1
|
Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022; 16:782154. [PMID: 35573445 PMCID: PMC9097078 DOI: 10.3389/fnint.2022.782154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Bullying victimization is a form of psychological stress that is associated with poor outcomes in the areas of mental health and learning. Although the emotional maladjustment and memory impairment following interpersonal stress are well documented, the mechanisms of complex cerebral dysfunctions have neither been outlined nor studied in depth in the context of childhood bullying victimization. As a contribution to the cross-disciplinary field of developmental psychology and neuroscience, we review the neuropathophysiology of early life stress, as well as general psychological stress to synthesize the data and clarify the versatile dynamics within neuronal networks linked to bullying victimization. The stress-induced neuropsychological cascade and associated cerebral networks with a focus on cognitive and emotional convergence are described. The main findings are that stress-evoked neuroendocrine reactivity relates to neuromodulation and limbic dysregulation that hinder emotion processing and executive functioning such as semantic cognition, cognitive flexibility, and learning. Developmental aspects and interacting neural mechanisms linked to distressed cognitive and emotional processing are pinpointed and potential theory-of-mind nuances in targets of bullying are presented. The results show that childhood stress psychopathology is associated with a complex interplay where the major role belongs to, but is not limited to, the amygdala, fusiform gyrus, insula, striatum, and prefrontal cortex. This interplay contributes to the sensitivity toward facial expressions, poor cognitive reasoning, and distress that affect behavioral modulation and emotion regulation. We integrate the data on major brain dynamics in stress neuroactivity that can be associated with childhood psychopathology to help inform future studies that are focused on the treatment and prevention of psychiatric disorders and learning problems in bullied children and adolescents.
Collapse
|
2
|
Lin X, Amalraj M, Blanton C, Avila B, Holmes TC, Nitz DA, Xu X. Noncanonical projections to the hippocampal CA3 regulate spatial learning and memory by modulating the feedforward hippocampal trisynaptic pathway. PLoS Biol 2021; 19:e3001127. [PMID: 34928938 PMCID: PMC8741299 DOI: 10.1371/journal.pbio.3001127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Michelle Amalraj
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Crisylle Blanton
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Brenda Avila
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Todd C. Holmes
- Department Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States of America
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
| | - Douglas A. Nitz
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
- Department of Cognitive Science, University of California San Diego, La Jolla, California, United States of America
| | - Xiangmin Xu
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
3
|
Staples MC, Herman MA, Lockner JW, Avchalumov Y, Kharidia KM, Janda KD, Roberto M, Mandyam CD. Isoxazole-9 reduces enhanced fear responses and retrieval in ethanol-dependent male rats. J Neurosci Res 2021; 99:3047-3065. [PMID: 34496069 PMCID: PMC10112848 DOI: 10.1002/jnr.24932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Plasticity in the dentate gyrus (DG) is strongly influenced by ethanol, and ethanol experience alters long-term memory consolidation dependent on the DG. However, it is unclear if DG plasticity plays a role in dysregulation of long-term memory consolidation during abstinence from chronic ethanol experience. Outbred male Wistar rats experienced 7 weeks of chronic intermittent ethanol vapor exposure (CIE). Seventy-two hours after CIE cessation, CIE and age-matched ethanol-naïve Air controls experienced auditory trace fear conditioning (TFC). Rats were tested for cue-mediated retrieval in the fear context either twenty-four hours (24 hr), ten days (10 days), or twenty-one days (21 days) later. CIE rats showed enhanced freezing behavior during TFC acquisition compared to Air rats. Air rats showed significant fear retrieval, and this behavior did not differ at the three time points. In CIE rats, fear retrieval increased over time during abstinence, indicating an incubation in fear responses. Enhanced retrieval at 21 days was associated with reduced structural and functional plasticity of ventral granule cell neurons (GCNs) and reduced expression of synaptic proteins important for neuronal plasticity. Systemic treatment with the drug Isoxazole-9 (Isx-9; small molecule that stimulates DG plasticity) during the last week and a half of CIE blocked altered acquisition and retrieval of fear memories in CIE rats during abstinence. Concurrently, Isx-9 modulated the structural and functional plasticity of ventral GCNs and the expression of synaptic proteins in the ventral DG. These findings identify that abstinence-induced disruption of fear memory consolidation occurs via altered plasticity within the ventral DG, and that Isx-9 prevented these effects.
