and Business School, Hohai University, No. 8 Focheng West Road, Jiangning District, Nanjing, Jiangsu, China
| | - Linden J Ball
- School of Psychology, Faculty of Science and Technology, University of Central Lancashire, Darwin Building, Preston, PR1 2HE, UK.
| | - Yuan Yuan
- Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Rehabilitation Science School, Nanjing Normal University of Special Education, No 1 Shennong Road, Qixia District, Nanjing, 210038, China.
| | - Meijiao Wang
- School of Public Administration and Business School, Hohai University, No. 8 Focheng West Road, Jiangning District, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Koizumi K, Ueda K, Li Z, Nakao M. Effects of Transcranial Direct Current Stimulation on Brain Networks Related to Creative Thinking. Front Hum Neurosci 2020; 14:541052. [PMID: 33192387 PMCID: PMC7596331 DOI: 10.3389/fnhum.2020.541052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Human creative thinking is unique and capable of generating novel and valuable ideas. Recent research has clarified the contribution of different brain networks (default mode network, DN; executive control network; salience network) to creative thinking. However, the effects of brain stimulation on brain networks during creative thinking and on creative performance have not been clarified. The present study was designed to examine the changes in functional connectivity (FC) and effective connectivity (EC) of the large-scale brain network, and the ensuing changes in creative performance, induced by transcranial direct current stimulation (tDCS). Fourteen healthy male students underwent two tDCS sessions, one with actual stimulation and one with sham stimulation, on two separate days. Participants underwent tDCS (anode over the left dorsolateral prefrontal cortex, DLPFC; cathode over the right inferior parietal lobule, IPL) for 20 min. Before and after the tDCS session, electroencephalography signals were acquired from 32 electrodes over the whole head during the creative thinking task. On FC analysis, the delta band FC between the posterior cingulate cortex and IPL significantly increased only after real stimulation. We also found that the change of flexibility score was significantly correlated with the change in: (i) delta band FC between mPFC and left lateral temporal cortex (LTC) and (ii) alpha band FC between IPL and right LTC. On EC analysis, decreased flow within the DN (from left LTC to right IPL) was observed. Our results reveal that tDCS could affect brain networks, particularly the DN, during creative thinking and modulate key FC in the generation of flexible creative ideas.
Collapse
Affiliation(s)
| | - Kazutaka Ueda
- Creative Design Laboratory, Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Smith AM, Elliott G, Hughes GI, Feinn RS, Brunyé TT. Acute stress improves analogical reasoning: examining the roles of stress hormones and long-term memory. THINKING & REASONING 2020. [DOI: 10.1080/13546783.2020.1819416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amy M. Smith
- Department of Psychology, Quinnipiac University, Hamden, CT, USA
| | - Grace Elliott
- Center for Applied Brain & Cognitive Sciences, Medford, MA, USA
| | - Gregory I. Hughes
- Center for Applied Brain & Cognitive Sciences, Medford, MA, USA
- Tufts University, Department of Psychology, Medford, MA, USA
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | | | - Tad T. Brunyé
- Center for Applied Brain & Cognitive Sciences, Medford, MA, USA
- Tufts University, Department of Psychology, Medford, MA, USA
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
30
|
Zhang Z, Liu L, Li Y, Tan T, Niki K, Luo J. The function of medial temporal lobe and posterior middle temporal gyrus in forming creative associations. Hippocampus 2020; 30:1257-1267. [DOI: 10.1002/hipo.23253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Lulu Liu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Tengteng Tan
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology Tsukuba Japan
- Keio University Graduate School of Human Relations Keio University Tokyo Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Department of Psychology Shaoxing University Shaoxing China
| |
Collapse
|
31
|
Li X, Li Y, Wang X, Fan X, Tong W, Hu W. The effects of emotional valence on insight problem solving in global-local processing: An ERP study. Int J Psychophysiol 2020; 155:194-203. [PMID: 32599003 DOI: 10.1016/j.ijpsycho.2020.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/22/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022]
Abstract
Recently, some studies have reported that the joint effects of different processing types and emotions can lead to different task outcomes, but it remains unclear how they affect insight problem solving. In this study, we used event-related potentials (ERP) to examine the joint effect and neural mechanism of processing type and emotional valence on insight problem solving. Behavioural results found that, compared to positive emotion, negative emotion promoted insight problem solving in the global processing condition. In contrast, in the local processing condition, positive emotion promoted insight problem solving compared to negative emotion. ERP results further found that local processing elicited larger N1 compared with global processing, indicating more focused visual processing. Importantly, negative emotion in global processing and positive emotion in local processing elicited more negative N450 amplitudes and N600-1200 amplitudes. The findings suggest that negative emotion in global processing and positive emotion in local processing facilitated insight problem solving by promoting the breaking of mental impasses and forming novel associations. The findings contribute to a new understanding of the relationship between emotional valence and insight problem solving.