Collapse
Affiliation(s)
| | - Melissa A. Herman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jonathan W. Lockner
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | | | | | - Kim D. Janda
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Krueger JN, Wilmot JH, Teratani-Ota Y, Puhger KR, Nemes SE, Crestani AP, Lafreniere MM, Wiltgen BJ. Amnesia for context fear is caused by widespread disruption of hippocampal activity. Neurobiol Learn Mem 2020; 175:107295. [PMID: 32822864 PMCID: PMC8562570 DOI: 10.1016/j.nlm.2020.107295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The hippocampus plays an essential role in the formation and retrieval of episodic memories in humans and contextual memories in animals. However, amnesia is not always observed when this structure is compromised. To determine why this is the case, we compared the effects of several different circuit manipulations on memory retrieval and hippocampal activity. Mice were first trained on context fear conditioning and then optogenetic and chemogenetic tools were used to alter activity during memory retrieval. We found that retrieval was only impaired when manipulations caused widespread changes (increases or decreases) in hippocampal activity. Widespread increases occurred when pyramidal cells were excited and widespread decreases were found when GABAergic neurons were stimulated. Direct hyperpolarization of excitatory neurons only moderately reduced activity and did not produce amnesia. Surprisingly, widespread decreases in hippocampal activity did not prevent retrieval if they occurred gradually prior to testing. This suggests that intact brain regions can express contextual memories if they are given adequate time to compensate for the loss of the hippocampus.
Collapse
Affiliation(s)
- Jamie N Krueger
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Jacob H Wilmot
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Yusuke Teratani-Ota
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Kyle R Puhger
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Sonya E Nemes
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Ana P Crestani
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Marrisa M Lafreniere
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Brian J Wiltgen
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States; Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| |
Collapse
|
5
|
Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front Behav Neurosci 2020; 13:288. [PMID: 32038190 PMCID: PMC6993074 DOI: 10.3389/fnbeh.2019.00288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol. Accumulated evidence in several rodent models has shown that ethanol treatment produces cognitive impairment in hippocampal-dependent tasks. These adverse effects may be related to the fact that ethanol impairs the cellular and synaptic plasticity mechanisms, including adverse changes in neuronal morphology, spine architecture, neuronal communication, and finally an increase in neuronal death. There is evidence that the damage that occurs in the different brain structures is varied according to the stage of development during which the subjects are exposed to ethanol, and even much earlier exposure to it would cause damage in the adult stage. Studies on the cellular and cognitive deficiencies produced by alcohol in the brain are needed in order to search for new strategies to reduce alcohol neuronal toxicity and to understand its consequences on memory and cognitive performance with emphasis on the crucial stages of development, including prenatal events to adulthood.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile
| | - Matias Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Daniela L Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Escuela de Obstetricia y Puericultura and Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Providencia, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Universidad San Sebastián, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
6
|
Adkins JM, Lynch JF, Hagerdorn P, Esterhuizen M, Jasnow AM. Anterior cingulate cortex and dorsal hippocampal glutamate receptors mediate generalized fear in female rats. Psychoneuroendocrinology 2019; 107:109-118. [PMID: 31125757 PMCID: PMC7779207 DOI: 10.1016/j.psyneuen.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 11/19/2022]
Abstract
Exhibiting fear to non-threatening cues or contexts-generalized fear-is a shared characteristic of several anxiety disorders, which afflict women more than men. Female rats generalize contextual fear at a faster rate than males and this is due, in part, to actions of estradiol in the dorsal CA1 hippocampus (dCA1). To understand the mechanisms underlying estradiol's effects on generalization, we infused estradiol into the anterior cingulate cortex (ACC) or ventral CA1 hippocampus (vCA1) of ovariectomized (OVX) female rats. Estradiol acts within the ACC, but not the vCA1, to promote generalized fear. We next examined if AMPA or NMDA receptor antagonists (NBQX, APV) infused into the dCA1 or the ACC of female rats could block generalized fear induced by systemic injections of estradiol. Immediate pre-testing infusions of NBQX or APV into either region eliminated estradiol-induced generalization. Specific blockade of GluN2B receptors with infusions of Ro 25-6981 into the dCA1 or ACC also eliminated generalized fear. Our results suggest that in addition to the dCA1, the ACC is an important locus for the effects of estradiol on fear generalization. Moreover, within these regions, AMPA and NMDA-GluN2B receptors are necessary for estradiol-induced generalization of fear responses, suggesting a critical involvement of glutamatergic transmission. Furthermore, we identified a novel role for GluN2B in mediating the effects of estradiol on generalized fear in female rats. These data potentially implicate GluN2B receptors in more general forms of memory retrieval inaccuracies, and form the foundation for exploration of glutamate receptor pharmacology for treatments of anxiety disorders involving generalization.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Joseph F Lynch
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17604, United States
| | - Payton Hagerdorn
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Monique Esterhuizen
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States.
| |
Collapse
|
7
|
Septal cholinergic neurons gate hippocampal output to entorhinal cortex via oriens lacunosum moleculare interneurons. Proc Natl Acad Sci U S A 2018; 115:E1886-E1895. [PMID: 29437952 DOI: 10.1073/pnas.1712538115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuromodulation of neural networks, whereby a selected circuit is regulated by a particular modulator, plays a critical role in learning and memory. Among neuromodulators, acetylcholine (ACh) plays a critical role in hippocampus-dependent memory and has been shown to modulate neuronal circuits in the hippocampus. However, it has remained unknown how ACh modulates hippocampal output. Here, using in vitro and in vivo approaches, we show that ACh, by activating oriens lacunosum moleculare (OLM) interneurons and therefore augmenting the negative-feedback regulation to the CA1 pyramidal neurons, suppresses the circuit from the hippocampal area CA1 to the deep-layer entorhinal cortex (EC). We also demonstrate, using mouse behavior studies, that the ablation of OLM interneurons specifically impairs hippocampus-dependent but not hippocampus-independent learning. These data suggest that ACh plays an important role in regulating hippocampal output to the EC by activating OLM interneurons, which is critical for the formation of hippocampus-dependent memory.
Collapse
|
8
|
Ocampo AC, Squire LR, Clark RE. Hippocampal area CA1 and remote memory in rats. ACTA ACUST UNITED AC 2017; 24:563-568. [PMID: 29038217 PMCID: PMC5647930 DOI: 10.1101/lm.045781.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022]
Abstract
Hippocampal lesions often produce temporally graded retrograde amnesia (TGRA), whereby recent memory is impaired more than remote memory. This finding has provided support for the process of systems consolidation. However, temporally graded memory impairment has not been observed with the watermaze task, and the findings have been inconsistent with context fear conditioning. One possibility is that large hippocampal lesions indirectly disrupt (by retrograde degeneration) the function of areas that project to the hippocampus that are important for task performance or thought to be important for storing consolidated memories. We developed a discrete lesion targeting area CA1, the sole output of the hippocampus to neocortex, and tested the effects of this lesion on recent and remote memory in the watermaze task, in context fear conditioning, and in trace fear conditioning. In all three tasks, recent and remote memory were similarly impaired after CA1 lesions. We discuss factors that help to illuminate these findings and consider their relevance to systems consolidation.
Collapse
Affiliation(s)
- Amber C Ocampo
- Department of Psychology, University of California, San Diego, La Jolla, California 92093, USA
| | - Larry R Squire
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161, USA.,Departments of Psychiatry, Neurosciences, and Psychology, University of California, San Diego, La Jolla, California 92093, USA
| | - Robert E Clark
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Robertson JM, Achua JK, Smith JP, Prince MA, Staton CD, Ronan PJ, Summers TR, Summers CH. Anxious behavior induces elevated hippocampal Cb 2 receptor gene expression. Neuroscience 2017; 352:273-284. [PMID: 28392296 DOI: 10.1016/j.neuroscience.2017.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022]
Abstract
Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced by endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.