Collapse
Affiliation(s)
- Xinyi Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Yadan Li
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Xuewei Wang
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaotian Fan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Weishan Tong
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Weiping Hu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China; Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Xi'an, China.
| |
Collapse
|
32
|
Cabeza R, Becker M, Davis SW. Are the hippocampus and its network necessary for creativity? Proc Natl Acad Sci U S A 2020; 117:13870-13872. [PMID: 32513728 PMCID: PMC7322037 DOI: 10.1073/pnas.2008601117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708;
- Department of Psychology, Humboldt-University Berlin, 12489 Berlin, Germany
| | - Maxi Becker
- Department of Psychology, Humboldt-University Berlin, 12489 Berlin, Germany
| | - Simon W Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708
- Department of Neurology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
33
|
Ren J, Huang F, Zhou Y, Zhuang L, Xu J, Gao C, Qin S, Luo J. The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. Neuroimage 2020; 214:116751. [PMID: 32194284 DOI: 10.1016/j.neuroimage.2020.116751] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Creative thought relies on the reorganization of existing knowledge to generate novel and useful concepts. However, how these new concepts are formed, especially through the processing of novelty and usefulness (which are usually regarded as the key properties of creativity), is not clear. Taking familiar and useful (FU) objects/designs as the starting point or fundamental baseline, we modified them into novel and useless (NS) objects/designs or novel and useful (NU) ones (i.e., truly creative ones) to investigate how the features of novelty and usefulness are processed (processing of novelty: NU minus FU; processing of usefulness: NU minus NS). Specifically, we predicted that the creative integration of novelty and usefulness entails not only the formation of new associations, which could be critically mediated by the hippocampus and adjacent medial temporal lobe (MTL) areas, but also the formation of new concepts or categories, which is supported by the middle temporal gyrus (MTG). We found that both the MTL and the MTG were involved in the processing of novelty and usefulness. The MTG showed distinctive patterns of information processing, reflected by strengthened functional connectivity with the hippocampus to construct new concepts and strengthened functional connectivity with the executive control system to break the boundaries of old concepts. Additionally, participants' subjective evaluations of concept distance showed that the distance between the familiar concept (FU) and the successfully constructed concept (NU) was larger than that between the FU and the unsuccessfully constructed concept (NS), and this pattern was found to correspond to the patterns of their neural representations in the MTG. These findings demonstrate the critical mechanism by which new associations and concepts are formed during novelty and usefulness processing in creative design; this mechanism may be critically mediated by the hippocampus-MTG connection.