Collapse
Affiliation(s)
- James M Robertson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Justin K Achua
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA
| | - Justin P Smith
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Institute of Possibility, 322 E. 8th Street, Suite 302, Sioux Falls, SD 57103, USA; Sanford Health, 2301 E. 60th St. N., Sioux Falls, SD 57104, USA
| | - Melissa A Prince
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Department of Psychiatry, University of South Dakota School of Medicine Vermillion, SD, USA; Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
10
|
Wright M. The Hippocampus. WIKIJOURNAL OF MEDICINE 2017. [DOI: 10.15347/wjm/2017.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Sparks FT, Lehmann H, Hernandez K, Sutherland RJ. Suppression of neurotoxic lesion-induced seizure activity: evidence for a permanent role for the hippocampus in contextual memory. PLoS One 2011; 6:e27426. [PMID: 22110648 PMCID: PMC3215748 DOI: 10.1371/journal.pone.0027426] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Damage to the hippocampus (HPC) using the excitotoxin N-methyl-D-aspartate (NMDA) can cause retrograde amnesia for contextual fear memory. This amnesia is typically attributed to loss of cells in the HPC. However, NMDA is also known to cause intense neuronal discharge (seizure activity) during the hours that follow its injection. These seizures may have detrimental effects on retrieval of memories. Here we evaluate the possibility that retrograde amnesia is due to NMDA-induced seizure activity or cell damage per se. To assess the effects of NMDA induced activity on contextual memory, we developed a lesion technique that utilizes the neurotoxic effects of NMDA while at the same time suppressing possible associated seizure activity. NMDA and tetrodotoxin (TTX), a sodium channel blocker, are simultaneously infused into the rat HPC, resulting in extensive bilateral damage to the HPC. TTX, co-infused with NMDA, suppresses propagation of seizure activity. Rats received pairings of a novel context with foot shock, after which they received NMDA-induced, TTX+NMDA-induced, or no damage to the HPC at a recent (24 hours) or remote (5 weeks) time point. After recovery, the rats were placed into the shock context and freezing was scored as an index of fear memory. Rats with an intact HPC exhibited robust memory for the aversive context at both time points, whereas rats that received NMDA or NMDA+TTX lesions showed a significant reduction in learned fear of equal magnitude at both the recent and remote time points. Therefore, it is unlikely that observed retrograde amnesia in contextual fear conditioning are due to disruption of non-HPC networks by propagated seizure activity. Moreover, the memory deficit observed at both time points offers additional evidence supporting the proposition that the HPC has a continuing role in maintaining contextual memories.
Collapse
Affiliation(s)
- Fraser T. Sparks
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, Ontario, Canada
| | - Khadaryna Hernandez
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J. Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
Henrich-Noack P, Krautwald K, Reymann KG, Wetzel W. Effects of transient global ischaemia on freezing behaviour and activity in a context-dependent fear conditioning task – Implications for memory investigations. Brain Res Bull 2011; 85:346-53. [DOI: 10.1016/j.brainresbull.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
13
|
Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65:7-19. [PMID: 20152109 DOI: 10.1016/j.neuron.2009.11.031] [Citation(s) in RCA: 2339] [Impact Index Per Article: 167.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/11/2022]
Abstract
One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments: dorsal, intermediate, and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion, and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus).
Collapse
|
14
|
Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1291-308. [PMID: 19595731 PMCID: PMC2783512 DOI: 10.1016/j.pnpbp.2009.06.022] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
The medial division of the central nucleus of the amygdala (CeA(M)) and the lateral division of the bed nucleus of the stria terminalis (BNST(L)) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeA(M) however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeA(M) and BNST(L) are functionally complementary, with CeA(M) mediating short- but not long-duration threat responses (i.e., phasic fear) and BNST(L) mediating long- but not short-duration responses (sustained fear or 'anxiety'). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.
Collapse
Affiliation(s)
- D. L. Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Correspondence should be addressed to: David L. Walker, Emory University School of Medicine, 954 Gatewood Road NE, Yerkes Neurosci Bldg – Rm 5214, Atlanta, GA 30329, Ph: (404) 727-3587, Fax: (404) 727-8070,
| | | | - M. Davis
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,The Center for Behavior Neurosci, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Cai DJ, Shuman T, Harrison EM, Sage JR, Anagnostaras SG. Sleep deprivation and Pavlovian fear conditioning. Learn Mem 2009; 16:595-9. [PMID: 19794184 DOI: 10.1101/lm.1515609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sleep has been suggested to play a role in memory consolidation. Prior rodent studies have used sleep deprivation to examine this relationship. First, we reexamined the effects of sleep deprivation on Pavlovian fear conditioning. We found that the deprivation method itself (i.e., gentle handling) induced deficits independent of sleep. Second, we examined an alternative method of sleep deprivation using amphetamine and found that this method failed to induce amnesia. These data indicate that sleep deprivation is a problematic way to examine the role of sleep in memory consolidation, and an alternative paradigm is proposed.
Collapse
Affiliation(s)
- Denise J Cai
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego, California 92093-0109, USA.
| | | | | | | | | |
Collapse
|
16
|
Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci U S A 2009; 106:11794-9. [PMID: 19561297 DOI: 10.1073/pnas.0812608106] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Functional heterogeneity has been investigated for decades in the hippocampal region of the mammalian cerebral cortex, and evidence for vaguely defined "dorsal" and "ventral" regions is emerging. Direct evidence that hippocampal field CA1 displays clear regional, laminar, and pyramidal neuron differentiation is presented here, based on a systematic high-resolution analysis of a publicly accessible, genome-wide expression digital library (Allen Brain Atlas) [Lein et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168-176]. First, genetic markers reveal distinct spatial expression domains and subdomains along the longitudinal (dorsal/septal/posterior to ventral/temporal/anterior) axis of field CA1. Second, genetic markers divide field CA1 pyramidal neurons into multiple subtypes with characteristic laminar distributions. And third, subcortical brain regions receiving axonal projections from molecularly distinct spatial domains of field CA1 display distinct global gene expression patterns, suggesting that field CA1 spatial domains may be genetically wired independently to form distinct functional networks related to cognition and emotion. Insights emerging from this genomic-anatomic approach provide a starting point for a detailed analysis of differential hippocampal structure-function organization.
Collapse
|
17
|
Kryukov VI. The role of the hippocampus in long-term memory: is it memory store or comparator? J Integr Neurosci 2008; 7:117-84. [PMID: 18431820 DOI: 10.1142/s021963520800171x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/16/2008] [Indexed: 11/18/2022] Open
Abstract
Several attempts have been made to reconcile a number of rival theories on the role of the hippocampus in long-term memory. Those attempts fail to explain the basic effects of the theories from the same point of view. We are reviewing the four major theories, and shall demonstrate, with the use of mathematical models of attention and memory, that only one theory is capable of reconciling all of them by explaining the basic effects of each theory in a unified fashion, without altogether sacrificing their individual contributions. The key issue here is whether or not a memory trace is ever stored in the hippocampus itself, and there is no reconciliation unless the answer to that question is that there is not. As a result of the reconciliation that we are proposing, there is a simple solution to several outstanding problems concerning the neurobiology of memory such as: consolidation and reconsolidation, persistency of long term memory, novelty detection, habituation, long-term potentiation, and the multifrequency oscillatory self-organization of the brain.
Collapse
Affiliation(s)
- V I Kryukov
- St. Daniel Monastery, Danilovsky Val, 22 Moscow, 115191, Russia.
| |
Collapse
|
18
|
Burman MA, Starr MJ, Gewirtz JC. Dissociable effects of hippocampus lesions on expression of fear and trace fear conditioning memories in rats. Hippocampus 2006; 16:103-13. [PMID: 16261555 DOI: 10.1002/hipo.20137] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of the hippocampus in memory is commonly investigated by comparing fear conditioning paradigms that differ in their reliance on the hippocampus. For example, the dorsal (septal) portion of the hippocampus is involved in trace, but not delay fear conditioning, two Pavlovian paradigms in which only the relative timing of stimulus presentation is varied. However, a growing literature implicates the ventral (temporal) portion of the hippocampus in the expression of fear, irrespective of prior training. The current experiments evaluated the relative contributions of the dorsal and ventral portions of the hippocampus to trace fear conditioning specifically vs. the expression of conditioned fear in general. Lesions restricted to the dorsal hippocampus blocked acquisition of trace fear conditioning. Larger lesions, also including an adjacent portion of the ventral hippocampus, were required to impair retrieval of trace fear conditioning. Delay fear conditioning was not disrupted in either case. In contrast, lesions that encompassed almost the entire dorsal and ventral hippocampus disrupted expression of both trace and delay fear conditioning. The current data suggest distinct roles in fear conditioning for three regions of the hippocampus: the septal zone is required for acquisition of trace fear conditioning, a larger portion of the hippocampus is critical for memory retrieval, and a region including the temporal zone is required for expression of both trace and delay fear conditioning. These findings are consistent with evidence suggesting the neuroanatomical and functional segregation of the hippocampus into three zones along its septal-temporal axis.