Collapse
Affiliation(s)
- Jingyuan Ren
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Ying Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Liping Zhuang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Chuanji Gao
- Department of Psychology, Institute of Mind and Brain, University of South Carolina, Columbia, 29201, USA
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
34
|
Oh Y, Chesebrough C, Erickson B, Zhang F, Kounios J. An insight-related neural reward signal. Neuroimage 2020; 214:116757. [PMID: 32194279 DOI: 10.1016/j.neuroimage.2020.116757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/10/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022] Open
Abstract
Moments of insight, a phenomenon of creative cognition in which an idea suddenly emerges into awareness as an "Aha!" are often reported to be affectively positive experiences. We tested the hypothesis that problem-solving by insight is accompanied by neural reward processing. We recorded high-density EEGs while participants solved a series of anagrams. For each solution, they reported whether the answer had occurred to them as a sudden insight or whether they had derived it deliberately and incrementally (i.e., "analytically'). Afterwards, they filled out a questionnaire that measures general dispositional reward sensitivity. We computed the time-frequency representations of the EEGs for trials with insight (I) solutions and trials with analytic (A) solutions and subtracted them to obtain an I-A time-frequency representation for each electrode. Statistical Parametric Mapping (SPM) analyses tested for significant I-A and reward-sensitivity effects. SPM revealed the time, frequency, and scalp locations of several I > A effects. No A > I effect was observed. The primary neural correlate of insight was a burst of (I > A) gamma-band oscillatory activity over prefrontal cortex approximately 500 ms before participants pressed a button to indicate that they had solved the problem. We correlated the I-A time-frequency representation with reward sensitivity to discover insight-related effects that were modulated by reward sensitivity. This revealed a separate anterior prefrontal burst of gamma-band activity, approximately 100 ms after the primary I-A insight effect, which we interpreted to be an insight-related reward signal. This interpretation was supported by source reconstruction showing that this signal was generated in part by orbitofrontal cortex, a region associated with reward learning and hedonically pleasurable experiences such as food, positive social experiences, addictive drugs, and orgasm. These findings support the notion that for many people insight is rewarding. Additionally, these results may explain why many people choose to engage in insight-generating recreational and vocational activities such as solving puzzles, reading murder mysteries, creating inventions, or doing research. This insight-related reward signal may be a manifestation of an evolutionarily adaptive mechanism for the reinforcement of exploration, problem solving, and creative cognition.
Collapse
Affiliation(s)
- Yongtaek Oh
- Department of Psychology, Drexel University, Philadelphia, PA, USA.
| | | | - Brian Erickson
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Fengqing Zhang
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - John Kounios
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Ellis DM, Ball BH, Kimpton N, Brewer GA. The role of working memory capacity in analytic and multiply-constrained problem-solving in demanding situations. Q J Exp Psychol (Hove) 2020; 73:920-928. [PMID: 32052699 DOI: 10.1177/1747021820909703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Working memory processes are important for analytic problem-solving; however, their role in multiply-constrained problem-solving is currently debated. This study explored individual differences in working memory and successful completion of analytic and multiply-constrained problem-solving by having participants solve algebra and compound remote associate (CRAT) problems of varying difficulty under low and high memory demand conditions. Working memory was predictive of both algebra and multiply-constrained problem-solving. Specifically, participants with high working memory solved more problems than those with low working. Memory load did not differentially affect performance for low and high working memory participants. However, for multiply-constrained problem-solving the effect of item difficulty was more detrimental for high-span participants than low-span participants. Together, these findings suggest that working memory processes are important for both types of problem-solving and that participants with low working memory capacity may need to offload internal memory demands onto the environment to efficiently solve problems.
Collapse
Affiliation(s)
- Derek M Ellis
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - B Hunter Ball
- The University of Texas at Arlington, Arlington, TX, USA.,Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole Kimpton
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
36
|