Collapse
Affiliation(s)
- Michael A Burman
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
19
|
Abstract
A fundamental question in memory research is how our brains can form enduring memories. In humans, memories of everyday life depend initially on the medial temporal lobe system, including the hippocampus. As these memories mature, they are thought to become increasingly dependent on other brain regions such as the cortex. Little is understood about how new memories in the hippocampus are transformed into remote memories in cortical networks. However, recent studies have begun to shed light on how remote memories are organized in the cortex, and the molecular and cellular events that underlie their consolidation.
Collapse
Affiliation(s)
- Paul W Frankland
- Program in Integrative Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1XB.
| | | |
Collapse
|
20
|
Rudy JW, Matus-Amat P. The Ventral Hippocampus Supports a Memory Representation of Context and Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behav Neurosci 2005; 119:154-63. [PMID: 15727521 DOI: 10.1037/0735-7044.119.1.154] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors report that either inactivating the ventral hippocampus (VH) with muscimol prior to context preexposure or injecting anisomycin into the VH after preexposure significantly impaired rats' memory for context. Injecting anisomycin into the VH prior to contextual fear conditioning also greatly reduced long-term memory (48-hr retention test) but had no effect on short-term memory (1-hr retention test) for contextual fear. Together with other results, these data suggest that the memory for a novel context is distributed throughout the longitudinal extent of the hippocampus and that this representation helps to support contextual fear conditioning.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
21
|
Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, Zhang WN, Pothuizen HHJ, Feldon J. Regional dissociations within the hippocampus--memory and anxiety. Neurosci Biobehav Rev 2004; 28:273-83. [PMID: 15225971 DOI: 10.1016/j.neubiorev.2004.03.004] [Citation(s) in RCA: 1078] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The amnestic effects of hippocampal lesions are well documented, leading to numerous memory-based theories of hippocampal function. It is debatable, however, whether any one of these theories can satisfactorily account for all the consequences of hippocampal damage: Hippocampal lesions also result in behavioural disinhibition and reduced anxiety. A growing number of studies now suggest that these diverse behavioural effects may be associated with different hippocampal subregions. There is evidence for at least two distinct functional domains, although recent neuroanatomical studies suggest this may be an underestimate. Selective lesion studies show that the hippocampus is functionally subdivided along the septotemporal axis into dorsal and ventral regions, each associated with a distinct set of behaviours. Dorsal hippocampus has a preferential role in certain forms of learning and memory, notably spatial learning, but ventral hippocampus may have a preferential role in brain processes associated with anxiety-related behaviours. The latter's role in emotional processing is also distinct from that of the amygdala, which is associated specifically with fear. Gray and McNaughton's theory can in principle incorporate these apparently distinct hippocampal functions, and provides a plausible unitary account for the multiple facets of hippocampal function.
Collapse
Affiliation(s)
- D M Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, OX1 3UD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maren S, Holt WG. Hippocampus and Pavlovian fear conditioning in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. Behav Neurosci 2004; 118:97-110. [PMID: 14979786 DOI: 10.1037/0735-7044.118.1.97] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors compared the effects of pharmacological inactivation of the dorsal hippocampus (DH) or ventral hippocampus (VH) on Pavlovian fear conditioning in rats. Freezing behavior served as the measure of fear. Pretraining infusions of muscimol, a GABAA receptor agonist, into the VH disrupted auditory, but not contextual, fear conditioning; DH infusions did not affect fear conditioning. Pretesting inactivation of the VH or DH did not affect the expression of conditional freezing. Pretraining electrolytic lesions of the VH reproduced the effects of muscimol infusions, whereas posttraining VH lesions disrupted both auditory and contextual freezing. Hence, neurons in the VH are importantly involved in the acquisition of auditory fear conditioning and the expression of auditory and contextual fear under some conditions.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology, Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1109, USA.