Shen W, Yuan Y, Lu F, Liu C, Luo J, Zhou Z. Unpacking Impasse-Related Experience during Insight. THE SPANISH JOURNAL OF PSYCHOLOGY 2019; 22:E39. [PMID: 31625490 DOI: 10.1017/sjp.2019.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mental impasse has long been recognized as a hallmark of creative insight, but its precise role has been unexplored. The aim of the present work, consisting of two studies, was to experimentally probe mental impasse perspective from insight experience, namely impasse-related experience during insight. In Study 1, participants were requested to complete a compound remote association task and a forced-choice subjective experience depiction task that could provide data on impasse-related experience. The results showed that reports of negative experience, such as feelings of loss (t = -5.51, p < .001, Cohen d = 1.07) and personal experience (mirrored by 'other' response; t = -2.62, p < .05, Cohen d = 0.48), were more common in the impasse condition than in the no-impasse condition; correspondingly positive affect and positive cognitive experiences such as happiness (t = 4.20, p < .001, Cohen d = 0.77), ease (t = 5.90, p < .001, Cohen d = 1.20), certainty (t = 7.46, p < .001, Cohen d = 1.36) and calmness (t = 4.42, p < .001, Cohen d = 0.81) were experienced more frequently in the no-impasse condition. These findings were replicated in Study 2, in which participants were invited to solve a set of classic insight problems and to freely report any feelings of being at an impasse. Across two studies, this work suggests that impasse-related experience during insight problem solving is multi-faceted and consists of negative affective and cognitive components. The implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Yuan Yuan
- Nanjing Normal University of Special Education (China)
| | - Fang Lu
- Yancheng Teachers University (China)
| | | | - Jing Luo
- Capital Normal University (China)
| | | |
Collapse
|
37
|
Wu X, Guo T, Tan T, Zhang W, Qin S, Fan J, Luo J. Superior emotional regulating effects of creative cognitive reappraisal. Neuroimage 2019; 200:540-551. [DOI: 10.1016/j.neuroimage.2019.06.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022] Open
|
38
|
Becker M, Sommer T, Kühn S. Verbal insight revisited: fMRI evidence for early processing in bilateral insulae for solutions with AHA! experience shortly after trial onset. Hum Brain Mapp 2019; 41:30-45. [PMID: 31520521 PMCID: PMC7267914 DOI: 10.1002/hbm.24785] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023] Open
Abstract
In insight problem solving solutions with AHA! experience have been assumed to be the consequence of restructuring of a problem which usually takes place shortly before the solution. However, evidence from priming studies suggests that solutions with AHA! are not spontaneously generated during the solution process but already relate to prior subliminal processing. We test this hypothesis by conducting an fMRI study using a modified compound remote associates paradigm which incorporates semantic priming. We observe stronger brain activity in bilateral anterior insulae already shortly after trial onset in problems that were later solved with than without AHA!. This early activity was independent of semantic priming but may be related to other lexical properties of attended words helping to reduce the amount of solutions to look for. In contrast, there was more brain activity in bilateral anterior insulae during solutions that were solved without than with AHA!. This timing (after trial start/during solution) x solution experience (with/without AHA!) interaction was significant. The results suggest that (a) solutions accompanied with AHA! relate to early solution‐relevant processing and (b) both solution experiences differ in timing when solution‐relevant processing takes place. In this context, we discuss the potential role of the anterior insula as part of the salience network involved in problem solving by allocating attentional resources.
Collapse
Affiliation(s)
- Maxi Becker
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, NeuroImage Nord, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Kühn
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
39
|
Zhu W, Yang W, Ming D, Qiu J, Tian F, Chen Q, Cao G, Zhang Q. Individual Differences in Brain Structure and Resting Brain Function Underlie Representation-Connection in Scientific Problem Solving. CREATIVITY RESEARCH JOURNAL 2019. [DOI: 10.1080/10400419.2019.1602461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wenfeng Zhu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Dan Ming
- Research Institute of Nuclear Power Operation
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Fang Tian
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Guikang Cao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qinglin Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
40
|
Vallée‐Tourangeau F, March PL. Insight Out: Making Creativity Visible. JOURNAL OF CREATIVE BEHAVIOR 2019. [DOI: 10.1002/jocb.409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Xing Q, Lu Z, Hu J. The Effect of Working Memory Updating Ability on Spatial Insight Problem Solving: Evidence From Behavior and Eye Movement Studies. Front Psychol 2019; 10:927. [PMID: 31068884 PMCID: PMC6491639 DOI: 10.3389/fpsyg.2019.00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
It still remains uncertain whether working memory updating ability influences spatial insight problem solving and whether working memory updating ability plays a role in the representation restructuring phase. The current study explored the correlation of working memory updating ability and spatial insight problem solving by behavior and eye movement experiments, and the results showed that high working memory updating ability individuals spend significant shorter time to solve spatial insight problem than low working memory updating ability individuals. For participants with high or low working memory updating ability, the underlying mechanism of spatial insight problem solving is sudden rather than incremental, which demonstrated that the working memory updating ability did not influence the representation restructuring phase. Working memory updating ability influences spatial problem solving, and it works critically in the problem space search phase, while the restructuring phase is sudden and immediate, which is not influenced by working memory updating ability. The representation restructuring tends to be spontaneous.
Collapse
Affiliation(s)
- Qiang Xing
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
- *Correspondence: Qiang Xing,
| | - Zheyi Lu
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Jing Hu
- Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
42
|
Interhemispheric functional connectivity and its relationships with creative problem solving. Neuroreport 2019; 30:415-420. [PMID: 30789389 DOI: 10.1097/wnr.0000000000001217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Creative problem solving (CPS) is a particular mental process when people solve problems. Findings from previous research, which used functional MRI, showed that CPS could involve specific neural mechanisms. However, few studies have directly explored the changes of interhemispheric resting-state functional connectivity during CPS. Recently, a validated voxel-mirrored homotopic connectivity (VMHC) method has been widely used to calculate the interhemispheric resting-state functional connectivity. In this study, we recruited 60 participants and used a revised chunk decomposing task to estimate participants' individual differences during CPS. Then, the VMHC method was used to explore neural correlates underlying individual differences of CPS. Results showed that altered VMHC in the bilateral middle frontal gyrus/precentral gyrus, bilateral hippocampus/insula/amygdala, and bilateral fusiform gyrus/cerebellum/middle occipital gyrus was related to individual differences of CPS. These brain regions reflect the information integration of both hemispheres might be critical for CPS. Therefore, our results may shed light on the neural correlates of CPS.
Collapse
|
43
|
Jones P. Mindfulness Training: Can It Create Superheroes? Front Psychol 2019; 10:613. [PMID: 30971978 PMCID: PMC6443831 DOI: 10.3389/fpsyg.2019.00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
With the emergence of the science of heroism there now exists both theoretical and empirical literature on the characteristics of our everyday hero. We seek to expand this inquiry and ask what could be the causes and conditions of a superhero. To address this we investigate the origins of mindfulness, Buddhist psychology and the assertion that its practitioners who have attained expertise in mindfulness practices can develop supernormal capabilities. Examining first their foundational eight "jhana" states (levels of attention) and the six consequent "abhinnas" (siddhis or special abilities) that arise from such mental mastery, we then explore any evidence that mindfulness practices have unfolded the supernormal potential of its practitioners. We found a growing base of empirical literature suggesting some practitioners exhibit indicators of enhanced functioning including elevated physical health and resistance to disease, increased immunity to aging and improved cognitive processing, greater resilience and fearlessness, more self-less and pro-social behaviors, some control over normally autonomic responses, and possibly some paranormal functionality. These improvements in normal human functioning provide some evidence that there are practices that develop these abilities, and as such we might want to consider adopting them to develop this capability. There are however insufficient studies of expert meditators and more research of adepts is called for that explores the relationship between levels of attentional skill and increases in functionality. We propose in search of the superhero, that if conventional mindfulness training can already augment mental and physical capabilities, a more serious inquiry and translation of its advanced methods into mainstream psychological theory is warranted.
Collapse
Affiliation(s)
- Patrick Jones
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| |
Collapse
|
44
|
Kizilirmak JM, Schott BH, Thuerich H, Sweeney-Reed CM, Richter A, Folta-Schoofs K, Richardson-Klavehn A. Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Conscious Cogn 2019; 69:113-132. [DOI: 10.1016/j.concog.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
|
45
|
Hippocampus and amygdala: An insight-related network involved in metaphorical solution to mental distress problem. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1022-1035. [DOI: 10.3758/s13415-019-00702-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Huang F, Zhao Q, Zhou Z, Luo J. People got lost in solving a set of similar problems. Neuroimage 2019; 186:192-199. [PMID: 30449716 DOI: 10.1016/j.neuroimage.2018.10.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
A mental set generally refers to the human brain's tendency to persist with a familiar solution and stubbornly ignore alternatives. However, if a familiar solution is unable to solve a problem similar to a previous problem, does it continue to hinder alternative solutions, and if so, how and why? To answer these questions, a Chinese character decomposition task was adopted in this study. Participants were asked to perform a practice problem that could be solved by a familiar loose chunk decomposition (LCD) solution followed by a test problem that was similar to the practice problem but could only be solved by an unfamiliar tight chunk decomposition (TCD) solution or were asked to repeatedly perform 3-5 practice problems followed by a test problem; the former is the base-set condition, and the latter is the enhanced-set condition. The results showed that the test problem recruited more activation of the inferior frontal gyrus (IFG), middle occipital cortex (MOG), superior parietal lobule (SPL) and dorsal anterior cingulate cortex (dACC) than the practice problem in the latter operation and verification stage, but almost equal activation of the dACC occurred in the early exploration stage. This likely implied that people did not think that the familiar but currently invalid LCD solution could not be used to solve the test problem; thus, it continuously competed for attention with the unfamiliar TCD solution, which required more executive control to suppress. Moreover, compared with the base-set condition, the test problem in the enhanced-set condition recruited greater activations of the IFG, SPL and dACC in the latter verification stage but less activations of regions in the left IFG and MOG in the early exploration stage. These results revealed that people less actively explored and had to work harder to operate the unfamiliar TCD solution, particularly to resolve competition from the familiar but currently invalid LCD solution. In conclusion, people lost the ability to identify errors in the familiar but currently invalid solution, which in turn decreased the exploration efforts and increased the processing demands associated with alternative solutions in the form of attentional bias and competition. This finding broadly explains the dilemma of creative problem solving.