| | | |
Collapse
|
23
|
Rudy JW, Huff NC, Matus-Amat P. Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 2004; 28:675-85. [PMID: 15555677 DOI: 10.1016/j.neubiorev.2004.09.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contextual fear conditioning is an important behavioral paradigm for studying the neurobiology of learning and memory and the mnemonic function of the hippocampus. We suggest that research in this domain can profit by a better theoretical understanding of the processes that contribute to this phenomenon. To facilitate this understanding, we describe a theory which assumes that physical elements of a conditioning context represented in the brain as either (a) a set of independent features or (b) features bound into a conjunctive representation by the hippocampus which supports pattern completion. Conditioning produced by shocking a rat in a particular context, in principle, can be produced by strengthening connections between the feature representations and/or the conjunctive representation and basolateral region of the amygdala. We illustrate how this theory clarifies some of the complexities associated with the existing literature and how it can be used to guide future empirical work. We also argue that the mechanisms (conjunctive representations and pattern completion) that mediate the contribution the hippocampus makes to contextual fear conditioning are the same ones that enable the hippocampus to support declarative memory in humans.
Collapse
Affiliation(s)
- J W Rudy
- Department of Psychology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
24
|
Abstract
While the hippocampus makes unique contributions to memory, it has also long been associated with sensorimotor processes, i.e. innate processes involving control of motor responses to sensory stimuli. Moreover, hippocampal dysfunction has been implicated in neuropsychiatric diseases, such as schizophrenia and anxiety disorders, primarily characterized by non-mnemonic deficits in the processing of and responding to sensory information. This review is concerned with the hippocampal modulation of three sensorimotor processes in rats-locomotor activity, prepulse inhibition (PPI) of the startle reflex, and the startle reflex itself-whose alterations are related to human psychosis or anxiety disorders. Its main purpose is to present and discuss the picture emerging from studies examining the effects of pharmacological manipulations of the dorsal and ventral hippocampus by local drug microinfusions. While a role of the hippocampus in regulating locomotor activity, PPI, and startle reactivity has also been suggested based on the effects of hippocampal lesions, the microinfusion studies have revealed additional important details of this role and suggest modifications of notions based on lesion studies. In summary, the microinfusion studies corroborate that hippocampal mechanisms can directly influence locomotor activity, PPI, and startle reactivity, and that aberrant hippocampal function may contribute to neuropsychiatric diseases, in particular psychosis. The relation between different sensorimotor processes and hippocampal neurotransmission, the role of ventral and dorsal hippocampus, and the extrahippocampal mechanisms mediating the hippocampal modulation of different sensorimotor processes can partly be dissociated. Thus, the hippocampal modulation of these sensorimotor processes appears to reflect multiple operations, rather than one unitary operation.
Collapse
Affiliation(s)
- Tobias Bast
- Behavioral Neurobiology Laboratory, The Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH 8603 Schwerzenbach, Switzerland.
| | | |
Collapse
|
25
|
Abstract
Pavlovian fear conditioning is a phenomenon amenable to laboratory analysis of the neurobiology of fear and the investigation of neural mechanisms of learning and memory. Investigators have made much progress in delineating the neurocircuitry and neurochemistry of fear conditioning. The place of the hippocampus in context fear remains a controversial issue. In this review, we examine the evidence that the hippocampus plays a role in fear conditioning. We then critically examine hypotheses concerning its exact role in learning and memory for cued and context fear conditioning.
Collapse
Affiliation(s)
- Matthew J Sanders
- UCLA Psychology Department, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | | | | |
Collapse
|
26
|
Abstract
Recent models of hippocampal function emphasize its potential role in disambiguating sequences of events that compose distinct episodic memories. In this study, rats were trained to distinguish two overlapping sequences of odor choices. The capacity to disambiguate the sequences was measured by the critical odor choice after the overlapping elements of the sequences. When the sequences were presented in rapid alternation, damage to the hippocampus, produced either by infusions of the neurotoxin ibotenic acid or by radiofrequency current, produced a severe deficit, although animals with radiofrequency lesions relearned the task. When the sequences were presented spaced apart and in random order, animals with radiofrequency hippocampal lesions could perform the task. However, they failed when a memory delay was imposed before the critical choice. These findings support the hypothesis that the hippocampus is involved in representing sequences of nonspatial events, particularly when interference between the sequences is high or when animals must remember across a substantial delay preceding items in a current sequence.
Collapse
|