Collapse
Affiliation(s)
- Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Qingbai Zhao
- School of Psychology, Central China Normal University, Wuhan, 430079, China.
| | - Zhijin Zhou
- School of Psychology, Central China Normal University, Wuhan, 430079, China.
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing, 100048, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
47
|
Webb ME, Cropper SJ, Little DR. “Aha!” is stronger when preceded by a “huh?”: presentation of a solution affects ratings of aha experience conditional on accuracy. THINKING & REASONING 2019. [DOI: 10.1080/13546783.2018.1523807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Margaret E. Webb
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Australia
| | - Simon J. Cropper
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Australia
| | - Daniel R. Little
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
48
|
Abstract
Have you ever had a question in your mind that you want to know the answer to? Or found yourself in an unusual predicament, with no apparent solution before you? These days, most of the time you can just plug the problem into Google, and without a thought, the first result will be your answer, followed by a plethora of other possible solutions. However, before you come to rely too much on the Internet for answers, consider trying to discern the answer for yourself. Critical thinking for problem-solving is an essential skill, one that requires exercise to maintain and refine it, not to do so would put it at risk of atrophy. The brain is a powerhouse of information, with dedicated neural networks for analysis and interpretation that function with exceptional speed and subtlety. Apply your mental faculties in full, and you might be surprised at how much you already know….
Collapse
Affiliation(s)
- John A Slayden
- a Pediatrics Department: Neurodiagnostics Lab Aurora Health Care , Milwaukee , Wisconsin
| |
Collapse
|
49
|
Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biol Psychol 2018; 138:189-198. [DOI: 10.1016/j.biopsycho.2018.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
|
50
|
Ardila A, Bernal B, Rosselli M. Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study. Arch Clin Neuropsychol 2018; 33:379-405. [PMID: 28961762 DOI: 10.1093/arclin/acx066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/01/2017] [Indexed: 01/05/2023] Open
Abstract
Background and objective To characterize commonalities and differences between two executive functions: reasoning and inhibitory control. Methods A total of 5,974 participants in 346 fMRI experiments of inhibition or reasoning were selected. First level analysis consisted of Analysis of Likelihood Estimation (ALE) studies performed in two pooled data groups: (a) brain areas involved in reasoning and (b) brain areas involved in inhibition. Second level analysis consisted of two contrasts: (i) brain areas involved in reasoning but not in inhibition and (ii) brain areas involved in inhibition but not in reasoning. Lateralization Indexes were calculated. Results Four brain areas appear as the most critical: the dorsolateral aspect of the frontal lobes, the superior parietal lobules, the mesial aspect of the premotor area (supplementary motor area), and some subcortical areas, particularly the putamen and the thalamus. ALE contrasts showed significant differentiation of the networks, with the reasoning > inhibition-contrast showing a predominantly leftward participation, and the inhibition > reasoning-contrast, a clear right advantage. Conclusion Executive functions are mediated by sizable brain areas including not only cortical, but also involving subcortical areas in both hemispheres. The strength of activation shows dissociation between the hemispheres for inhibition (rightward) and reasoning (leftward) functions.
Collapse
Affiliation(s)
- Alfredo Ardila
- Department of Communication Sciences and Disorders, Florida International University, Miami, FL, USA
| | - Byron Bernal
- Department of Radiology/Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|